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MARKOV'S INEQUALITY FOR POLYNOMIALS 
WITH REAL ZEROS 

PETER BORWEIN1 

ABSTRACT. Markov's inequality asserts that IIp, II < n211p"11 for any polynomialpn of 
degree n. (We denote the supremum norm on [-1,1] by 11 11.) In the case that p" has 
all real roots, none of which lie in [-1,1], Erdos has shown that I IplI < en IIp11/2. 
We show that if p,, has n - k real roots, none of which lie in [-1,1], then 

lPnIll < cn(k + 1)11pn11I where c is independent of n and k. This extension of 
Markov's and Erd6s' inequalities was conjectured by Szabados. 

Introduction. Markov's inequality asserts that 

(l) ||Pn||[-1,1] ~~~< n 2lnl[11 

for any poynomial Pn E 7Tn [2 and 3]. (7Tn denotes the algebraic polynomials of degree 
at most n and 1. A denotes the supremum norm on A.) Erdos [1] in 1940 offered the 
following refinement of Markov's inequality. If Pn E 7Tn and Pn has all its roots in 
R - (-1, 1), then 

(2) nP"[-i,l] 2 en 

Inequality (1) iterates to give bounds for the kth derivative of a polynomial. 
However, we cannot proceed inductively with inequality (2) since some of the roots 
of the derivatives may be in [-1,1]. With this in mind, Szabados and Varma 
established a version of (2) for polynomials of degree n with all real roots and at 
most one root in [-1,1], namely, for such a polynomial pn, 

(3) -l< clnllPnll[-1,1], 

where cl is independent of n [5]. This, of course, yields the following inequality: 

(4) ||Pn 11[-1,11 < C2n2glI&Nl-1,1] 

for any Pn E 7Tn that has all its roots in R - (-1,1). In [6] Szabados proposed the 
following 

Conjecture. If Pn is a polynomial of degree n and Pn has at least n - k roots in 
R - (-1, 1), then there is a constant c (c < 9) so that 

(5) ||pn||[-1,1] < cn(k + 1)IlPIll[-1,1] 
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It is our intention to prove this slightly strengthened form of Szabados' conjecture. 
In its original form the conjecture had the additional assumption that all the roots of 
pn be real. Up to the constant this result is best possible; Szabados in [6] constructs 
polynomials Pn of degree n with n - k roots in R - (-1, 1) so that 

ilnll[~ l] 2 IIPnhI[-1,1] (0 < k < n). 

It is apparent from (1) and (2) that the best constant must depend on k. Some 
related results may be found in [4]. 

Inequalities for the higher derivatives of polynomials with real roots can now be 
derived straightforwardly from (5). For example, 

THEOREM. If Pn E 7Tn has at least n - k zeros in R - (-1,1), then 

|n()IIr iii < Cm ( n( + i!kn! IIPnll[-1,1]9 

where Cm < 9m depends only on m. 

2. Proof of the Conjecture. Let C2k be the 2kth Chebychev polynomial shifted to 
the interval [0, 2] and normalized to have lead coefficient 1. Let a1 < a2 < ... < ak be 
the roots of C2k in [1, 2] and let 

k 

(6) tk:= (x- ai). 
i=l 

LEMMA 1. The polynomial qk = (x + 2m/k)m ktk(x) has the following property. If 

ao = Oandan+? =1, then,fori = 1,2,...,n, 

(7) (X+3f!)?|| k ) tk >[G,] X(+ kf) m?k k 

Ia,-1'C'11 Icit'Ca, ,a1]1 

where the maximums on successive intervals occur with alternating sign. 

PROOF. Let 0 < PI < ... < .k be the roots of C2k in [0,1]. We observe that 
x/(x - 1i) is positive and decreasing on (iPk oo ] and that C2k equioscillates on the 
intervals in question (i.e. C2k satisfies (7) with equality). We now note that 

X kt k 

satisfies the conclusion of Lemma 1. To finish the proof we need only observe that 
(x + 2 m/k)m+k/xk is decreasing on [0,2]. E 

Let n = 2k + m and let 

n(X)= (1+ n/k) qk ((k+ ) k(1 k)) 

(We have shifted from [-2m/k, 2] to [-1,1].) This polynomial will act as a kind of 
near extremal polynomial for the Conjecture. Let y1 < 72 < ... < Yk be the roots of 
sn in (-1, 1). We collect the properties of sn that we require in the next lemma. 



MARKOV'S INEQUALITY FOR POLYNOMIALS 45 

LEMMA 2. For n = m + 2k and Snas above: 
(a) sn(X) = (x + 1)m?kH=,(x - Yi), 

(b) EXk1(1/(l - yi)) < 4k(n - k), and 
(c)fori= 1,...,k,y0= -land yk+l = 1 

11sn11t[Y,-j,-Yj >, 11Sn11[-Y,,-Y,+j1 

PROOF. Parts (a) and (c) are immediate from the construction of sn. Part (b) 
follows from the observation that, for ai as in (6). 

1 C2k(2) 
= 4k 2 

2= 
- 

i C2k(2) 

and the observation that 

1-Yl + m/k(2l ) 

Let pn* E 7rn maximize 

(8) lPn(1)/IIpnII[-1,1l] 

where the maximum is taken over all polynomials in 7Tn that have all but at most k 
roots in R - (-1,1). The information we need about p* is contained in the next 
lemma. 

LEMMA 3. Let p * be as above. Then 
(a) p* has k simple roots 81 .** <<k in (-1, 1), p* has n - k roots at + 1, and 

P9* achieves its maximum modulus on each of the intervals [-1, 81], [81 82I'... [8.,. 1]. 
(b) Either p * has no roots in [-1, oo ) or pn* has exactly one root at 1. 

PROOF. The proof of (a) is a simple and standard perturbation argument (if pn* did 
not satisfy (a) then it would be possible to perturb p* to reduce its norm on [-1,1] 
without decreasing the derivative at 1). We will prove only that Pn has no roots in 
(1, x), the other parts are similar. First suppose that pn* has two roots at a > 1 and 
,B> 1. Consider 

~ *(X)(X - 1)2 

Vn ( X): = 
Pn 

j v x,-(x - a)(x - 

Then for sufficiently small E > 0: 

(i) 1l Pn* - 'Vn l [-1,11 < 1l n141[-1,119 

(ii) K Pn* - 
' 

Vnl) I1)1 I|Pn'(1) 1, 

(iii) p* - Evn has all but at most k roots in R - (1, 1). 
Part (iii) follows since (x - a)(x - ,B) - E(X - 1)2 has two roots in [1, oo] for 

sufficiently small E. (Note a may equal ,B) However, this contradicts the maximality 
of P*. 

Next we suppose that pn* has exactly one (nonrepeat) root at a > 1. Now we argue 
as before by considering 

(x - 1)2 

v~():=p,~x)(x - 1)(x - a 
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If p*(1) # 0 we must observe that in this case sign(p,*(1)) = sign(p,*'(1)) and, hence, 
that 

'() (1 -a)pn*(l) 
Vn ( 1a)2 

has the opposite sign to p *'(1). The last observation requires noticing that if p *'(1) 
has opposite sign to p*(1), then p,*' has all its zeros in (-x,l ] and, hence, 

pn'(l) n 0. Thus, IPn*'I is increasing on [1, x), IPn I is decreasing on [1, a) and 
p*(x + (a - 1)) violates the maximality assumptions on [-1,1]. 

Part (b) follows since if pn* has two or more zeros at 1, then p'(1) would also equal 
zero. E 

LEMMA 4. If Pn E 7Tn has at least (n - k) roots in R - (-1, 1), then 

|Pn (1)1l 
<, 

29(k + 1) n11Pn11 [-1 ,11] 

PROOF. If 2k > n, then the lemma follows from Markov's inequality, so we may 
suppose 2k < n. Suppose there exists pn, as above, so that 

|pn(1)1i > 2-(k + 1)(n n-k) 
I&PNl-1,11, 

and let qn be the maximal such pn. By Lemma 3, this qn equioscillates k + 1 times on 
[-1, 1]. 

We shall first consider the case where qn has no root at 1. 
The key to the proof is to observe that the roots of qn lie to the left of the roots of 

sn (as defined in Lemma 3). We may write 

k 

qn(x) = (x + 1) flk (x - ) 
i=l 

where -1 p, < ... < Pk < 1. Also, 

Sn(X) 
= (X + 1)k rl (X Yi) 

i=1 

The claim is that yi > pi for each i. This is seen as follows.Choose the largest i for 
which pi > yi. Then pick q so that II?1qn1I[y,1] = 11Sn11[y,,1]. (We will specify the sign of 

,q later.)We can deduce from the equioscillation of qn that qn - Sn has at least k -i 

roots on [,B, 1], where ,B is the first point greater than pi where 7qn achieves its 
maximum modulus. From Lemma 2(c) we deduce that 7qqn - Sn has at least i - 1 
roots on (-1, a), where a is the largest point less than yi where Sn achieves its 
maximum modulus. We need only observe that if we choose the sign of 'q so that 

sign7qnq(/3) = -sign Sn(a) 

then 'qqn - Sn must have 2 roots in (a, ,B). Thus, 7qqn - Sn has n + 1 roots which is a 
contradiction and we conclude that pi < Yi 
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We now observe that, since pi < yi < 1, 

q'(1) q'(1) k 1 n-k 1 

11,11 1 -(-1) 

k 1 n-k n- k 
+ 2 < 4k(n-k)+ 2 

where the later inequality follows from Lemma 2. This is a contradiction. 
In the case where qn has exactly one root at 1 we proceed as follows. Let d > 1 be 

the unique point in (1, x), where lqn(d)l = IIqnII[-1 1 We can now consider qn on 
[-1, d]. We note that 

Jqn(d) > qn(1) I 

11qn11[_1 l] 11qn11[-1,1] 

since lq'i is increasing on [1, oo ). We can repeat verbatim the argument of the first 
part applied to 

q(x) = qn( d2 ) +( d2 )) 

with k replaced by k + 1. This allows us to deduce the contradiction that 

. K l < 4(k + 1)(n - k)+ 2 3 

The proof of the Conjecture is now straightforward. 
PROOF OF CONJECTURE. Let Pn be a polynomial of degree n with n - k roots in 

R - (-1,1). Let x0 be a point in [-1,1], where p, achieves its maximum modulus. 
We suppose xo < 0 (xo > 0 follows analogously). Let ax + b map [xo, 1] one-to-one 
onto [-1,1] in such a way that xo -* 1. 

Note that lal < 2. Thus, if vn(ax + b) = pn(x), then 

|Pn,(Xo)l x 2 Ivn'(1)I 9n(k + 1), 

llPnll[-I l] 11Vn11[_1,11 

where the last inequality follows from Lemma 4 and the observation that vn has at 
least as many roots as Pn in R - [-1, 1]. E 
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