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Pad6 Approximants for the q-Elementary Functions 

Peter B. Borwein 

Abstract. We give a simple construction of the Padb approximants to q 
analogues of exp and log. The construction is based on the functional relations 
they satisfy. The Pad6 approximants for the ordinary exp and log are then limiting 
cases. 

Introduction 

There are a few particular functions whose properties under rational approxima- 
tion have received special scrutiny. Exp and log are probably the central examples. 
This stems both from the fact that we can actually work out the details, though 
by no means trivially (see, for example, [9] or [11]) and from the pivotal role of 
these functions in applied analysis. It is also the case that almost all the known 
results concerning the measure of  transcendence of  e and ~- are tied into rational 
approximations to exp or log [4], [8]. 

Our intention is to show how to construct Pad6 and related approximants to 
functions that satisfy particularly simple functional relations. Two examples for 
which this method works are the q analogues of  exp and log. The q analogues 
of  exp and log are functions parametrized by q that, in some sense, naturally 
reduce to exp and log on letting q tend to one. (See Sections 1 and 3.) The 
introduction of  the q variable allows us to construct the Pad6 approximants from 
functional relations rather than the more usual use of  the differential equations. 
An alternate route to some of  these constructions, based on the q -  d algorithm, 
is given by Wynn [13]. Most notably, Wynn derives m>_n-1  forms of the 
approximants of Theorems 2 and 3. (See also [12].) 

The construction of q analogues of hypergeometric functions appears to be a 
profitable endeavor [1], [2], [5]. We might view the partial theta functions 

Tq(x):= ~ q"t"-')/2x" 
n=O 

as a q analogue of (1 - x) -~. Lubinsky and Saff have examined Pad6 approximants 
to Tq in some detail and proved some surprising convergence results (see 
Section 5). 
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Considerable number theoretic information is also deducible from the 
approximations to Tq and the approximations to the q exponential function. (See 
Section 5 and [12].) 

Section 1 introduces two q analogues to the exponential function and also the 
basic notations. Section 2 shows how to construct Pad6 approximants to entire 
functions satisfying certain function relations. Sections 3 and 4 then give the 
construction of  the Pad6 approximants to the q analogues of  exp and log, 
respectively. The last two sections discuss briefly the partial theta function case 
and a higher-order case. 

1. The q-Exponential Function 

(1.3) 

and as above 

We need the standard q analogues of factorials and binomial coefficients. The 
q-factorial is 

( l _ q n ) ( l _ q n - 1 ) . . .  ( I - - q )  
(1.1) [n ]q! :=[n] ! :=  ( 1 - - q ) ( 1 - - q ) - ' ' ( I - - q )  ' 

where [0]q !:= 1. Since (1 - q") /(1 - q) = 1 +-  �9 �9 + qn-~ it is clear that 

(1.2) lim [n]q! = n!.  
q ~ l  

The q-binomial coej~cient (or Gaussian binomial coefficient) is 

q [ n - k ] ! [ k ] !  

q ~ l  q 

The q-binomial theorem (or Cauchy binomial theorem) is 

(1.5) ~ 
k=o L k J  k=, 

This is all standard and may be found in [5]. We give two versions of  the 
q-exponential due to F. H. Jackson [5], [6]. 

co X n 
(1.6) Eq(x) := 

n=o [n]! 
and 

x n q n ( n - l ) / 2  
(1.7) Eq*(x):= 

[n]! n=O 

In both cases, as q--, 1, the functions reduce to the ordinary exponential. Note 
that Eq is entire (in x) if Iql>l while it has radius of  convergence II-ql-' if  
Iql < 1. The function E* is entire for Iql < 1. It is related to Eq by inverting the 
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base q, that is E*q=El/q. If we set x : = ( 1 - q ) q - l x  in (1.5) and let n tend to oo 
we deduce that 

(1.8) Eq*(x)= ~ (l+xqk(1--q)),  Iql<l, 
k=0 

and on setting q:= 1/q 

(1.9) E q ( x ) = L ( l + x q - k ( 1 - - 1 ) ) ,  ]ql> 1. 

The Cauchy product of (1.6) and (1.7) can be simplified using the q-binomial 
theorem to give 

(1.10) Eq(-x)E*q(x) = 1, 

which provides for the analytic continuation of  both Eq and E* where necessary. 
From (1.8) E*(x) satisfies the functional relation 

(1.11) E*q(x) = M,~(q, x)E*q(xqm), 

where M,,(q, x) = I-I ~'_-~ (1 + xqk(1 -- q)). 
This may be recast on using (I.10) as 

(1.12) Eq(xq =) = Mm(q, -x)Eq(x).  

This functional relation allows for the construction of  the Pad6 approximation 
to Eq. The method is presented in the next section. 

2. The Basic Method for Constructing the Pad~ Approximants 

We collect together, in convenient form, the pieces that allow for the construction 
of  Pad6 (and related approximants) for entire functions satisfying functional 
relations like (1.11). 

Theorem 1. Suppose Fq(x) is an entire function of x (analytic in some open 
connected set containing O, 1, q , . . . ,  qn in fact su~ces). Let 

(2.1) I(x):= 1 f Fq(xt) dt , 
2rr---i Jc~ ( t -  q~ t - 7  :::  ( t -  qn)t m+l 

where Co is a circular contour containing O, qO,...,  q,. Let 

(2.2) 

and 

(2.3) 

A(x):= ?~ "Fq(qix)/Fq(x) 

i=O[h.Hh,,(qi--qh)]q'("+') 

1 d '~ 
_ q O ) . . .  ( t _  qn)},=o" 
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Then: 
(a) 
(b) 
(c) 
(d) 

I(x) = A(x)Fq(x) + B(x). 
I(x) = O(xn+m+'). 
B(x) is a polynomial of degree less than or equal to m in x. 
If, for each i <_ n, Fq satisfies a function relation of the form 

Fq(xq') = N,(x, q)Fq(x) 

where Ni is a polynomial of degree i in x, then 

(2.4) A(x) := 
N,(x, q) 

'=~ (q'--qh))q'(m+l) 

is a polynomial of degree n in x. Furthermore, the ( m, n) Pad~ approximant 
to Fq is just -B (x ) /  A(x). 

Proof. Part (a) is just the evaluation of I by the residue theorem. 
Part (b) is easily deduced. We observe that the denominator in I grows like 

t "+"+2. Thus any terms of the expansion of  Fq(xt) of order less than n + m + 2  
vanish on integration. 

Part (c) is obvious, while part (d) is just a substitution with the final observation 
following from (b). �9 

Construction of Pad&type approximants based on contour integrals like I is 
a classical and familiar technique, particularly for functions satisfying simple 
differential equations, like exp. (See [4] and [8].) 

We note that 

(2.5) fi (q ' -qnl=q"2"- ' - ' ) /2[n- i]![ i]!(1-q)"(-1) ' .  
h=O,h~i 

3. The Pad6 Approximants to Eq 

We apply Theorem 1 to derive the Pad6 approximants for Eq. 

Theorem 2. Suppose Iq[ ~ 1. Let 
(--1)nq"(n+am§ [7] 

(3.1) Qm.. (x) := (1- q)" ,=o L (-I)' 

xliN'tk=O (l + xqk(l--q))} qi(i-')/2-i(m+n) 

and let 

(3.2) 
q k, l k  . . . .  1 

P"'"(X):=l--'~=l(l_q~+k) J ( l - -q )"  i=0 

x{i~' ~ (e--xq-k)(l--q-')}q "'+')/2+". 
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(The empty product is identically unity.) Then Q,.,~(x)/ P,,,n(x) is the (n, m) Padd 
approximant to E*(x), while P, . : ( -x) /  Qm,~(-x) is the (m, n) Pad~ approximant 
to Eq(x). P~,n and Q..n are polynomials of degree n in x and of degree n(3n -1) /2  
in q with integer coefficients and with constant coefficient one. 

Proof. The derivation of (3.1) is just part (d) of  Theorem 1 coupled with the 
functional equation for Eq(-X), (1.12). The simplification requires using (2.5). 
We have normalized so that Q,,, and P~,n have integer coefficients in q and in x 
and have constant coefficient one. This is done by multiplying by 
[hi!  (q,,O,+2m+,)/2). 

For (3.1) we observe that by (1.10) the (n, m) Pad4 approximant to Eq(-x) is 
just the (m, n) Pad6 approximant to E*(x). In particular on setting q:= 1/q, 
m:=n, and x : = - x  in (3.1) we get 

(3.3) om , . ,< :o  (1-xq-k(1-1))} q'~ 
for some function c(q) that is independent of  x. Here we have used the fact that 

i 1/q q 

If we set x := 0 in (3.3) we get 

P"'"(O)=c(q)~[7](-1)'q"'+"/2+'"i=o 

=c(q) N ( 1 - q  n+k) 
k = l  

on using the q-binomial theorem (with x : - - -qn) .  Similarly, 

( _ _ l ) n q n ( n + 2 m + l ) / 2  n 
, I-[ (I - q-~"+~+l)+k) �9 

Q,, n (0) - (1 _q)n  k=l 

And since Q,,,.,,(O)/Pm.,,(O) = 1 we deduce that 

c(q):= 

(--1)"q n('+2m+l)/2 h (1--q -~m+~+~)+a) 
k = l  

( l - q )  n f i  ( 1 - q  n+k) 
k = l  

I 

(l-q)" 

fi (l-q "+k) 
k=l 

(1-q ~§ 
k=l 
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Most of the final part of the conclusion is just a check. The divisibility of the 
sums by ( 1 -  q)", however, requires a little effort 1 

As Andrews observes (Math. Reviews, 86i: 11036) in the main diagonal case, 
Q.,. has a closed 2~o~ representation, namely 

Q . , . ( - x )  = q-"2-"x"z~,  " x (  ' 

while 

(q.q. 1 ) 
P'"(-x)=x"(-1)"+lq-t~176 ~'-' ' r x ( 1 - q )  " 

See [2] for definitions. In the limiting case (q ~ 1), Pm,,,(--X) and Q, . , . ( -x)  reduce 
to the usual Pad6 numerators and denominators for the exponential function. 

4. The Pad6 Approximants to a q-Logarithm 

We define a q-logarithm by 

.=l l + q + ' - - + q  "- l= .=~ ~ x". 

Then, as q ~  1, Lq(x)--~-log(1-x). We define 

( (_x) ) /  
(4.2) fq(x):= k:, ~ (1--xq-k)= Eq ~ ( l - x )  

and observe that 

s;(x)_ 1 
(4.3) fq(X) - - . = ,  1 -xq-"  ,,:, x -  qn" 

Note that fq is entire for Iql > 1 and 

m-- I  

(4.4) fq(xq")= I-I (1--xqk)fq(x). 
k = 0  

We also observe that, for ix I < 1, 

(4.5) 

= ~ (-l+q")(1-q)x"-I-Lq(x) 
,=, ( l - q " )  

- x ( 1 - q )  F Lq(x). 
1 - x  
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So for Iq[ < 1 

(4.6) 

397 

i - - I  

H ( 1 - x q  k) 
(4.7) Q~(x):=q "~ ~ 2 

i=o  q i ( 2 n - i )  

Theorem 3. 

(a) Let Iq[ > 1 and let 

(4.8) ~ x 
n ~ - I  x - q  n" 

(b) Let Iql < 1 and let 

Then Q,(x)  is the denominator of  the (n, n) Pad~ approximant to 

where 

(4.9) W~(x) := H (1 --xq-k). 
i=O k=O 

Then W~(x) is the denominator of the (n, n) Pad~ approximant to 

Lq(x) ( q - 1 ) x  xq ~ . 
x ' - ~  = ( l - q )  n=l ~ 1 - x q  ~ 

Wn is a polynomial of degree n in x and degree n ~ in q with integer coefficients 
and constant coefficient one. 

Proof. Let D~:=[n]!2q":(1-q) 2~ and consider 

Dn f fq(xt) dt 
(4.10) I := - -  = 2zri J c | 1 7 6  ' ' ' ( t - q n ) )  2 0 ( x 2 " + ' ) "  

with the last equality as in Theorem 1. Then by the residue theorem 

I = D~(A(x)  + B(x)) ,  

- - - (xq'  d 1 A(x):= 
i= dt I-I ( t - -qk)  2 

k ~ i  t=. q i 

N-1 (1 -- q)xq n 
Lq(x)= Z ~-Lq(q Nx) 

. = o  1 - x q  ~ 

q" 

=(1-q)Xn=o  ~ 1 - x q "  

= ( q - l )  ~ x 
n s O  X - -  q - n  

which should be compared with (4.3). 
We can now derive the main-diagonal Pad6 denominators for the q logarithm. 
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and 

(4.12) 

where 

(4.11) Qn(x):=(l_q)2,[n]!2q~: ~ Mi(x,q) 
i = o  qi . (qk _ qi) 

! 

P~(x):=D~{i~oMi(x,q){dl- I (tlqk)2)t=q,) 
k # i  

+ 
D"t , :0  q' II (qk_ q)2J" 

k # i  

We observe that P. and Q~ are both polynomials of  degree n and with (4.11) 
must be the numerator and denominator of  the (n, n) Pad6 approximant to 
xf~(x)/fq(x). With the aid of (2.5) we can simplify (4.11) to get (4.7). We deduce 
the form of  (4.9) from (4.6) and (4.7) on setting q := q-~ in (4.7) and multiplying 
by q,2 to ensure that the constant coefficient is 1. �9 

Once again we observe that, as q ~ l ,  W,(x) reduces to the usual Pad6 
denominator for log(1-x) .  For real q > 1, the function 

n = !  x - - q  n 

is a Stieltjes transform of a positive discrete measure and it follows that the 
polynomials On (x) are a sequence of orthogonal polynomials and have interlacing 
real zeros. Likewise for the W, when q is real and Iql < 1. (see [3].) 

We can explicitly solve for the three-term recursions that Wn and Q~ satisfy. 
This can easily be done using the coefficients of x ~ x ~-~, and x n. 

1 
B(x) :-- ,~o ~ xf;(xq') I-I (q'- q~)2. 

k#i 

From the functional relation for f, (4.4), 

qy~(xq ~) = M'~(x, q)fq(x)+ M,(x, q)f~(x), 

where M,,,(x, q) := m-~ l-lk=o (I --xqk). (Here differentiation is with respect to x.) Thus 

B(x):= Y. xM~(x, q)fq(x)+ xM,(x, q)f~(x) 
i=o q,(kl~#, (qk_q,)) 2 

Separating the terms multiplying fq(x) from those multiplying f~(x) gives 

I = Qn(x)xf~(x) + Pn(x)fq(x), 
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Theorem 4. 

(a) Let 

(4.13) 

i--1 

. Qn(x)~.[7]2kI~=o(1--xqk) 

(~"(x) "= 7 - , = o  q,~2.-,) 

Then the three-term recursion that Qn satisfies is given by 

O.n+l = (an + b,,x)Qn + c.xZO~n-1, (4.14) 

where 

(4.15) an: = 

and 

(b) Let 

h n ; ~  

(q2n+l__ 1)(q .+l+ 1) 
(qn+l __ 1)q2n+l , 

--2(q 2"+1 - 1) 
(q" + l)(qn+'-- l)q n+l' 

--(qn+l+ 1)(qn-- 1) 
Cn := 1)q2n+l" (q" + !)(q n+' -- 

(4.16) Wn(x):= ~ (1--xq-k). 
i = 0  k = O  

Then the three-term recursion that Wn satisfies is given by 

(4.17) 

where 

W.+l =(an+b .x )  . , 2 W.-1, 

(q2"+1- 1)(qn+l+ 1) 
(4.18) a*:= (q,,+l_ 1 ) , 

and 

b* := -2(q2"+1 - 1)q"+l 
(qn + 1 ) (qn+ ' -  1) '  

_(qn+l+ 1)q2n+a c*:= 1) (qn -  
(q" + 1)(q"+~- 1) 

399 

At x = 0 the recursions both reduce to products and we deduce the following 
amusing corollary. 
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Corollary 1. 

(a) 
n 2 . . [/] 

i~o q~ LnJ 

Both (a) and (b) reduce to the familiar summation 

when q := 1. 

5. Partial Theta Functions 

The partial theta function T is defined by 

(5.1) Tq(x):= ~. qk(k-1)/2xk. 
k = O  

(This is just 03-principal 
approximant is 

part (03)). The denominator  of  the (m, n) Pad6 

(m_> n -  1_0) .  

These are essentially the Rogers-Szeg6 polynomials (we need just substitute 
y : = - x q  m) [7], [10]. Recently, Lubinsky and Saff have investigated the conver- 
gence properties, or equivalently the distribution of  the zeros of  R . . . .  in some 

_ i, r/(2~r) irrational, then no detail [7]. They show, in particular, that if q -  e , 
subsequence of  any Pad6 row (n->2) can converge locally uniformly in [z[ < 1. 

We can view Tq(x) as a q analogue of  1 / ( 1 - x ) .  The functional relation for 
Tq is 

m - - I  

(5.3) xmq'~(m-1)/2Tq(qmx) = Tq(x)- ~ qk(k-l)/2xk. 
k = O  

We can derive (5.2) from (5.3) and the form 

i : =  [n]! (1--q)"qnm f x~Tq(xt) dt 
(5.4) 2zri Jco ( t -q~  "'" ( t -qn)  tm-~+~ 

roughly as in Theorem 1, with a little additional care for the summation term in 
(5.3). Then 

(5.5) I = Rm,.(x) Tq(x) + Sm,~(x) = O(x "§247 

with Rm.~ as in (5.2) and Sm,~ a polynomial of  degree m. 
The polynomials R~,~ and S~,n are both polynomials of  degree n 2 in q and 

both have integer coefficients in x and in q. Furthermore, in this case (n = m) 

I = O(q(3n2+n)/2).  
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Thus, S,,,,,/ R,,,,, is also a high-order approximation in q. This can be used to show 
that Tq(x) is irrational for 1/q and 1Ix sufficiently large integers and to derive 
rather good irrationality estimates. For example, for e > 0 and integers a, fl - N, 

I 1 T 1 - q  q3+~ 1/~ ~ ~ 

for all integral p and q sufficiently large. Note that 

The Pad6 approximants to the q-exponential converge rapidly enough to prove 
that E~/q(X) is irrational for q a positive integer and x rational. This is shown 
in [12]. 

6. A Hermi te -Pad6  Approximation 

Consider the form 

(1 - q)2n[n] !2 f ~.(xt)  d t  
(6.1) I ;= 

2~'i Jc~ ((t - qO) . . .  (t - qn))2tn+' 

with fq as in (4.2). Then there are polynomials pn, qn, and r~ of degree n so that 

(6.2) I = Pnfq + q~xfq + r, O(x 3n+2) 

The polynomials qn can be derived as in Theorem 3. We get 

i - - I  

1-I ( 1 - x q  k) [:] .o (6.3) q,,(x) := ~ 2 
i=O qi(3n+l-i) 

We note that (6.2) can be written as 

(6.4) 

that 

(6.5) 

and that 

[xf'q'~ r. 
P"+q"[, fq } +--=fq 0(x3"+2)" 

Xfq(X) _ 1 _ x 
fq(x) q - ' -  1 L,/q(X) x -  1' 

(6.6) 

so that we are 
q-exponential and q-logarithm 
this pair of  functions). 

1 (1 - x )  

fq(x) E q ( - x / ( 1 - q - l ) )  

constructing a mixed Hermite-Pad6 approximation to the 
(these are also called Latin-polynomials for 
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