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RATIONAL INTERPOLATION TO e*, I1.*

PETER B. BORWEIN

Abstract. The following estimate is derived for the error in approximating e* by rational functions. Let
a,, denote the polynomials of degree at most n.

THEOREM. Let v,,Y5," - *,Yan+1 e points (not necessarily distinct) in [0,a], «<<2. Choose P,, Q, €, so
that

P,(v)—Qu(v,)e =0 fori=1,2,---,2n+1.
Then for x €[0, a]

1t 2n+1
IB(0)/@u() ¢ 1= sy | T G
and
—x n'n! 2l
|P.(x)/Q.(x)—e |2Dam il;ll (x=7)|s

where C, and D, depend only on a.

1. Introduction. We derive precise estimates for the error in interpolating e™* on
[0,a], @« <2, by rational functions whose numerators and denominators have the same
degree. These estimates show that, up to a constant, the optimal choice of interpolation
points are the zeros of the Chebyshev polynomials shifted to the interval [0,a]. The
estimates provide another proof of the main diagonal case of the Meinardus conjecture
concerning the error in best approximation to e*, at least, up to a constant and on a
smaller interval. (See [1], [2], [3, p. 168], [4] and [5].)

Let 7, denote the real algebraic polynomials of degree at most n.

THEOREM. Let v,,Y,," **,Y2,4+1 be points (not necessarily distinct) in [0, a], where
a<2. Choose P,, Q,Em, so that

P,(v)—Q.(v)e =0 fori=1,2,---,2n+1.
Then, for x €[0, a],

an(x)/Qn(x)—-e_xlscaa-;—)%;!-m ’i_[ (x_.Yi)

i=1
and

IPn(x)/Qn(x)“'e—xIZDa'(—z";‘)‘;}(!z—n"l‘!:_‘Ti h (x—v)

i=1

where

—_ 2
(2=8) <p.zc=—.
163 (2“0()3
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If we set all the v, to zero in the above theorem then we get bounds for the error in
main diagonal Padé approximation.

The theorem is a refinement of a similar result in [1].

2. Preliminaries. We proceed, initially, exactly as in [1, p. 143). Suppose that

P, Q,€E€m, and suppose that P,(x)— Q,(x)e”* has 2n+1 zeros on the interval [0, a]. If
0,(x)=qy+q;x+ -+ +q,x" then on taking n+ 1 derivatives

(1) (B0 =@ x)e )™ " =(Q,(x)e )" = 3 (") opems(- o

k=0

_ n+l I ey P | J A\
= 2 Nl 27 ) (k) g
k=0 j=0

Since (Q,(x)e™*)**D has n zeros on [0, a], we deduce that there exist 8, - -, 8,€[0,a]
so that

j=0

é z_ 'S ("_;1)(——1)’(k+j)!qk+j=q,,iljl(X—.B,-)'

Thus, if g, 117 (x—B;)=by+b,x+ - -+ +b,x", we have

)

[ (n+1)  _(n+1 n+1\ o (nt1))
75 1) ) e )
0 n+1 n+1 _prt [l 0" 0
0 ="y ) o (=D a1 q,1! b1
_ 21| _| b,2!
e il
: : | g.n! Lb,,n!
0 0 0 (n+l) b B
O -

We can invert (2) to obtain

[ —
() (n:l) (n~’|1-2) (Znn) (b0 ] [ g0! ]
0 (") (n;';l) (2nn—1) It ot
(3) 0 0 (:’l) (2n’;—2) b2'2! - 42.2!
_ 0 0 o ... (Z) | bt | [ 4un!

We observe that (3) can be easily derived from (2) combined with the fact that the
(m,n) Padé approximant (the case where by=b,=--- =b,_,=0) to e” *is given by

5 )
oy o /30

ok
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We now consider e*P,(x)— Q,(x) and perform similar calculations to those above.

We write P(x)=py+ -+ +p,x" and we deduce the existence of a,,- - -,a,E[0,a] so

that
(P (x)" "=e"p, I (x—a,),
i=1
where
n
P Il (x—a)=ag+ -+ +a,x",
i=0
F(n+1) (n+l) (n+1) (n+1)_
0 ! 2 " (o0t ] [ag0!]
0 (n+1) (n+1) (n+1) P o
0 1 n—1 pll all.
(4) 0 0 (n+1) (n+1) P22l | _| ap2! ,
0 n—2 . .
: : : : | ! | | a.n! ]
n+1
| 0 0 0 ' (0 )
and
(5)
[ n _[n+1 n+2 ]
(") (n) ( ( 1)< ) (a0t ] [ p0!]
e | I B Rt
_ a,2' | _ 2!
0 0 (Z) e (=1 2(2nn—2) 2. = P2'
: : : : an!| | pn!
Lo 0 0 (") . )

The information about P, and Q, that allows us to analyse the error in interpolat-

ing e”* is contained in the following lemma.

+ ...
Y]s"

LEMMA. Suppose that P(x)=p,+p,x+ --- +p,x" and suppose that Q,=q,+q,x
+4q,x" where q,>0. Suppose also that P(x)—Q, (x)e ™ has 2n+1 zeros at
“Y2n+1E[0, 2]

Then:

a) P, has alternating coefficients;

b) [P =(n!/(2n)1)]

¢) if a<2, then

4 n! 4 n!
p=(37) Gayrleol and la.=( 35 ) oy el

d) if a <2 then Q, has positive coefficients,

=122 o and 0=,
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e) if a<<2 then

| _BO)_ 4
e**/2 0,000 (2—a)*

Proof. That P, and Q, can be found with the desired interpolation properties is a
consequence of results in [3, pp. 16 and 165].

Part a) is a direct consequence of (5) and the observation that the a; in (4)
alternate in sign.

Part b) follows from (5) and the above, that is,

oy 2n 2n)!
po= 3 lita(741) 22 g )= B2
i=0
To prove part c) we see that, if 0<a,," - -,a,<a<<2 and
n
a, [l (x—a,)=a,+ -+ +a,x",

then

n -
= ()@ Hla,l.

Thus, from (5) (or (3) for the second part),

n [Pt 4
=3 (nHK)ktla, )= (Ltﬂ“___.

Since 2" /(n— k) <(3)""*-3,

|Po|<9|a| 2 (n+k)'(3)" k 9|a| (@2n)! éo(

S 4]

N —

The first part of d) follows from an examination of (3) using the facts that, for
i<n,

(i=1)1lb,-i|<a(i)|p] and (7*+i=1) %("*"’).

n

The second part of d) is proved by noting that

go=ntlb(27) = (n— 1)1, (21 1) =(1-2) BnLly

To see the final part of d), note that

n—i

itg= 3 ("TF)(k+i) by,
k=0

and

(n+"§— 1 )(k+i—1)!|bk+,._115("j,‘k)(k+i)!lbk+,~|~
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Hence, since the b, alternate in sign,

i!q,S( Znn_i)("!)|bn|5( 2nn )”!Ibnlz (2nn!)! 0

or

Thus
2qy
0. (x)=5—_e
Finally, from (5), one can show that
|(i+1) p,+||< litp.

Since,

e—y,:& 27=0(Pi/1’0)(71)f ‘
9o 37 1(4:,/90) (1))’

It follows that

1= 2 Pi Piy)iens?,

2 =0 pO
i 2eM
1= <
120 9o l) 2—a
and
1 Po
37[/2 (2 Yl)(z a) )

3. Proof of the theorem. Let P, ,, Q, ., €, ., be such that

Pn+k(x) —x

s k:O’ 1’ .
Q,4(x)
has 2k zeros at zero and a single zero at each of the y;. Then, for x €[0, a]

n+k+l(x) n+k(x) ak+1x2knl'2£?-1(x—yi)
©) k( )= n+k+l(x) Qn+k(x) Qn+k+l(x)Qn+k(x) .

Also,if P, (x)=1+ -+ +p, ., x" " and Q,, ,=qo + -+ +q,4 4 X", then

Op 1 = Ptk 1,k+1 Dnt ke, k ~ Prvi ke Dntk+1,k+1

and by parts a) and d) of the lemma

|ak+1|:|Pn+k+1,k+1'qn+k,kl+ |Pn+k,k‘qn+k+1,k+1 .
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Parts b), c) and d) of the lemma yield the following bounds for a, _ ,:

2 ntk+1)(n+k)!

4\ (n+k+1)(n+k)!
|ak+1|2(ﬁ) (2n+2k+2g!§2n+2k)! (|‘10,k'P0,k+1|+ |‘Io,k+1'P0,kD-

and

From part d) of the lemma

2e”
Go.x=Qpsr+1(X) 5(‘10,1()‘2‘_—‘;~

For k=0 we note that g, , ., =p, .= 1. Thus, for k=1

4 [, (n+k+1D)!(n+k)!
R (x ~2—a( H b=y )(2n+2k+2)'(2n+2k)'
and
_ 2a 2 ! (n+k+1)(n+k)!
IR(x)|= 2( 27e* ) ( H = (2n+2k+2)'(2n+2k)'
For k=0
_ 2ntl (n+1)n! ,,(0)
IRo(x)I= ( )( [ b= Y’)(2n+2)!(2n)!(l+Qn(O))
and
2 2ntl (n+1)n! P,(0)
IRO(")I*( 276" )( H =l (2n+2)!(2n)!(1+Qn(0))‘
Note that
(n+k+2)!(n+k+1)! (ntk+D!(ntk)! _ 1
2n+2k+4)!(2n+2k+2)! (2n+2k+2)!(2n+k)!~16(n+k)2'
Thus,
IO
¢ Q,(x) k§0|Rk( )l
- 2 2n+1 . (n+1)'n' 4 il 1
_(2—a)( il;Il | YI) (2n+2)12n! [l+(2—a)2+2k§1 16(n+k)2
and
e B)
Q0,(x)

4—2a 2! (n+1)in P
2( 27e” ) ( H b= )(2 +2)‘2n‘[1+e 221 16(n+k)
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