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RATIONAL INTERPOLATION TO e x, II.*

PETER B. BORWEIN"
Abstract. The following estimate is derived for the error in approximating e by rational functions. Let

r denote the polynomials of degree at most n.
THEOREM. Let , Ya,’" ",Yan+t be points (not necessarily distinct) in [0,a], a<2. Choose Pn, Qrn so

that

Pn(Ti)-Qn(Ti)e-v’:O for i: 1,2,- .,2n+ 1.

Then for x [0, a]

and

n!n!IP(x)/Q"(x)-e-xl<-c (2n)!(Zn+ 1)!

2n+l

II (x-,)
i--1

n!n!
(2n)!(2n+ 1)!

2n+l

II (x-,)
i:1

where C, and Da depend only on a.

1. Introduction. We derive precise estimates for the error in interpolating e on
[0, et], a <2, by rational functions whose numerators and denominators have the same
degree. These estimates show that, up to a constant, the optimal choice of interpolation
points are the zeros of the Chebyshev polynomials shifted to the interval [0,a]. The
estimates provide another proof of the main diagonal case of the Meinardus conjecture
concerning the error in best approximation to e x, at least, up to a constant and on a
smaller interval. (See [1], [2], [3, p. 168], [4]and [5].)

Let rr, denote the real algebraic polynomials of degree at most n.
THEOREM. Let ,3[1,’’’,/2,+1 be points (not necessarily distinct) in [0,a], where

a <2. Choose P,, Q, r, so that

Pn(li)-Q,(yi)e-v,=O for i-- 1,2,.--,2n+ 1.

Then, for x [0, a],

and

where

n!n![P(x)/Q"(x)-e-x[<C (2n)!(Zn+ 1)!

2n+l

H
i--I

n!n!Ie"(xl/a"(xl-e-Xl>-D (2n)!(2n+ 1)!

2n+l

II
i=1

’6
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If we set all the 3i to zero in the above theorem then we get bounds for the error in
main diagonal Pad6 approximation.

The theorem is a refinement of a similar result in [1].

2. Preliminaries. We proceed, initially, exactly as in [1, p. 143]. Suppose that
P,, Q, ,r and suppose that P,,(x)-Q,,(x)e has 2n+ zeros on the interval [0, a]. If
Q,(x)- qo+ qlx + + q,,x" then on taking n + derivatives

(1) (P,,(x)-Q,,(x)e-X)("+l)-(Q,(x)e-X)(’+)- n+ }Qnk)e-X(_ 1)(,+l-k)
kk--0

X k n-k

=(_l),+te-X x n+l

=o. j=0,
i(-1);(k+j)!q,+;.

Since (Qn(x)e-X)(n+l) has n zeros on [0, a], we deduce that there exist fl,...,fl,[0,a]
so that . n+l (-1 (k+j)!qk+j q,,

k=0 j=0 J i=1

Thus, if q, II i"__ l(X- fli)- bo+bx+ +b,,x", we have

(2)

0

_(n+l)l +(n+l)2 (--1)n

(n+l)0 _(n+l)l (--1)n-’

0 0 0

In+l]n

In+

We can invert (2) to obtain

qo)!
ql[!
q22!

Lq,, !

bo0!
bl!
b22!

bnn!

(3)

() (n+l),n (n+2)n (2nn)
0 (r) (nn+l)"’" (2n- )

0 0 0 (n

boO!
bll!
b22!

b.n

" qo0!
ql!
q22!

qnn!

We observe that (3) can be easily derived from (2) combined with the fact that the
(m,n) Pad6 approximant (the case where bo-b-... -b,,_-O) to e is given by

m ()(__x)V / ()XX (m+n’} 19’ (n-’vTn) 19’
v=0 v v=0
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We now consider eXPn(x) Qn(x) and perform similar calculations to those above.
We write Pn(X)--po+ +pnx" and we deduce the existence of a,...,anglO, a] so
that

(eXen(X))(n+’)--eXpn I (X--ai),
i---1

where

(4)

Pn I (x--ai)--ao+ Wanxn,
i-0

PoO! ] aO! 1Pll! al!
p2! I- a2!

pnn J ann!

and

0

)
)

a00! P00!
al! pll!

a22! P22!

ann!., _Pnn!

The information about Pn and Qn that allows us to analyse the error in interpolat-
ing e x is contained in the following lemma.

LEMMA. Suppose that Pn(x)=po+px+ +pnx and suppose that Qn=qo+qx
+... +qnx where q0>0. Suppose also that Pn(x)-Qn(x)e has 2n+ zeros at

1’" ",’YEn+ ( [0, ].
Then:
a) Pn has alternating coefficients;
b) IP.l<-(n!/(2n)!)lPo[;
c) if a <_ 2, then

and
2-z: (2n)! Iqol;

d) if a <2 then Qn has positive coefficients,

qn--< 2L_a (2n)!,,qo and
qo2e
(2-a)
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e) if a <2 then

P(O) 4
< <

e3/2-O,(O) (2_a)2"

Proof. That Pn and Qn can be found with the desired interpolation properties is a
consequence of results in [3, pp. 16 and 165].

Part a) is a direct consequence of (5) and the observation that the a in (4)
alternate in sign.

Part b) follows from (5) and the above, that is,

[p0[ [i!al(n+i)>_(2nnt), (2n)!
n lan[- n! IPI-

i=0

then

To prove part c) we see that, if 0 -<a,. ., a,---a <2 and
n

an H (x--ti)--ao+ +anxn,
i=1

Thus, from (5) (or (3) for the second part),

n n --k

[P[-< (n+k) (n+k)!a"
k=0 k=0 k!(n-k)!

Since 2"-k/(n- k)! <-(-)"-.-,

[P[--< 91a"12
k0 (n+k),k! (2)n-’- -< 91a"12 (2n)’(ln! )"-’ (2)-’__<__[p[274 (2n),n

k=0

The first part of d) follows from an examination of (3) using the facts that, for
i<_n,

<1(i-1)!]b/_ [<a(il)[bi[ and (n+i-1)_.(n+i)n n

The second part of d) is proved by noting that

qo>_nt[b,[ (2nn) ( 1),{bn_[(2n-l)_(1 )( )!
n- > qn"

TO see the final part of d), note that

i!qi-- n+k (k+i)!b+
k--0

n

and

(n+k-ln)(k+i-1)!lb+’-’l<-(n+k)
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Hence, since the bk alternate in sign,

(2n)!
i,qi<_ (2nn-i)(n,)lb,l<_ (2)n’lb,l- ni qn

or

2 ) q0
q"--< 2 -."

Thus

Q,,(x) < 2.q,,
-2_ae

Finally, from (5), one can show that

<1I(i/ 1)!p+,l--li!pl.

Since,

e- .r, P___.9_o Yio ( Pi/Po ) ( "Y )
qo " (qffqo)(’ )i--0

It follows that

and

<%< 4

e3,,/2 --qo (2-)(2- ot)

3. Proof of the theorem. Let Pn+,, Qn+k r.+ , be such that

P,, + ,( x )
Q,,+,( x )

--e-x, k=O, 1,...

has 2k zeros at zero and a single zero at each of the 7. Then, for x [0, a]

(6) Rk(x ) ---+ i-(-i Q,,+(x )
Otk+ lX2k II 2in- l( x Yi )
Q,,+,+l(x)Q,,+,(x)

Also, if P,,+k(x)- + +p,+k,x "+k and Qn+-q0,k+ +q,+k,x n, then

tk+ :Pn+k+ i,k+ 1" qn+k,k--Pn+k,k" qn+k+ ,k+

and by parts a) and d) of the lemma
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Parts b), c) and d) of the lemma yield the following bounds for ak+l:

and
( 2 (n+k+l)!(n+k)!I,+,1 2" a (2n+2k+2)!(2n+2k)! (Iqo’k"Po’k+’l+lqo’’*l’Po’’l)

(7)
2 (n+k+l)!(n+k)!lak+ll--> (2n+2k+2)!(2n+2k)! (Iqo,,’Po,k+,l+lqo,,+’Po,,l).

From part d) of the lemma

2e
q’’<-Q"+’+(x)<-(q’’) 2--a

For k -->0 we note that qo, k+ --Po,k-- 1. Thus, for k _>

24 (2- ) (n+k+l)!(n+k)!IRk(X)[<-- x2" [x--’il (2n+2k+2)’(2n+2k)’i=1

and

}Rk(x)l-->2 27ea x 2k 2nl ) (n+k+l)l(n+k),Ix--vii (2n+Zk+Z)’(Zn+Zk)’’i--1

For k--0

Ix-,,I (2n+2)’(2n)’ I+Q,,(o)2-a
i=

and

[Ro(x)l>_ (4-2a27e 2(2n+1 ) (n+ l)!n! ( P,(O) )II I1-’,1 (2n+2)’(2n)’ +,O,,(o)i=1

Note that

Thus,

(n+k+2)!(n+k+ l)! / (n+k+ l)!(n+k)!
(2n+Zk+4)!(Zn+Zk+2)!/(2-r772-k-7+- 25 ( 71- ) 16(n+k)2"

and

en(X)
e-x-Q,,(x)

-->
27e"

Ix- ,l (2n+2)!2n’i=1 1+73-2 )2],,= 16(n+k
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