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RATIONAL FUNCTIONS WITH POSITIVE COEFFICIENTS,
POLYNOMIALS AND UNIFORM APPROXIMATIONS

PETER B. BORWEIN

Upper bounds are established for the uniform approxi-
mation of continuous functions on [1, 0] by rational funec-
tions with positive coefficients. These bounds are obtained
by rewriting polynomials with no positive roots as rational
functions with positive coefficients.

1. Introduction. The uniform eclosure in C[1, 0] of the set of
polynomials with positive coefficients includes only those functions
analytic in the unit disc whose power series expansions have non-
negative coefficients. The uniform closure of the set of rational
functions with positive coeflicients consists of all continuous fune-
tions which are never negative on [0, 1]. This is a consequence of
the following interesting factorization theorem.

THEOREM 1. (K. Meissner [3].) Suppose that p is a polynomial
with real coefficients and that p(x) >0 for >0. Then there
exists a rational function r(x) with nonnegative coefficients so that

p@) = ().

We will provide an accurate bound for the degree of the above
7 in terms of the degree of p and some knowledge of the location
of the roots of p. We will also derive some estimates concerning
how efficiently polynomials can be approximated on [0, 1] by rational
funetions with positive coefficients. We will exploit these results
to prove a number of approximation theorems. For instance: if f
is analytic in some neighborhood of [0, 1] and positive on [0, 1],
then there exists a sequence of rational functions {r,} where each
7, is of degree n» and has nonnegative coefficients so that ||f—7,||0=
0(a~ =) for some a > 1.

We employ the following notation. Let [, denote the poly-
nomials with real coefficients of degree at most ». Let [[; be the
sub class of [I, whose elements have nonnegative coefficients. Let
R}* denote those rational functions p,/q, where p,, ¢,¢c][;. For
f eCla, b] define

1. (f: la, b)) =pier}1f f — Dlla,e
I1a(f: [a, b]) =pier}£llf — Plltaty
Bo*(fila, 0]) = inf [If — 7llwn
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where || |l is the supremum norm on [a,d]. We note that all
the above infimums are attained.

2. Expressing polynomials as rational functions with non-
negative coefficients. The first two results of this section are
concerned with expressing quadratic polynomials as rational func-
tions in R:* where m is as small as possible. The final theorem
is an extension of these results to general polynomials.

THEOREM 2. Suppose that a, 8 > 0 and suppose that ¥*—ax+p
has no positive roots. Then
(a) for each ¢ > 0 there exists a constant A, so that

2t — ax + B = r,(x)
where

r. R and m = AE[TL——]I/HE :

a@’[B
(b) for e = 1/14,
22— ax + B = r,(x)

where

1 1/24+1/14
r e R and m < 20[_—] .
4 — /B

Proof. The quadratic «*> — ax + 8 has no positive root if and
only if & < 48. We set ¢ = a*/8 and note that 0 < ¢ < 4. Consider

(@ —ax + B +ax + B) =o'+ (28 — a2’ + B

(1) =at+ Q2 — )t + 8.

If ¢ <2 we have the desired factorization. In general we proceed
as follows:
Define C, inductively by

(2) C,=c¢"?and C,,, =2 C;.
Let

pa(@) = & + 7T Ca 4 B
and let

-z')—”(x) — x2n+1 _ Bgn—lcnxgn + Bgn .

Note that, by (2)
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PP, () = & — B7Ci " 4 2870 4
(3) =i wgn+2 + B2n ﬂHx2n+l + Bgn+1
= p«nﬂ(x) .

Consider the smallest n (if it exists) so that C, is nonnegative.
Then, by (1) and (3)

(@ — az + @)@+ ax + 8) = p,
and
DDy Dyt Du i = D

where p, -« +'p,_, € [I4n+1-» since each C, < 0 for k < n and where
P, € [+ since C, = 0. Thus, we have

(4) 22— ax+ B = Pn_ —¢c¢R\.
B (mz + ax + B)pl.p‘l' R i

Since 0 < ¢2 < 2 we deduce that C, — 1. We wish to find a small
n as a function of C, so that

(5) C.20.
Suppose that
(6) C, -+, C,<0.
Then
Co=2—(C, ) <0

implies

(C,>2 and —C, , >2'"
implies

(Coy)? — 2> 2% and ~C, , > (2 + 29"
and by iteration
(7) e>2+ 2+--- (2 + 2vavaye, e = 5

where (equivalently) 6, = 2 and d, = 2 + d%*,.

We are reduced to finding an n so that 4, > ¢ = a*/3 since, for
such an » (6) is contradicted and hence, (5) is satisfied.

Consider
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4—b, =202, =270 o 4— 0,
2+ 03k (24 a2+ 04y

8
(8) , i 7

T BrRI@T o) BT @i G e

It is now sufficient to pick » so that

7 o’
9 — ' =<4
(9 (2 4 2v3)" =4 B

A suitable choice is

log, __7_,.__
4%
; B 4 7
n = 1 + int. part =l1+=1 S —
+ P oz, 21 27 |— + 7 0g, . P

We deduce from (4) that

o — ax -+ Be RS,
where

7 4/7 1 1/241/14

=20

4« 4@

8 B

2n+1 é 4

This completes (b). Part (a) is proved analogously with the observa-
tion that in (8), for &k < m,

|4 —d,] = —"—‘7 sk
Since 5,, “')4, we can replace (9) by

Fo _4_ o
(4—er B

and the result follows as above.
The bound in Theorem 2 is “essentially” correct.

THEOREM 3. Let o, =2 and B, =1+ K. If
-+ By =71 RN

then



RATIONAL FUNCTIONS WITH POSITIVE COEFFICIENTS 59

1
4%

B

m=1v2

Proof. We first show that if p,e[[; then p, has no roots in
T, = {2: |arg (2)| < w/n}. Suppose p,(z) = S;r.,a,2* where qa, = 0.
Let £ec{0 <arg(z) <=z/n}). Then a,{)*e{0 < arg ()< hr/n} and
hence, p,()e{im(2) > 0}. Thus, p, has no roots in T,.

The quadratic «* — a,@ + B, has a root at 1+ i/ke T, and we
deduce that if 2> — oz + B, = 7, € B.* then m > k. We finish the
result by observing that

S 1 1/2 k(l + 1/k2)1/2
2 = i =k.
4 4 G V2 B
Bs

THEOREM 4. Suppose p, € [1,. has no roots in the region Q(1/h)=
{z: |arg (z)| < 1/h} and suppose that p,(x) > 0 for x > 0. Then,

(a) for each €& >0 there exists a comstant B,, depending only
on &, so that

Dn = Tw€RE" where m < Bh"™n .
(b) for e =1/1,

P, = 1. €RLT where m < 1087 -0 .

Proof. Let * — ax + v be a quadratic factor of p,. We assume
a, v < 0 since otherwise x* — ax -+ v has either nonnegative coeffi-
cients or a nonnegative root. We proceed to replace, using Theorem
2, each such factor by an element of R;i~.

Set v =1/41/h* + 1)a* + ¢ and set B = 1/4(1/h* + D)a’. Since
x* — ax + v has no roots in 2(1/h) was see that |[a® — 4v["* = a/h
and 4y = (1/h* + 1)a* from which we deduce that 6 = 0. Consider
#* — ax + 8. By Theorem 2(b) #* — ax + 8 — r, € R * where

k S 20 1 1/2-+1/14 _ ZO[M]U? é 20h3’7 .
I R 4

B

We now replace 2* — ax + v by 7, + 6. Since there are a maximum
of n/2 such quadratic terms to replace, we have

Py =1, €R.Y where m < 200%"(n/2) = 10h¥™n .

This completes part (b). Part (a) is proved analogously using
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Theorem 2(a) instead of 2(b).

3. Approximating polynomials. We estimate how efficiently
polynomials in the class P.P.C. can be approximated by rationals
with positive coefficients. A polynomial is in the class P.P.C.
(polynomials with positive coefficients in z and (1 — %), see [1]) if it
can be written Sa,2*(1 — x)° where a,, = 0. We use this estimate
and Theorem 4 to approximate polynomials with no rootsina region
containing [0, 1]. We adopt the notation R.P.C. (rationals with
positive coefficients in « and (1 — x)) for those rational functions
which are a quotient of two elements of the class P.P.C.

LEMMA 1. Suppose D, = Dprise G (1 — x)° is @ P.P.C. of degree
n. Then there exists r(x) € Ryt so that for x€[0, 1),

(@) — " P, (¥)
) — po)| S T

Proof. We observe that for z¢|0, 1),

1 B 1 — . _1—-x
‘(1 & 1+m---+w’”‘1‘ \(1 & 1— g
= ______w’"(l—x)‘gxm.
1—am o

Since ¢ — b = (@ — bY@ +aH + - +abT + b,

1

(1) A T

| = dam .
xmwl)i

Let

1
Ttat -+

and consider

r(@) = akixk(sm)i .
kti<n

'3

Each term of the above sum can be brought to the common denomi-
nator (1 + & + --- + a™)* and hence, (%) € Ra.. Also, by (1),

l’l'(m) — p,,(it)‘ = E akiw"ix’"
( 2 ) kt+isn
= A VI I
ktisan

Since
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> ast = 3 aurt ML=y

kticin ktimn (1 _ x)i
=T ar T S Ty
we have
- nx" p(i)
@) — @S

LEMMA 2. Suppose p and q are both P.P.C. of degree n. Then
there exists r € R, so that for any x €[0, 1], satisfying 1—x)">nzx™,

— 2na™ . b(®)
|p(@)/q(x) — r(@)| = T —n  a@ "

Proof. By Lemma 1 we can choose s and ¢e R} so that for
20, 1),

_ nx"p(x)
|p(@) — 8(@)| = Ao
and
_ nx™q(x)
lq(x) — t@)| = Acar
Then, for x¢€[0, 1),
p) s | _ 1p@) _ s@) | s@ _ s@
glx) =) glxz) q®) q@) tw)
< |p@) — s@)| | | s(x)(g(x) — t(x))
h q(=x) ' t(x)q(x)
< __ma” p(x) na™  |s(x)
T (=) g (1 —x)" (=)
< 2nx™ | plx) nL™ p®)  s(x) .
T (L =) ig) 1 —a)lgl@x) i)

The result follows with » = s/t.
We now prove an analogue of Theorem 4 for rationals in the

class R.P.C. Define a diamond-shaped region in the complex plane
G(a) by

Gla) = {z: |arg (z)| < a} N {z: |arg (1 — 2)| < a} .

LEMMA 3. Let ¢>0. Suppose p,c[l. has mo roots im the
region G(1/h) and p,(x) > 0 for x€[0,1]. Then p.(x) = r.(x) where
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r.(2) is @ R.P.C. of degree m, m =< Bh**"-n and B, is the same
constant as appears in Theorem 4.

Proof. We write p,(®) = 8,(®)t,. () where s, €[], has no roots
in {z: |arg (2)| < 1/} and £, ;€ I1..; has no roots in {2: |arg (1—2)|=
1/h}. By Theorem 4,

s,(¢) = Uj;(z) e Rf* where j < B,h"*k

and sinee ¢, (%) = ¢,_(1 —x) where ¢, ,(1 —«) has no roots in
{z: arg (2) < 1/h},

t,(x) = V,(1 —2) where V,(z)eRi* and i < BA"*'(n — k). ~
We set 7,(@) = U;(x) V(1 — z) to complete the result.

LEMMA 4. Let € > 0. If p,cIl. has no roots in the region
GA/h) and p,(®) >0 for xc[0,1], then there exists r € R, where
¢ = B.h"*® so that for x¢cl0, 1),

2nz™ | p(@)|

@) — @] 2 T

provided (L — z)™ = cna™.

Proof. By Lemma 3, there exists s an R.P.C. of degree at
most e¢n = B.h"9n so that p =s. By Lemma 2, there exists e
Ritn so that

1p(@) — 7(@)] = |s(@) — r()| < 22 lp@)|
(1 — x)™ — cna™

4. Approximating analytic functions. Let o> 1 and let K,
be the closed ellipse in the complex plane with foci at 0 and 1 and
with semiaxes 1/4(0 + o) and 1/4|p — p*|. S.N. Bernstein proved:

THEOREM 5. ([2] p. 76.) If f is analytic on K, then there
exist polynomials p, € ]I, so that

| f — Dallon = 0(1/0")

and p, — f uniformly on E,.

We show that positive analytic functions can be approximated
almost as efficiently by rational functions from the class R.P.C.

THEOREM 6. If f is analytic and never zero on E, and f(x)>0
for x 0, 1}, then there exists a sequence of r.,cR.P.C., r, of degree
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n, so that for each ¢ > 0,
I = Pallon = O1/p )

where ¢, = B[(tan™ (o + p7)/2)]"""® and B, is the same constant as
in Theorem 4.

Proof. By Theorem 5 there exists a sequence of polynomials
P, so that

(1) I1f = Dullion = O1/0")

and each p, has no zeros on E,. We note that the region
SV
G(tan < 5 ))CE,,
and hence, by Lemma 3,
_ . ” o p + p-l “(1'(-8).
P, =7,€R.P.C, where m < B,(tan <——_-2 )> n .

The result is finished by substituting », into (1).
We have the following two theorems for approximating analy-
tie functions by rational functions with positive coefficients.

THEOREM 7. Let 0 < p <1. If f is analytic and never zero on
E, and f(x) >0 for xc[0, 1], then there exists a constant v s0 that
Ry (f:10, o)) = O(1/y")

where v depends only on o and 0.

Under stronger assumptions on f we recover exponential rates
of convergence.

THEOREM 8. Let 0 <0 < 1. Suppose that f(z) = Sa,z*, a, real,
s analytic in a region containing {z:|2z| < 1} and suppose that
f@) >0 for ze0,1].
Then there existsin > 1 so that
B (f: [0, 61) = 0(1/7™)

where 1 is independent of n.

Proof of Theorem 7. By Theorem 4, there exists a sequence of
polynomials p, &[], so that
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(1) INf— pn”[o,ll = O(l/p”)

where each p, has no roots in E,. Since G(tan™[(0o + p™)/2]C E,
we deduce, from Lemma 4 with h = 1/tan™'[(p + p07")/2] and m = in,
that there exists », € R}/ so that

P znxmllp”[o,ﬂ
(2) (P =1 | S FE o B

From (1) and (2) we have, for fixed 7 sufficiently large,

1+ no™ ]

1f = Teg o1 = Ol:_p7 (1——“5)_”7'_

Since k, = 2icn?, the result follows.
We need the next lemma in the proof of Theorem 8. Let D,
be the open disc of radius « centered at the origin.

LEMMA 5. Let 8> a. Suppose f(2) = Div-, a,2* is analytic on
D,. Then, for ze€ D,,

NG

f(z) -
k2=|0 zk/ak

where s,(f: &) is the kth Taylor polynomial of f evaluated at «.

Proof. Let

Then,

Proof of Theorem 8. By assumption, f is analytic in some disc
D; where 8 > 1. Setting @ =1 in Lemma 5 yields, for z¢ D,
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Since f(x) >0 for xc[0,1], there exist N so that for n = N,
8,(f: 1) > 0 and so that >3, s,(f: 1)a* is strictly positive on [0, oo].
For m = N set

N

8.(f: Dz S s,(f: Dz
(l) ,,.m(z) — k=0 + k=N .

=N+1

k k

2 2

NgL}
Mz

|
I

0

|
i

0

The second term of the right side of (1) is an element of R;*. The
first term has a fixed numerator which is positive on [0, =] and by
Theorem 4, there exists a constant A4, independent of m, so that
this term is an element of E},.. Thus, there exists A so that for
each m = N

r.€R .

We finish the proof by observing that

g s:(f: et g s,(f: 1)2*
S & PIP L

k=0

ILf = rullion =

<| 2 a0 + 1fllow | 3 8
=m+1l k=m+1
= 0@™) .

5. Approximating continuous functions, We prove the follow-
ing three theorems:

THEOREM 9. If feCl0,1/2] and f =0 on [0, 1/2] then
B(f: 10, 1/2) < | fll.em2* ™™ + 20(f, 1V ) .

THEOREM 10. If feCl0,1/2], f =0 on [0, 1/2] then for each
6 > 0 there exists A, depending only on & so that
R (f:10, 1/2) = A,o(f, 1/nV ) .
THEOREM 11. If feC*0,1/2], £> 0 on [0,1/2] and f* clipa,
0 < a<l, then for each 6 > 0 there exists A, so that

RIS [0, 1/2]) < A,[;l—— -

1/(4.4-8)
where A, is independent of n.

We have use the notation w(f, -) for the modulus of continuity
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of f.
We now collect the results we need to prove the above theorems.
For feC[0,1] we define the nth Bernstein polynomial by

B,(x) = B,(f:%) = kZ:‘,of(k/n)<:>w"(l — oy

TaeoreM 12. ([5] p. 15.) If feC[0, 1] then
1 F@) — BulS: D)o = 20(F, 1V ) .

TuroreM 13 (Lorentz [1].) If feCH0,1], f> 0 on [0,1] and
F®elipa, 0 < a =1, then there exists p, a P.P.C. of degree m so
that

ko
17@ = 2@ o = O (1)
where C is independent of m.

Proof of Theorem 9. We extend f to a continuous function on
[0, 1] by setting, for x [0, 1/2]

e+ g)=He=3)

Then the modulus of continuity of f on [0, 1] is the same as the
modulus of continuity of f on [0, 1/2].

Consider B, the nth Bernstein polynomial for f. Since f is
nonnegative on [0, 1], B, is a P.P.C. of degree n and || B,llw.a =
|| fllon- Thus, by Lemma 1 with x < 1/2 and Theorem 12,

ru(f:[0, 2)) s Bu (B0, 3 ]) + 18— o
< |1/ o2 + 2007, 10/ )

Theorem 10 is a corollary to Theorem 9. We observe that it
suffices to prove Theorem 10 under the assumption that f has a zero
on [0, 1/2] and that under this assumption 2w(f, /v 1) =@/l fllw.n-
The result is now completed by choosing m = n’ for small §, and
applying Theorem 9. ,

Theorem 11 is proved analogously to Theorems 9 and 10. We
first extend f to [0,1] in such a way that f>0 on [0, 1] and so
that fe CH0, 1] with f*® eclipa. We now approximate this extended
F by a P.P.C. as guaranteed by Theorem 13 and proceed as in the
proofs of Theorem 9 and Theorem 10.



eIms.

and
L 80

1 on

1t it
7610

”[0.1]-
and

We
d so
nded
the

RATIONAL FUNCTIONS WITH POSITIVE COEFFICIENTS 67

6. Remarks,
(1) D. J. Newman and A. R. Reddy [4] show that the best
approximant to ™' from R;* on [0, 1] is & monomial az" and that

Ryt (2" [0, 1]) = IIs (&~ [0, 1]) ~ ¢/n .

This should be compared to the fact ([2] p. 31) that

(@ [0, 1]) = —L_

On+1 °

(2) The restriction that f be strietly positive is essential in
Theorems 7 and 11.

LEMMA 6. Let 0 <a < B. If fla) =0

++ : 2 f(:B) .
R'n (f [Cl" 18]) = (1 —I— B”/a”)

Proof. Let p,/q, be a best approximant to f from R,* on [a, 3].
Then we ean write

Po(x) = 3 a,x* where a, =0 .
k=0

We have
P.(B) = é‘a a8t = kZ:% %aka" = %pﬂ(a)
and hence,
R;% . , > — p%(B)
(f:la, 8D = F(B) 26
2 f(g) — B 2lA)
h ar q,(a)
Sinece
29 < f(a) + RIS [, B)
q.(a)
we have

R, 6) = £(8) ~ BBy (11w, 8]

Suppose that f is continuous on [0, 1] and f(/2) =0. If we
set @ =1/2 and 8 =1/2 + 1/2n in Lemma 6 then
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(o (L Ly L))z S22+ 12w
B0 2 Ry (2] 5 5+ ) 2 LHEE

In particular

R;+(<x- %)2: [0, 1]) 3 4;2 7 41— 5
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