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Let 4 and B be two disjoint finite sets in R’. Simple conditions that guarantee
the existence of a triangle with vertices in one of the sets and with no points from
the other set in its interior are given. The analogous problem for d-simplices in R?
is treated. Conditions are derived that guarantee the existence of a triangle with
vertices in one of the sets and with no points from either set on its boundary.

INTRODUCTION

Let A and B be two disjoint nonempty finite sets in R’ Under the
assumption that 4\ B spans R’ Motzkin [2] proves the existence of a
monochromatic line (a line through at least 2 points of one of the sets that
misses the other set). A special case of this result is the following lemma.

LeEmmA 1 (J. B. Kelly [3, p. 298]). Let 4 and B be two finite sets in R".
Suppose that every open segment joining two points of A contains a point of
B, and vice versa. Then the sets A and B lie on a line.

J. B. Kelly’s prvof of Lemma 1 is a minimum-altitude proof based on L.
M. Kelly’s proof of Sylvester’s theorem. We offer the following particularly
simple proof of Lemma 1.

Proof. Let T,={p,,p,,p;} be a nondegenerate triangle of smallest area
with all vertices either in 4 or all vertices in B. We show that no such
triangle exists. We assume that {p,, p,,p;} < A. By assumption there exists
{b,, b,, by} = B so that each b, lies on a different edge of T,. The triangle
T,={b,,b;, by} now has smaller area that T, and contradicts the initial
assumption. [

This result motivated Baston and Bostock [1] to examine various
generalizations. It is our intention to do the same.
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Two RESULTS CONCERNING MONOCHROMATIC TRIANGLES
The first theorem concerns triangles with monochromatic interiors.

THEOREM 1. Let A and B be two finite disjoint sets of points in R’.
Suppose A contains five points in general position. Then there exists a
triangle with vertices in one of the sets and with no point from the other set
in its interior.

Theorems 1 and 3 are similar in flavour to results in [1]. Figure 1 shows
that the assumption of five points in general position in Theorem 1 is
necessary.

Proof. Suppose that card(4) =n > 5. Let I" denote the convex hull of 4,
let A’ =ANint(l') and let B’ = BN int(I'). Let k = card(4’). Suppose that
A and B satisfy the conditions of the theorem but contradict the conlcusion.

We observe that there is a triangulation of I" consisting of n+k—2
triangles having A4 as its vertex set. To see this, first, partition I" into
n — k — 2 triangles using the points of 4 on the boundary of I" as vertices,
then add the interior vertices one at a time. Each additional interior vertex
increases the number of triangles by two.

Since each triangle in such a triangulation of I' contains a point of B’, it
follows that card B’ >n + k — 2. Any line | has at least three noncollinear
points of 4 on or to one side of it, hence, there is a point of B’ not on 1.
Thus, the points of B’ are not all collinear, so the convex hull of B’ has a
triangulation consisting of at least (n + k —2)— 2 triangles. This implies
that card(4’) > n + k — 4 > k = card(4’) which is impossible. 1

THEOREM 2. Suppose A and B are disjoint finite sets in R*. Suppose
that A contains 5 points p,,.., ps that are the vertices of a strictly convex
pentagon. Let I denote the convex hull of {p,,..,ps} and suppose that
IIMNA has no three points collinear. Then there exists a triangle T with
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vertices only in A or only in B so that no other point from either A or B lies
on any of the edges of T.

Proof. Assume we have sets 4 and B which satisfy the hypothesis but
not the conclusion of the theorem. Let I' be the smallest (in area) strictly
convex pentagon with vertices in 4 and with the property that '™ 4 has no
three points collinear. Let 4’ =4 NI and B'=BN1I. Let q,, ¢, 1, 44, qs
be the vertices of I" in order. Notice that no other set of five points of 4’
spans a convex pentagon.

Now any three points of 4’ span a triangle which has no other points of
A’ on its edges, so one edge must contain a point of B’. Suppose C is a
noncollinear subset of B’. The convex hull 4 of C has a triangulation whose
vertex set is B 4. (See the proof of Theorem 1.) Any triangle of this
triangulation must contain a point of 4', so 4’ N A £ @.

The triangles q,4,49; and g¢,4,49, each contain a point of B’ and these two
points are distinct. Let 1 be the line joining them. Since 1 does not contain
more than two points of 4’, we can find either three points of 4’ on one side
of 1 or two points of A’ on one side of 1 and one on 1. In either case we
obtain a point of B’ not on 1. Thus, the convex hull of B’ is two dimensional
and contains a point r of A’ which is necessarily in int I" and hence, is
distinct from q,, q,, ¢3, g4, g5.-

The convex hull of r and three consecutive vertices of I is a quadrilateral,
since if r were within the triangle spanned by ¢,, g,, g,, say, then 7, g,, g,
44, 45 would span a smaller convex pentagon, which is impossible.

Consider the five radial segments rg,. Suppose two of these that are not
adjacent each contain a point of B’, say rq, and rq, both meet B’. Then a
third point of B’ can be found on the triangle g,4,q,. These three points of
B’ cannot be collinear and hence, there is a point s of A’ within the triangle
4,4,9;- Since s is interior to the quadrilateral rq,q,q,, it is a new point.

If the configuration just analyzed does not exist, then there are three
consecutive radial segments, say rq,, rq,, rq,, none of which contains a
point of B'. Then each of the segments q,q,, 4,4,, g;q, must contain a point
of B’. These three points of B’ span a triangle which must contain a point s
of A’. Since s is interior to the triangle g,q,4¢,, it is a new point.

Thus, in either case there is a seventh point s in A’. At least three of the
g’s lie on one side of the line joining r and s, and these three together with r
and s span a convex pentagon. This, contradiction finishes the proof. N

The example in Fig. 2 shows that we cannot weaken the assumptions of
Theorem 2. Since any set of nine points in general position contain the
vertices of a strictly convex pentagon [4, Prob. 31] we have

COROLLARY 1. Suppose that A and B are disjoint finite sets in R? and
suppose that there exists a convex set I' in R* so that '™ A contains no
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three collinear points. Then, if card(I' M A) > 9 there exists a triangle T with
vertices only in A or only in B so that no other point from AU B lies on any
edge of T.

We note that both Theorem 1 and Corollary 1 are valid in R™, m > 2. The
proofs in higher dimensions follow, under careful projection, from the two
dimensional cases.

The following higher dimensional analogue of Theorem 1 is valid.

THEOREM 3. Suppose that A and B are two finite disjoint sets in R°,
d > 2. Suppose that A contains 2d + 1 points in general position. Then there
exists a d-simplex with vertices in one of the sets and with no points of either
set in its interior.

This follows, from Lemma 1. The arguments are analogous to those used
in the proof of Theorem 1.

LEMMA 1. Suppose S is a finite set in R? that spans R°. Let I be its
convex hull. Then I" has a triangulation with vertices in S and with at least
n—d+ k(d — 1) d-simplices, where n = card(S) and k = card(SNint I').

There are many obvious related questions: What happens if we consider
quadrilaterals (pentagons, etc.) in Theorem 1? What conditions yield a result
like Theorem 2 with the conclusion that there exists a triangle with both
monochromatic edges and monochromatic interior? What is a correct
analogue to Theorem 3 is we consider three sets instead of just two?
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