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More Quadratically Converging Algorithms for 77 

By J. M. Borwein and P. B. Borwein* 

Abstract. We present a quadratically converging algorithm for or based on a formula of 
Legendre's for complete elliptic integrals of modulus sin(7r/12) and the arithmetic-geometric 
mean iteration of Gauss and Legendre. Precise asymptotics are provided which show this 
algorithm to be (marginally) the most efficient developed to date. As such it provides a 
natural computational check for the recent large-scale calculations of 7T. 

1. The Algorithms. The arithmetic-geometric mean of Gauss and Legendre is 
defined, for k E (0,1], by 

(1) a ,,1 + 2 b ,= a Cn+1 = 2 (an-bn) 

with ao:= 1, bo:= 1-k2 :=k', co:= k.Thecommonlimitof {an} and {bn} we 
call AGM(k'). The remarkable utility of the above iteration stems from two 
observations. Firstly, 

O b < bn+I < a +, < an and c 2+1=c,/4a"+1 
which show that both sequences converge quadratically. Secondly, their common 
limit can be expressed in terms of complete elliptic integrals of the first kind 
K:= K(k), that is, 

(2) 2AGM(k') lo 1/-2dt K. 

Complete elliptic integrals of the second kind 

E:= E(k):= f g12 -ksi dt 

can also be calculated from the arithmetic-geometric mean iteration. Precisely, 

(3) (K -E)IK = 1/2( C2 + 2 C2 + +* 2 nC2 + . 
This powerful tool for computing elliptic integrals can be used to derive algo- 

rithms for S as follows. Let E':= E(k') and K':= K(k'). (These are the complete 
elliptic integrals in the conjugate modulus k' = 1 - k2.) Then, Legendre's formula 
relating these quantities is 

(4) EK' + E'K-KK' = 
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If we observe that k = k' for k 1/ 11, then we can combine (2), (3) and (4) to get 

( 2(AGM( 1/r2 )) 

(5) 1 - jC 2 

which upon truncation provides the desired algorithm. That is, if k = 1/ V2 and 

7n= 
2(an+1 )2 

n 1 - En_ 
C 

then 7n converges to is quadratically. In fact, 

22 n?4e T2'+' 
< 7T - 7Tn (AGM(1/V ))2 

(see [9] or the final section) and 

2-(n+1) 2 
T 7n+l< 2 (a Xn) - 

A continuum of algorithms can be derived from (4) using different values of k. 
However, most other choices of k double the amount of work and slow the 
convergence by necessitating the estimation of both AGM(k) and AGM(k'). 
Formula (5) is given by Brent [3] and by Salamin [9]. 

We base our algorithms on two other formulas of Legendre [6, p. 60]. For 
k := sin(7/12) = (I6 - 12)74 

(6) 7 = rK E- r + 1 
K) 

For k:= cos(V/12) = (V6 + 11)/4 

(7) 4= I AKE- r3 1 K) 

Compare these to (4) with k = 1/ 1, which collapses to 

(8) - = K(E- -K) 

The two new algorithms which are similarly derived from (6) and (7) on substitution 
of (2) and (3) are as follows: 

ALGORITHM 1. Let 

a0:=1, b:= 4 and co:= 4 

Let 

b = ab and c - c2/4a -+ 2 ' n? n n n1 n n1 

If 

(i-~ 2(an+c1)2 

(I1 EY'=0 2 --cy )r -1 
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then 

T T 22n+4eF-43r2'+ 

(AGM(b. ))2 

and 

V32- (n + ) 2 
X <Tn+ 1 < ( 2 t rn 

IT2 

ALGORITHM 2. Let 

ao:= 1, bo:= 
- 
- r and c0:= 

6 + r2 
4 0 4 

Let 

all+ 1 = " 2 , be+ 1 = Fa b and c,~1 = c /4an+1 

If 

7Tn:= 
6(an+1)2 

(I y= 2 cy )V +I 

then 

0 ~~<, 'T - 7Tn 
< ~7J 2 2n + 4e - -7 2` 1 

,5 

V3(AGM(bo ))2 

and 

2- (n'+ 1) 2 

'n +1 < C3 2 ( 
- 7 ) 

The upper bounds on the error provided in the algorithms are remarkably sharp. 
The error analysis will be provided in the next section. We observe that this analysis 
rederives Salamin's estimate for the error in (5). 

ALGORITHM 1 

n 0 1 2 3 4 5 6 7 8 9 

# Correct digits 1 6 15 34 71 146 298 599 > 1000 > 1000 
# Predicted 2* 6 15 34 71 147* 298 600* 1205 2414 

ALGORITHM 2 

n 0 1 2 3 4 5 6 7 8 9 

# Correct digits 0 0 3 9 21 46 94 196 398 800 
# Predicted 0 0 3 9 21 46 96* 197* 398 801* 

GAUSS - SALAMIN (FORMULA 5) 

n 0 1 2 3 4 5 6 7 8 9 

# Correct digits 0 2 7 18 40 83 170 344 693 1000 
# Predicted 0 2 7 18 40 83 170 344 693 1392 
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The correct digits row of each table was computed using a 1,000 digit scaled 
integer arithmetic. An entry of k in the prediction row means that the error 
was < 10-k. The predicted values were computed from the error estimates. The 
entries marked with asterisks, where the bounds exceed the observed accuracies, all 
result from counting exact digits rather than error. We observe that Algorithm 1 
converges considerably faster (rt times as many digits correct) than the Gauss- 
Salamin estimate. It is, however, marginally more complex, requiring a single 
additional root extraction at the initialization and a single additional multiplication 
in the final computation of v. 

Formula (5) has been employed recently by Tamura and Kanada [10] to compute 
4,194,293 digits of v. They checked these results by rerunning the program at twice 
the precision rather than using an asymmetric version of (4). Perhaps Algorithm 1 
would provide a convenient means of verifying such calculations. They have subse- 
quently computed 16,777,216 digits on a HITAC M-280H, using an arctangent 
relation of Gauss for verification to 10,013,395 digits on a HITAC S-810/20 (private 
communication). 

Other quadratic algorithms for v may be found in [2], [7] and [8]. These are also 
based on the arithmetic-geometric mean iteration. They are slightly less efficient 
though they require somewhat less of the theory of elliptic integrals. Formulas (6) 
and (7) of Legendre may also be found in [11, p. 527] as may all the necessary 
elliptic function theory. Of course, much of this is readily accessible in the original 
Gauss [4] and Legendre [6]. The monograph [5] has a wealth of material on 
computational aspects of the AGM. For a history of the calculation of i see [1], [10] 
or [12]; and for the relationship between the AGM and the rapid calculation of the 
elementary functions see [2], [3] or [7]. 

2. Convergence Rates. Let q:= e- K'/K denote the nome [11] of the iteration. 
Then (2) shows that K'/K = AGM(k')/AGM(k). We restrict our analysis to 
k = sin(v/12), k = cos(v/12) and k = sin(v/4). (With minor modifications, this 
error analysis extends to analogous algorithms based on identities such as (18)-(21).) 
For these values, as with various other algebraic k, one can solve for K'/K. (One 
has, respectively, r/, 1/ ft and 1 [11].) When there can be no confusion we shall 
abbreviate AGM(k') to AGM. The fundamental result ([2], [5]) is that (cn/4a )1/2fn' 

increases to q quadratically. Thus, 

(9) Cn < 4anq 
2 

and 

(10) cn --4AGMq2'. 

In each case we have 

a2 
n~~~~+ 

a -K'(Yj2 2i Cj)/K 

When k = sin(v/12), then a = (ft - 1)/2; when k = cos(v/12), then a = 

(V3 + 1)/6; and when k = cos(v/4), then a = 1/2. 
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Let dn denote the denominator of vn and let B:= K'/K. Then 

a2 a2 a 2 n2+1 a2 1 - a 2 
-+ an+1 _na+1/2c,? n na n+2 

Tn~l _1nd d - d. 1d ~ dn~ 
dn+1 dn dn+1 n n+1 

7n +l7n 2lC2 -~? (an?1 ? an?2)- 
2 n+1 ? n 2 n+2. 

Since 4a"+? ?+2 = 2+1, one checks that the first term dominates the second and so 
7Jn '7 S~+ 1 < 7J 

Thus, 

(7 1 ) STn + -7Tn <- 
(AGM) n+ 

and 

(12) > 7n > 2 1 (2n -2-1)C2 
7T~~~~an + 

T 
2 n1 

Summing (11), and using Ck+1/4AGM < (Ck/4AGM)2, produces 

2nc2 1 + (4AGM)2 Y 21( A ) \ 
(AGM) fl1 4A(JMI) 

Since, in each case, AGM > 1/2, we may bound this last summation by 1 + 

EJ.=1(2cn+2)J. This, since c2 < 1/2 in each case, is bounded above by 1 + 4 
Thus 

(13) _- <32nC2 + 4C2 7T- 7n< 
8(AGM)2 n?+( + nc+2). 

With (12) this shows that 

(14) #B n+1 (2n - 21)c < 2 -T < 2n+lc2 
a2 

n +1 < 7T- Fn 
<(AGM)2 n?1' 

Now (9) and (13) show that 

(15) 0 < 7T- 7Tn < 2n+4e-gf2n~l 
(AGM) 2 

since a"21(1 + 4cn+ 2) < 1. Finally (14) shows that 

(16) ~~~~~~~~2-(n?+1)2 (16) 7J - #7Jn + < 2 ( 7 - 7Jrn) 

Now substitution of the appropriate /3 produces the error estimates of the three 
algorithms. The previous considerations can easily be used to show that 

ST7T - K7 " 2 n8+1 
(17) K (AGM) 

KA 7'2 2n + 4e -'(K'IK)2n + 
K 
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We finish with a few observations. Firstly, the number of decimal digits (up to 
rounding) guaranteed by the algorithms is at least the integer part of 

IT )2n?1logloe -(n + 4)1oglo2 - lgl __ 
K 

which for most intents and purposes is well estimated by the first term. Thus, 
asymptotically our Algorithm 1 gives V3 times the digits of Salamin's method and 
Algorithm 2 gives 1/ V3 times that accuracy. Secondly, addition of Eqs. (6) and (7) 
produces Legendre's identity (4) with k:= sin(v/12) and Salamin's error analysis [9] 
shows, not surprisingly, that this behaves like Algorithm 2. Indeed, all of the 
nonsymmetric algorithms in [9] converge more slowly than the symmetric form. 

Finally, we observe that a single AGM computation oi i essentially relies on 
being able to express (i) K' in terms of K and (ii) E' in terms of E and K. For k = 

sin(g/4) obviously E = E' while for k = sin(v/12) (6) and (7) show that K = VIE 
- E', because K' = AlK. Ideally, one would wish to find similar identities to (6) or 
(7) in which K'/K is larger than rI. This is always possible but in general, at the 
expense of a more complicated initial value. Other examples do, however, exist. With 
k := r - 1 = tan(v/8) one has K' = V2 K. Moreover, k' = 2r/ /(1 + k) in this 
case and one can show that E' = (1 + k)E - kK' (on using the Landen transform 

([9, Eq. 4], [5])). This produces 

(18) E' =2 HE-(2 -42) K. 

Substitution of this formula into (4) produces 

(19) 2 = K(2V2iE - 2K) 

and two more formulas for i (whose rates are given by (17) and are governed by V2 
and 1/ r2). 

There is, in fact, a general class of elliptic integral identities like (6), (7), (8) and 
(19) whose derivation and application relies on the theory of higher-order elliptic 
transformations. This will be described in a future paper. For example, 

(20) 2 = K(2r TE -(ft + 2) K) 

when k:= V2(3 - Th)/8 and 

(21) 2 = K(2V E -(V9 +(27)1'4(V6 - f27))K) 

when k:= (12 - 3174)(r' - 1)/2. 
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