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1. TIntroduction. In [7, § 13] Ramanujan sketches the genesis of 3 re-
markable series for 1/x. In § 14, with essentially no explanation, he gives
14 more remarkable series. Hardy [3], quoting Mordell, observes that *it

is unfortunate that Ramanujan has not developed in detail the correspon-
ding theories.”

In this paper we construct various general classes of hypergeometric-
like power series for 1/, and for several related quantities. In each case
the power is a well-known invariant from elliptic function theory and the
coefficients involve a similar invariant. In particular, we recover all but
2 of Ramanujan’s series and largely explain Ramanujan’s “corresponding
theories”’. A complete treatment appears in [1] which we follow closely in
the development of the material and which explains the two missing series.

Recently Shanks, [8], and Newman and Shanks [5] have studied series
for = in which the power is again an invariant. Their remarkable series
while very rapid are not entirely algebraic since they commence with a
logarithmic term. Moreover, the coefficients of their series are not entirely
explicit.

The most recent record setting calculations of digits of pirely on methods
that trace their genesis to this material. Details of the calculations of Gos-
per, Bailey, Tamura and Kanada, and Kanada may be found in {1].

2. Preliminary Results. Recall that the hypergeometric function, 3F,, is
defined by
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JFi(ab;c; x): Z (a),, (b), x»

iz (), nl’

(2.1)
for appropriate values of the variables. Here

(@nt = Ta+n)T() = ala+ 1)a+2)...(a+n—1).

Similarly the generalized hypergeometric function, 4F,, is defined by

n b n n
oFy (@, b, c;d,e; 3): = 5 (")(;)")(g) 2.2)

again where appropriate [6], [9]. We define the generalized complete elliptic
integrals of the first and second kind by

TS

K): =3 (; 55+ 5 1;k=), 2.3)
and

e o T 1 1, 1.2
ER); =3, 21v1(--§~s,2+s,1,k), @.4)
for | §| < } and 0 < k < 1. We denote the complementary modulus

= /T — k® and write Ky(k): = K(k'), E)(k): = Eyk). Now K: = K,

and E: = E, are the classical elliptic integrals, and each K|, E; admits
many integral representations [2, § 2.12]. Moreover, one has

kk’Z .
g
E, = k'K, + 15 Ko 2.5)

This may be verified directly or by using [2, § 2.8]. (Here K, = -d% Ks.)
Similarly, using [2, (13) p. 85] we have

7 oS (ws)

EKK, + K.E, — KK, =37T12s

(2.6)

When s: = 0, this is Legendre’s relation [1], [11]. The following relation-
ships will be helpful.

PROPOSITION 2.1. For 0 < h < — 1 we have

V2

@ 2Kt =oF,(3-3.5+50 1 @),
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(b) [T% Ks(h)]z — s (% _s, %+ 5,35 1, 1: (0P )

Proof. (a) is a special case of Kummer’s identity given in Raiaville [6, p.
67] or in [2, (2) § 2.11]. It may be verified by showing that both sides satisfy
the appropriate hypergeometric differential equation (and agree at zero).
(b) is a special case of Clausen’s product formula for hypergeometric func-
tions given by Slater [9, p. 75). O

In the sequel it will be convenient to isolate the following invariants
used by Ramanujan [7],

G: = Qkk'y'2, g: = (2k[k'%)-1n2 Q.7
and
218 oG = (k¥2k')1/12,
In Weber’s terms [10] 2Y4G = f, 2Ug = £, and gG = f5'. We also need
Klein’s absolute invariant J which is

e (4G — 1y _ (4g® + 1)
’ 27G* 27g*

Ramanujan talks about ““corresponding theories’ for K (s: = %, %, l)

to that for K. For s: = this is explained by the next result.

2

W]
B o—

PROPOSITION 2.2.

(@) Ky = (1 + LHY? K(k)

12 —-12\ =1 iy
i 2hh’=(u‘g—-) and0 < h< =, 0 < k < /7 —1
2 V2

(b) Kyjs(h) = (1 — (kKk')?)"/* K(k)
, , 1 1
l_f 2hh =J']/2dnd0€_h<—'\7—§,0<k<71.
Proof. These were discovered by piecing together the quadratic and cubic
transformations given in {2, § 2.11] They may be verified by establishing
that both sides satisfy the same differential equation (derived from the
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appropriate hypergeometric differential equation), and both functions
involved have the same finite value at zero. |

There is a corresponding relation for K,,, although it is less concise
than those for K/, Ky/s [1, Ch. 5]. Combining these last two propositions
leads to a variety of alternate hypergeometric expressions for K and K2

THEOREM 2.3

(@)

@) %K (k) = ,F, (% %; 1; [2kk’]*), (o <k< —‘-/'—2) )
(i) = kB, (33 1= RRR), @<k <v3-D)
(i) =k12 ,F, (% %; 1; — [k’/2k’]3), 0 < k2 < 2y/2-2)
®
) @) =+ k), (-51; A% [ﬁglzgg'lz]")

O<k<v2-1

) = (2= oF, (335 1 — [G”;;‘i“_“]'z)

s 22g)

(¢)

O ) = (= @y, (i 150)

)

Proof. (a) We let s: = 0 above to deduce (i). Then (ii) follows on re-
placing ¢ by —g in the theta-function representations of K and (2kk')
This is Jacobi’s imaginary transformation [I1]. We derive (iii) from (ii)
by replacing k by k;: = (1 — k°)/(1 + k') and using the quadratic trans-

formation K(ky) = (l ";k ) Kk 1],
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(b) (iv) comes from letting 5: = } above. Then (v) again follows from
Jacobi’s imaginary transformation.

(c) (vi) comes from letting §: = } above. O

Similarly

THEOREM 2.4. For 0 < k < \_}_i restricted as in Theorem 2.3.

@
0 [BE@] = (3730 10T)
(i) = K1y (b b 45 1 15— R,
(i) = K7 Fy (b b E L L — [R2KT
o
) [2%( (k)]2 — (1 + k»1 F, (Zl;" %’ %; 1,1 [gH —;g—u]—a);
o) = o A3 2501 -[E5E])
(©)

(vi) [% (k)]2 — (1 — (kK')Y)-172 ,F, (% g, %; 1, 1; J—l).

Proof. We combine Theorem 2.3 with Proposition 2.1. |

Thus we have provided series for K and K? in terms of each of the six
invariants. One can produce other such formulae by further use of trans-
formation identities. For example, Bailey’s formula [2, p. 84(2)] with
a:= 3%, b: =1 gives

2K7? P (l 51 — 27 (2kk')?
i — —_ ~1/3 Sl e o o N
[1\7 ] (k) (1 4(2kk) ) aFl 6’ 6! 2! 1’ ]9 “ __ 4(2kk')2]8)

151,

. 27g®
‘6", "6'y is 1) 1

= (k' + 16K3)-V2 ,F, ( : m}. 2.9)

Note also that we may use (2.5) with s: = 0 and Theorem 2.3 to pro-
duce similar series for E.
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3. The General Identities. The singular value function is defined by solu-
tion of

K’ -
& () = vF 3.
for positive N. The uniquely defines & on [0, oo] as a decreasing function

with £(0) = oo, k(1) = -\715, k(o) = 0. It is known that k is algebraic
when N is rational [1]. Various values are tabulated below (§ 4). Moreover,
for some N one or more of our invariants becomes very simple. In [1] 2
corresponding function « (a singular value of the second kind) was studied.

It is defined by
@) = (7~ 353) ¥ R

and also is algebraic at rational values with a(l) = %, a(0) = }c More-

over, « satisfies remarkable recursions which allow one to compute it at
many values both numerically and explicitly. For example,

a(4N) = ) — 2v/N k¥N)

HEQF Ses)
and
1—Kk'(N

This leads to high-order iterations for 1/m, [1]. Values of « are also
given below (§ 4). From the definition of « we may derive that

4KK

s

+ (o) — v ) E e = kv,
(3.5)

— \/N kk'?

R

This follows from using Legendre’s identity (2.6) to write
a(N) = nf(4K%) — v N(E/K — 1)
and then using (2.5) to replace E by K.
Similarly,
1. /N kk' 41:5 + (((N) — VN k?) ‘%K (k: = k(N)).

K
(3.6)
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Thus given «(N) and k(N) we can combine (3.5) with Theorem 2.4 to pro-

duce power series for 11: In like fashion we derive series for kl— or for the

Gaussian AGM, M(1, k') = w/(2K), [1]. In each case we have

(2_7{_‘)'(1:) = m(k) F$(K))

for algebraic m and ¢ while F(¢) has a hypergeometric power-series ex-

pansion > a,$". Then

n=0

4K

n?

mF + = m¢ F(4). Substitution in (3. 5) leads to

NI—'

s = }'i, o [‘/zN kk' m + (a(N) — v k%) m

ki

4 n ‘/—szi k' a] . (3.7

Thus for each rational N the bracketed term is of the form a + nb with
a, b algebraic. We specialize this for our six invariants.
Series in Gy*2: = 2k(N)k'(N): For N > 1

1 Z (I/ﬁ] a,.(N)(G,T,"’ 2n (3.8)

T n=0
where

a,(N): = [a(N)— VN k¥N)] + nvV/N [(K'((N) — K¥N)].
Series in gy'*: = 2k(N)/K"N): For N > 2

oa 2), 13 -1
2= 5 o[22 T et (3.9
where
by = oWyt 4 my A [0,
Series in gan®: = (24 gnGy)~12 = k¥(N)/(2k'(N)): For N > }
where

en(N): = [o(N) — ‘/N V2 RN KW + /N (K )+ ()],
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—-1275 7
Series in xy: = [g" +8n J m——% For N> 2

1 - (i)ﬂ (%)" (%)ﬂ (N)x;t:’n+1

T = @)

["

3.11)
where

=1 —12
- [ ] [

—32
Sertes i i = [ & 7 ] =1 —4?2(/?(’3\]/{)1(«]\8\/)]= For N > 4
11-5 - ,,2 (= l)n%;gt)" en(]\")}’lzwllﬂ-1 (3123

where

' N ¥+ GR™
ex(N): = [ k,,(‘}‘é) )y’;c,(N) ‘/2 kz(N)GN] ny [Q_ﬁL_N]

2763 27w

Series in Jy': = ach - iy -———(432: T 1)3: ForN > 1
1o 5 @ e gy gy (3.13)
where
JAN): = —§ [\/N S 1— G¥™ + 2((N) — VN K{N)(4G — 1)]

+nyN 3_{/—5 [(8(;,%4 ol 1)J1 — G;“].

There are many equivalent rearrangements of the formulae for

an(N) — fo(N).
In similar fashion we may deduce that for all N

M, K N)) = Z—K(’I‘W» —g ,?:0 ma(N) (%)2k(1v)2n
(3.14)
where
mu(N): = [(N) — v/ Nk N)] + n2+4/N k'3(N);
and for N > 1



3,11)

(3.13)

1]

e for

(3.14)
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M(l, K(N) = ,;i (— 1y n,(N) ((—i),—) (%)2 (3.15)

where

m(N): = a(NYkyt + n2v/N ky?!

These use (3.6), and (2.3) with s: = 0. Also using (3.6) and Theorem
(2.3) (a) (i) and (i), leads to, for N > 1

wa k) == 5 o) [De]' ey (3.16)
where
0u(N): = [a(N) — VN k¥N)] + n2v/N [K'{(N) — k¥N));

and, for N = 2
ma, ke == £ e (S @ e

where
Pu(N): = a(N)k'-(N) + n24/N [1 + K¥(N)] k’-Y(N).

Obviously similar formulae may be derived in the other invariants.

4. Specific Examples. We first list various values of a(N) and k(N) (or
equivalently G5'® or g5 whichever is simpler).

Many other values of Gy, gy may be found in [7], [10] or [1]. Certain
values of k(N) are given in [12]. The explanation of the computation of
k(N) can be found in [1], [8] and [13]. Many values of «(N) are derived
in [1]. For N: = 2, 3, 4, 5, 7 they are given in [12].

From the information in these tables and the formulae given for =1,
we may explicitly compute all but two of Ramanujan’s series. (These two
which rely on K4 are treated in [1].)

Ramanujan gives series of form (3.8) for N: = 3,7, 15and none of form
(3.9) or (3.10). He gives series of form (3.11) for N: = 6, 10, 18,22, 58 and
of form (3.12) for N: = 5, 9, 13, 25, 37. He gives series of form (3.13)
for N: = 3,7.1In each case manipulation of the formulae yields the desired
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Values of Gy*2 and «(N) for N odd

N | 2k(k'(N) = Gx* «(N)
1 1 172
3 12 (W3 —-1)J2
5 V52 (V5 — v2v5—2)/2
7 1/8 WT—2)2
9o | @—y3p GowyIvi-)2
13 5¢/13—18 (VI3 — v/ T4y/ 13 — 258))2
15 %(‘/52_ 1)‘ (V15— V5 =12
25 (V5 —2) 5(1 — 2,54 (7 — 3/5)/2
27 (218 — 1)42 3(v3 + 1—24%))2
37 (V37— 6)3 (v/37 — (171 — 25¢/37)(/37 — 6)%)2
Values of gn'* and a(N) for N even
N |2k@)k' (NP =gy «(N)
2 1 W2—-1
4 1/24/2 2(v/2 —1)2
6 (v2—1 (V3I-v22—VIHB-vIW2+D
10 (v3—2? 7 + 2¢/3) (V10 = 3)(v2 — 1)
18 | 3-v2y 33 + VDWE— (VI —5-2v6)
22 (V2—1)° (V2 + 1033 = 1TyD)(BY22 —T—5V2)
58 (‘/55 =3 )° (‘/§§ + 5)° (99+/20—444)(99/3—70—13+/29)

2

2




2
V2)
v29)

e P
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result. (The algebra getting harder as N increases.) In fact «(37) and «(58)
were calculated by obtaining d,(58) and e4(37) to high precision numeri-
cally and then solving for «. Given the algebraic nature of « this ultimately
sufficies to verify the values. In fact, we have

1 _ & B @n (@ [1123 4 n214607[ 1 2
r =2 TV [ 3 ][882]

4.1
using (3.12) for N: = 37; and using (3.11) for N: = 58

12 @@

T n=0 (” ')3

2n+1
(24/2 (1103 + n26390)] (992) (4.2)

Since k%(N) behaves like 16 exp (— nv/N) [1] it is very easy to estimate
the number of digits added in each series. For N at all large, the conver-
gence while linear is most impressive. Not surprisingly Ramanujan has
given most of the special cases of (3.8), (3.11), (3.12) for which the power
is rational. We do add a few examples below. We have

. 3> [ *)"] /2 38 [3 ~v3, 6n] [2— V3]t (4.3)

T

using N: = 9in (3.8); and using N: = 18 in (3.9)

i=5 [(;%l] [21-—6\/6+ 84n] W3 — I

4.4

Similarly using N: = 15 in (3.10) we find that

ea(15) = ‘3/22 (— 1009 -} 5914/3 — 4454/5 + 255,/15)
+n 3‘/2( 395 + 245¢/3 — 175v/3 + 1014/T3)
4.5)
while
k(s _ v2

sy~ 3 COS— 1773+ MIvS—81yT)  (4.6)



158 J.M. BORWEIN AND P.B. BORWEIN

and the associated series gains more than 8 digits a term. Also (3.13), with
N: = 4 gives

Su®) = (63n + 5) v/6/3; It = (2/11)8, “4.7)
and with N: =2

f(2) = (28n + 3) V3/9; J;* = (3/5p. 4.8)

The vigorous reader will be able to compute many more such series.
We now give four mean series. From (3.16) with N : = 1 we derive

LY 2 (Gr)E,,
M(l, ﬂ)_n pol (n!) 2-n, (4.9)
From (3.15), with N; = 3 we derive

M(l, "SVEI) =2 am+ 1 (‘i:)z 4on (4.10)

n=0

and with N: = 7 we derive

M(l, "Z\/“; 3) % 5@t (‘%)")’ 64 (4.11)

=0 n!

Finally, we use (3.17) with N: = 4 and the fact that

M ( 1, 715) — (‘/22;;% 1) M(1, k'(4)) to deduce that

M(l, 713) =2 g S (=1 (2n+ 1)(%2)2 8-,

n=0

(4.12)

It is known [1], [12], [13] that K(k(N)) and M(l, k(N)) can be evaluated
in terms of I'-values for integral N. For example,

v7+3 T2 2 and ( 1 ) 2
= . M1, —=) = ==, o2,
M (1552 retay e <o 3) ~ T
Thus, all these series have, in principle, closed forms in terms of I"-values,
such as

on us

No
tions

. whick

o

whick

10.
11.

12.
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on using Theorem 2.3 (vi).

Note also that the asymptotic for k&(N) leads to logarithmic approxima-
tions for =, [1], [7], [8]. For instance

A
14

\/—ZN log (16/xy), 4.19)

which for N: = 58 yields

j?_ log (396)

v 58
. which is 3.14159265342... .

A
R
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