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Abstract. We introduce a collection of polynomials FN , associated to each

positive integer N , whose divisibility properties yield a reformulation of the
Goldbach conjecture. While this reformulation certainly does not lead to a

resolution of the conjecture, it does suggest two natural generalizations for

which we provide some numerical evidence. As these polynomials FN are
independently interesting, we further explore their basic properties, giving,

among other things, asymptotic estimates on the growth of their coefficients.

1. Introduction

Let P denote the set of odd primes. One of the oldest unsolved problems in
mathematics concerns the set P + P = {p+ q : p, q ∈ P}.
Conjecture 1.1 (Goldbach Conjecture). If N > 4 is an even integer, then N ∈
P + P.

If N is any positive integer, we say that the Goldbach conjecture holds for N if
N ∈ P + P. Otherwise, we say the the Goldbach conjecture fails for N . Of course,
we make no attempt here to prove the Goldbach Conjecture, however we wish to
study a related collection of polynomials. In order to construct these polynomials,
we let χP : N→ {0, 1} denote the indicator function of P. That is,

χP(n) =

{
1 if n is an odd prime,
0 otherwise.

Furthermore, for each positive integer N , we define

R(N) =

N−1∑
n=1

χP(n)χP(N − n)

so that R(N) counts the number of ways to write N as a sum of two odd primes.
We note that R(N) = 0 if and only if N 6∈ P + P. To each positive integer N , we
associate a polynomial FN ∈ Z[x] given by

FN (z) =

N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn

)2

.

Our first result discusses the divisibility properties of FN for each N and connects
FN to the Goldbach conjecture. We write ΦN to denote the Nth cyclotomic poly-
nomial.

Theorem 1.2. If N is a positive integer then the following conditions hold.
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(i) Φ2N divides FN .
(ii) ΦN divides FN if and only if the Goldbach conjecture fails for N .

The second statement of Theorem 1.2 is closely related to the Goldbach conjec-
ture and yields two immediate consequences.

Corollary 1.3. Suppose N > 4 is an integer.

(i) If N is odd then ΦN divides FN .
(ii) If FN/Φ2N is irreducible then the Goldbach conjecture holds for N .

Early numerical evidence seems to suggest that FN/Φ2N is, in fact, irreducible for
all even integers N > 4. If this is the case, then the Goldbach conjecture would fol-
low. Similarly, it appears that, for odd integers N > 5, we have that FN/(ΦNΦ2N )
is irreducible. Although this is not relevant to the Goldbach conjecture, we find it
independently interesting.

Conjecture 1.4. If N > 5 is an integer then the following conditions hold.

(i) If N is even, then
FN
Φ2N

is irreducible.
(ii) If N is odd, then

FN
Φ2NΦN

is irreducible.

As we have noted, Conjecture 1.4 (i) would imply the Goldbach conjecture.
However, the converse is possibly false. Indeed, FN/Φ2N could be reducible but
still not divisible by ΦN . As such, we should view Conjecture 1.4 as being signifi-
cantly harder than the Goldbach conjecture, and therefore, not likely within reach
using current techniques. Nonetheless, we find it interesting to see the Goldbach
conjecture in this context.

As evidence in favor of Conjecture 1.4, we have found that it holds for all N ≤ 50.
For even N , the first few polynomials FN/ΦN are given in the following list.

F6/Φ12 = z46 + z44 − z40 − z38 + 3 z36 + 4 z34 + z32 − 3 z30 − 2 z28 + 3 z26

+ 5 z24 + 2 z22 − 2 z18 − z16 + 2 z14 + 5 z12 + 3 z10 − z8 − 3 z6 + 4 z2 + 4

F8/Φ16 = z90 − z82 + 3 z76 + z74 − 3 z68 − z66 + 2 z64 + 4 z62 + 3 z60 + z58

− 2 z56 − 4 z54 + 2 z52 − z50 + 5 z48 + 4 z46 − 2 z44 + 4 z42 − z40

− 4 z38 + 2 z36 − 2 z34 + 6 z32 + 4 z30 + z28 + 2 z26 − 4 z24 − 2 z18

+ 9 z16 + 3 z12 + 3 z10 − 7 z8 + z6 + 9

F10/Φ20 = z118 + z116 − z108 − z106 + z104 + z102 + 2 z100 + 3 z98 + z96 − z94

− z92 − z90 + z86 + z84 + 4 z82 + 4 z80 + 2 z76 + 2 z74 − z72 − z70

− 2 z66 + 2 z64 + 9 z62 + 5 z60 + 4 z56 − 4 z52 + 3 z48 + z44 + 7 z42 + 8 z40

+ 2 z38 + z34 − 3 z30 + z28 + 3 z26 + z24 + 6 z22 + 8 z20 + 2 z16

+ 4 z14 − 3 z12 − 4 z10 + 3 z8 + z6 + 9 z2 + 9.
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Now we give the analogous list but for odd N .

F7/(Φ7Φ14) = z48 − z46 + z38 + z36 − z34 − z32 + 3 z28 − 3 z26 + 2 z24

+ z20 − z18 − 2 z16 + 3 z14 − z10 + z8 + z6 − 4 z2 + 4

F9/(Φ9Φ18) = z100 − z94 + z86 + 2 z84 + z82 − z80 − 2 z78 − z76 + 3 z72

+ 4 z68 − z66 + z64 − 4 z62 + 3 z58 + z54 − 2 z52 + 4 z50 + 4 z48

− z46 − z44 − 5 z42 + 3 z40 + 6 z36 − 2 z34 + z32 + z30 + 4 z28

− z26 − 4 z24 − 2 z22 + 2 z20 + 7 z18 − z16 − z14 + 2 z12 + 3 z10

+ 2 z8 − 8 z6 + 9

F11/(Φ11Φ22) = z120 − z118 + z106 − z104 + 2 z100 − z98 − z96 + z92 − z90

+ 2 z88 − 2 z86 + z84 − z82 + 3 z80 − 3 z74 + 4 z70 − 4 z68 + 2 z66

+ z64 − 2 z62 + 4 z60 − 2 z58 + z52 − 4 z46 + 4 z44 − z42 + 4 z40

− 2 z38 + z36 − 2 z34 − z32 + 4 z30 + 2 z28 − 5 z26 − 4 z24 + 6 z22

+ 2 z20 − z18 + z16 − 2 z14 + z10 + z8 + z6 − 9 z2 + 9.

Indeed, we have found that the right hand sides on the above lists are all irreducible
over Z.

Because of their relevance to the Goldbach conjecture, it may also be interesting
to study the number of roots of FN that lie on the unit circle. In view of Theorem
1.2 (i), it is clear that FN has at least ϕ(2N) such roots. For even integers N > 4,
if FN has no other roots on the unit circle, then the Goldbach conjecture would
follow from Theorem 1.2 (ii). Our numerical evidence suggests this to be the case.
Furthermore, when N is odd, we know that FN must, in fact, have at least ϕ(2N)+
ϕ(N) roots on the unit circle. Again, our evidence suggests that there are no others.
Also, the identity

ϕ(2N) =

{
2ϕ(N) if N is even

ϕ(N) if N is odd.

holds for all positive integers N . So we pose the following strengthening of the
Goldbach conjecture.

Conjecture 1.5. If N > 5 is an integer then FN has precisely 2ϕ(N) roots on the
unit circle.

Similar to our note above, the converse of Conjecture 1.5 is not necessarily true.
FN could have many roots on the unit circle while still not being divisible by ΦN .
Once again, this conjecture should be regarded as more difficult than the Goldbach
conjecture.

We have computed the number of roots of FN on the unit circle for N ≤ 50 and
have found that Conjecture 1.5 holds for those FN . This complete list is given in
Table 1 including the number of roots inside, on and outside the unit circle for each
FN .

It is worth noting that, in our construction of FN , the set of odd primes may
be replaced with any subset of N. In this way, one may attempt to prove theorems
analogous to those stated above. One such example, which is of particular interest
in number theory, arises in the following way.
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Table 1. Location of roots of FN

N 2ϕ(N) [|z| < 1 |z| = 1 |z| > 1]
6 4 [16 4 30]
7 12 [4 12 44]
8 8 [24 8 66]
9 12 [8 12 92]
10 8 [16 8 102]
11 20 [16 20 104]
12 8 [48 8 186]
13 24 [40 24 200]
14 12 [40 12 286]
15 16 [40 16 308]
16 16 [36 16 338]
17 32 [36 32 348]
18 12 [56 12 510]
19 36 [40 36 536]
20 16 [80 16 626]
21 24 [60 24 676]
22 20 [64 20 714]
23 44 [56 44 736]
24 16 [92 16 950]
25 40 [84 40 980]
26 24 [100 24 1026]
27 36 [108 36 1052]
28 24 [92 24 1126]
29 56 [100 56 1132]
30 16 [132 16 1534]
31 60 [128 60 1552]
32 32 [144 32 1746]
33 40 [136 40 1808]
34 32 [144 32 1870]
35 48 [160 48 1900]
36 24 [168 24 1978]
37 72 [136 72 2024]
38 36 [180 36 2522]
39 48 [172 48 2592]
40 32 [184 32 2670]
41 80 [176 80 2704]
42 24 [200 24 3138]
43 84 [184 84 3176]
44 40 [244 40 3414]
45 48 [252 48 3484]
46 44 [228 44 3598]
47 92 [244 92 3620]
48 32 [288 32 4098]
49 84 [260 84 4168]
50 40 [264 40 4302]
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The Liouville function λ : N→ {−1, 1} is the completely mulitplicative function
such that λ(p) = −1 at every prime p. Now define the set

L = {n ∈ N : λ(n) = −1}.

It is a direction of our future research to examine the analogs of FN that are obtained
by using the above contruction with L in place of P. Perhaps this strategy can yield
a proof that every positive even integer N > 2 satisfies N ∈ L+L. On the surface,
such a result appears to be easier than the Goldbach conjecture, and therefore, is
possibly within reach.

One can also consider weighted forms of FN . Similar to the study of the prime
number theorem, instead of using the above indicator function of P, we use the
weighted form

∼
χP(n) =

{
log n if n ∈ P,

0 otherwise

and define the corresponding polynomials
∼
FN by

∼
FN (z) =

N−1∑
k=0

(
N−1∑
n=1

∼
χP(n)zkn

)2

.

It is clear that
∼
FN (z) do not have integer coefficients, so we might expect different

types of results regarding these polynomials. Nonetheless, we believe they yield
another interesting route for future research.

2. Properties of the polynomials FN

Now that we understand the relevance of the polynomials FN to the Goldbach
conjecture, we consider some of their additional properties. We begin with the
following result regarding their symmetry.

Theorem 2.1. If N is a positive integer then FN (z) = FN (−z).

Theorem 2.1 certainly implies that if ΦN (z) divides FN (z) then so does ΦN (−z).
Furthermore, we know that if M is an odd integer then Φ2M (z) = ΦM (−z). Com-
bining these observations with Theorem 1.2 (ii), we obtain the following corollary.

Corollary 2.2. If M is an odd integer and N = 2M then the following conditions
are equivalent.

(i) ΦN divides FN .
(ii) ΦM divides FN .

(iii) The Goldbach conjecture fails for N .

Suppose now that, for any positive integer M , ζM is a primitive Mth root of
unity. We may view Corollary 2.2 as examining the value of FN (ζM ) when M is
a certain divisor of N . Next, we consider the values of FN (ζM ) when M is an
arbitrary divisor of M . We write [x] to denote the largest integer less than or equal
to x.

Theorem 2.3. If N > 4 is an integer and M | N then the following conditions
hold.
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(i) If M is odd then

FN (ζM ) ≥ N
[N/2M ]∑
n=1

R(2nM).

(ii) If M is even then

FN (ζM ) ≥ N
N/M∑
n=1

R(nM).

Applying Theorems 2.3 and 1.2 (ii) immediately yield the following simpler lower
bound on FN (ζM ).

Corollary 2.4. If N > 4 is an integer and M | N , then FN (ζM ) ≥ NR(N) with
equality when M = N .

The case M = N may not be the only case of equality in Corollary 2.4. In fact,
if M is odd and N = 2M , then it can be shown that FN (ζM ) = NR(N) as well.
This result also provides a strengthening of one direction of Theorem 1.2 (ii). If
ΦM ever divides FN , then it follows from Corollary 2.4 that R(N) = 0. In other
words, we have established the following statement.

Corollary 2.5. Suppose N > 4 is an integer and M | N . If ΦM divides FN then
the Goldbach conjecture fails for N .

The converse of Corollary (2.5) is certainly false. Otherwise, Φ1 would divide
FN for every odd N , and it certainly does not. When restricted to even integers,
it is likely true, but only because the Goldbach conjecture would imply that the
hypothesis is always false. In fact, in view of Theorem 1.2, such a statement is
equivalent to the Goldbach conjecture.

3. The coefficients of FN

Let us now turn our attention to understanding the coefficients of FN . For this
purpose, we note that degFN ≤ 2(N − 1)2 and write

FN (z) =

2(N−1)2∑
m=0

aN,mz
m.

It is easy to see that the constant term in FN is given by the formula

aN,0 =

(
N−1∑
n=1

χP(n)

)2

= (π(N − 1)− 1)2

where π(N − 1) denotes the number of primes p ≤ N − 1. Furthermore, by multi-
plying out the terms in the definition of FN , we obtain an explicit formula for all
other coefficients of FN .

Theorem 3.1. Let N be a positive integer. We have that

aN,m =
∑
d|m

min{N,d}−1∑
n=max{0,d−N}+1

χP(n)χP(d− n)

for all 0 < m ≤ 2(N − 1)2.
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Among other things, Theorem 3.1 shows that

aN,m ≤
∑
d|m

R(d)

with equality whenever 0 < m ≤ N . We can rephrase the case of equality by saying
that

(3.1) aN,m =
∑
d|m

d−1∑
n=1

χP(n)χP(d− n)

whenever 0 < m ≤ N . If M is another integer with M ≥ N , then aM,m = aN,m
for all m satisfying 0 < m ≤ N . For simplicity, we may now write

a(m) = aN,m

where N ≥ m. If m is odd, then all divisors of m are also odd, so we conclude that
a(m) = 0. Hence, it is only interesting to consider the situation where m is even,
in which case the coefficients seem to behave in a rather subtle way. However, we
can obtain lower bounds in relation to other famous arithmetic functions. Before
proceeding, we recall that ω(n) denotes the number of distinct prime factors of n
and d(n) denotes the number of divisors of n.

Theorem 3.2. If m > 1 is an integer then

(3.2) a(2m) ≥ ω(m)−
{

1 if m ≡ 2 mod 4,
0 otherwise.

Moreover, if the Goldbach conjecture is true, then

(3.3) a(2m) ≥ d(m)−
{

2 if m is even,
1 otherwise.

We note that the right hand side of (3.2) is always positive for m > 2. So taking
an integer n > 4, we have that a(n) = 0 if and only if n is odd. It is also worth
observing that the right hand sides of (3.2) and (3.3) are sometimes equal, namely
when m is prime. In general, however, d(m) is much larger than ω(m) so that our
bound under the Goldbach conjecture is stronger than the analogous unconditional
bound.

For a positive integer M , it is also of interest to study the summatory function

A(M) =

2M∑
m=1

a(m).

As a consequence of Theorem 3.2, we are able to give both conditional and uncon-
ditional lower bounds on A(M). Before stating the corollary, we recall that the
Euler-Mascheroni constant γ is given by

γ = lim
N→∞

(
N∑
n=1

1

n
− log n

)
= 0.5772 . . .

and Mertens’ constant is defined by

B1 = lim
N→∞

∑
p≤N

1

p
− log logN

 = 0.2615 . . .

where the sum is taken over primes p ≤ N .
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Corollary 3.3. There exist a constant c1 such that

(3.4) A(M) ≥M log logM +

(
B1 −

1

4

)
M + c1

M

logM

for all sufficiently large integers M . If the Goldbach conjecture holds, then there
exists a constant c2 such that

(3.5) A(M) ≥M logM +

(
2γ − 5

2

)
M + c2M

131
416

for all sufficiently large integers M .

The proof of the first statement of Theorem 3.2 uses the fact that R(2p) > 0
whenever p is an odd prime. Indeed, We always have that 2p = p+ p, so we obtain
a positive lower bound on R(2d) whenever d is an odd prime divisor of m. While
the inequality (3.4) takes advantage of this fact, it uses only the trivial bound
R(2d) ≥ 0 in all other cases.

However, it is well-known that the set of positive integers m with R(2m) = 0
must have density zero in the even integers. In fact, Montgomery and Vaughan [6]
gave a stronger result. They showed that each inteval [1, x) may contain at most
O(x1−δ) integers m with R(2m) = 0, where 1 > δ > 0. Using this fact, we are
able to produce a somewhat deeper result improving the unconditional lower bound
of Corollary 3.3. While the following statement is certainly an improvement over
(3.4), the previous one is still worthwhile because of the relative simplicity of its
proof.

Theorem 3.4. There exists a real number C such that

A(M) ≥M logM + CM

for all sufficiently large M .

Note that the main term in Theorem 3.4 is the same as that of (3.5), an inequality
for which we needed to assume the Goldbach conjecture. The only difference lies
in the constant in front of the error term.

Generally speaking, our proof takes advantage of the fact that R(2m) > 0 for
’most’ positive integers m. However, there is reason to believe that R(2m) is not
only positive, but quite large most of the time. Using the circle method to study the
Goldbach’s problem, Hardy and Littlewood [3] conjectured an asymptotic formula.
For this purpose, we define the twin primes constant

C2 =
∏
p>2

(
1− 1

p− 2

)
and state the following conjecture.

Conjecture 3.5 (Hardy and Littlewood). We have that

R(2n) ∼ 2C2
n

log2 n

∏
p|n
p>2

p− 1

p− 2

as n tends to infinity.

We now obtain the following conditional results regarding a(2m) and A(M). We
write p`‖m if p` divides m but p`+1 does not.
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Theorem 3.6. If Conjecture 3.5 holds then

(3.6)
4C2m

log2m
. a(2m) .

8C2m

log2m

∏
pl‖m

p− 2/pl

p− 2

and

(3.7) A(M) ∼ 4π2C2M
2

3 log2M
.

4. Proofs of the results from section 1

Proof of Theorem 1.2. To prove (i), we must show that FN (eπi/N ) = 0. To see
this, note that

FN (eπi/N ) =

N−1∑
k=0

(
N−1∑
n=1

χP(n)e
πikn
N

)2

=

N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)e
πik(m+n)

N

=

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)

N−1∑
k=0

e
πik(m+n)

N .

The product χP(m)χP(n) = 0 unless m and n are both odd primes. In this case,
we certainly have that m+ n is even so that

(4.1)

N−1∑
k=0

e
πik(m+n)

N =

N−1∑
k=0

e
2πik((m+n)/2)

N .

Of course, 0 < (m + n)/2 < N implying that the right hand side of (4.1) equals
zero. In other words, we have shown that

χP(m)χP(n)

N−1∑
k=0

e
πik(m+n)

N = 0

for all 1 ≤ m,n < N , verifying (i).
To establish (ii), let ζ be a primitive Nth root of unity. We have immediately

that

FN (ζ) =

N−1∑
k=0

(
N−1∑
n=1

τ(n)ζkn

)2

=

N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)ζk(m+n)

=

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)

N−1∑
k=0

ζk(m+n).

We know that
N−1∑
k=0

ζk(m+n) = 0
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unless m + n ≡ 0 mod N . In our case, this may occur only when m + n = N ,
implying that

FN (ζ) =

N−1∑
n=1

χP(n)χP(N − n)

N−1∑
k=0

ζkN = NR(N).

If R(N) = 0 then FN (ζ) = 0 showing that ΦN must divide FN . On the other hand,
if ΦN divides FN , it is obvious that FN (ζ) = 0 so that R(N) = 0. �

Let us now proceed with the proof of Corollary 1.3.

Proof of Corollary 1.3. To prove (i), it is clear that, if N is odd, , we cannot write
N as a sum of two odd primes. It follows from Theorem 1.2 (ii) that ΦN divides
FN .

To establish (ii), we note that the constant term in FN is given by(
N−1∑
n=1

χP(n)

)2

,

which is at least 4 whenever N ≥ 6. This means that FN/Φ2N cannot be equal to
ΦN . Therefore, if it is irreducible, then it cannot be divisible by ΦN and it follows
from Theorem 1.2 (i) that N ∈ P + P. �

5. Proofs of the results from section 2

Proof of Theorem 2.1. It follows directly from the definition that

(5.1) FN (−z) =

N−1∑
k=0

(
N−1∑
n=1

(−1)knχP(n)zkn

)2

.

If n is even, we certainly have that χP(n) = 0. Otherwise, we have that (−1)n = −1,
which implies that (−1)knχP(n) = (−1)kχP(n) for all n. Using (5.1), we find that

FN (−z) =

N−1∑
k=0

(
(−1)k

N−1∑
n=1

χP(n)zkn

)2

=

N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn

)2

= FN (z)

which completes the proof. �

In view of Theorem 2.1, we obtain our proof of Corollary 2.2 almost immediately.

Proof of Corollary 2.2. In view of Theorem 1.2, we immediately have that (i) if
and only if (iii). To finish the proof, we will show that (i) if and only if (ii). To
see this, note that since M is odd, we have that ΦN (z) = ΦM (−z). Furthermore,
Theorem 2.1 implies that ΦN (z) divides FN (z) if and only if ΦN (−z) divides FN
and the result follows. �

Proof of Theorem 2.3. Suppose that a = 1 if M is odd and a = 0 if M is even. We
must show that

FN (ζM ) ≥ N
∑

1≤k≤N/(2aM)

R(2akM).
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From the definition of FN , we have that

FN (ζM ) =

N−1∑
k=0

∑
2<p1,p2≤N−1

ζ
k(p1+p2)
M

=
∑

2<p1,p2≤N−1

N/M−1∑
i=0

M−1∑
k=0

ζ
(iM+k)(p1+p2)
M

=
N

M

∑
2<p1,p2≤N−1

M−1∑
k=0

ζ
k(p1+p2)
M .

Now the inner summation over k is zero unless (p1 + p2)/M ∈ Z. Hence we have

FN (ζM ) = N
∑

1≤`≤2(N−1)/M

∑
2<p1,p2≤N−1
p1+p2=`M

1

= N

 ∑
1≤`≤N/M

+
∑

N/M+1≤`≤2(N−1)/M

 ∑
2<p1,p2≤N−1
p1+p2=`M

1

= N
∑

1≤`≤N/(2aM)

R(2a`M) +N
∑

N/M+1≤`≤2(N−1)/M

∑
2<p1,p2≤N−1
p1+p2=`M

1

≥ N
∑

1≤`≤N/(2aM)

R(2a`M).

and the result follows. �

Proof of Corollary 2.4. If M is even, we have that

FN (ζM ) ≥ N
N/M∑
n=1

R(nM) ≥ NR
(
N

M
·M
)

= NR(N).

If M is odd and N is even, then N/2M ∈ N so it follows that

FN (ζM ) ≥ N
N/2M∑
n=1

R(2nM) ≥ NR
(

2 · N
2M
·M
)

= NR(N).

Finally, if M and N are both odd, then NR(N) = 0 so that

FN (ζM ) ≥ N
[N/2M ]∑
n=1

R(2nM) ≥ 0 = NR(N).

�

Proof of Corollary 2.5. If ΦM | FN then we have that FN (ζM ) = 0. It follows from
Corollary 2.4 that R(N) = 0. �
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6. Proofs of the results from section 3

Proof of Theorem 3.1. We first note that

FN (z) =

N−1∑
k=0

(
N−1∑
n=1

χP(n)zkn

)2

=

N−1∑
k=0

N−1∑
m=1

N−1∑
n=1

χP(m)χP(n)zk(m+n)

=

2(N−1)2∑
m=0

∑
d|m

∑
n1+n2=d

1≤n1,n2<N

χP(n1)χP(n2)

 zm

=

2(N−1)2∑
m=0

∑
d|m

min{N,d}−1∑
n=max{0,d−N}+1

χP(n)p(d− n)

 zm

establishing the theorem. �

Proof of Theorem 3.2. Using (3.1), we have immediately that

a(2m) =
∑
d|2m

d−1∑
n=1

χP(n)χP(d− n).

However, it is clear that
d−1∑
n=1

χP(n)χP(d− n) = 0

whenever d is odd, which implies that

a(2m) =
∑
d|2m
d even

d−1∑
n=1

χP(n)χP(d− n)

=
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n).(6.1)

We now use (6.1) to prove (3.2). If p is an odd prime, we have that χP(p)χP(2p−
p) = 1 implying

(6.2)

2p−1∑
n=1

χP(n)χP(2p− n) ≥ 1.

Now let ωodd(m) denote the number of distinct odd prime divisors of m and consider
three cases according to the residue class of m modulo 4.

(i) First assume that m is odd. In this case, we have that ωodd(m) = ω(m) and
m 6≡ 2 mod 4. The inequality (6.2) holds for every odd prime divisor or m.
Combining this observation with (6.1), we find that

a(2m) ≥ ωodd(m) = ω(m)

completing the proof in this case.
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(ii) Now assume that m ≡ 0 mod 4. It is easily verified that∑
d|4

7∑
n=1

χP(n)χP(8− n) = 1,

and then it follows from (6.1) and (6.2) that

a(2m) ≥ ωodd(m) + 1.

Since 2 divides m, we have that ωodd(m) = ω(m) − 1 establishing the result
in this case.

(iii) Finally, we consider the case that m ≡ 2 mod 4. Again, m is even so that
ωodd(m) = ω(m) − 1, and we conclude from (6.1) and (6.2) that a(2m) ≥
ωodd(m). This completes the proof of (3.2).

To establish (3.3), we assume that the Goldbach Conjecture holds. Hence, we
have that

(6.3)

2d−1∑
n=1

χP(n)χP(2d− n) ≥ 1

for all divisors d of m with d 6∈ {1, 2}. Here we consider two cases.

(i) Suppose first that m is odd. Here, we have that (6.3) holds for all divisors d
of m different than 1. This gives

a(2m) =
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n) =
∑
d|m
d6=1

2d−1∑
n=1

χP(n)χP(2d− n)

≥
∑
d|m
d6=1

1 = d(m)− 1

completing the proof in this case.
(ii) In the case that m is even, we have that (6.3) holds except when d = 1 or

d = 2. Therefore, we have that

a(2m) =
∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n) =
∑
d|m

d6∈{1,2}

2d−1∑
n=1

χP(n)χP(2d− n)

≥
∑
d|m

d6∈{1,2}

1 = d(m)− 2

which completes the proof in this case as well.

�

We are immediately prepared to give our proof of Corollary 3.3.

Proof of Corollary 3.3. Since a(m) = 0 whenever m is odd, we have that

(6.4) A(M) =

2M∑
n=1

a(m) =

M∑
m=1

a(2m).
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Applying the first statement of Theorem 3.2, we obtain that

(6.5) A(M) ≥
M∑
m=1

ω(m)−
M∑
m=1

g(m)

where

g(m) =

{
1 if m ≡ 2 mod 4
0 otherwise.

Whenever M ≥ 3, we have that

M∑
m=1

g(m) = 1 +

M∑
m=3

g(m) ≤ 1 +
M − 2

4
=
M

4
+

1

2

which, when combined with (6.5), yields

(6.6) A(M) ≥
M∑
m=1

ω(m)− M

4
− 1

2

for all M ≥ 3. It is well-known (see [2], page 355) that

M∑
m=1

ω(m) = M log logM +B1M +O

(
M

logM

)
which implies the existence of a positive constant C and a positive integerM such
that

M∑
m=1

ω(m) ≥M log logM +B1M − C
M

logM

holds for all M ≥M. Combining this with (6.6), we find that

A(M) ≥M log logM +

(
B1 −

1

4

)
M − C M

logM
− 1

2
.

It is obvious that M/ logM ≥ 1/2 for sufficiently large M . Thus, we find that

A(M) ≥M log logM +

(
B1 −

1

4

)
M − (C + 1)

M

logM

for sufficiently large M and we complete the proof by taking c1 = −(C + 1).
Now we proceed with our proof of the second statement assuming the Goldbach

Conjecture. Using the second statement of Theorem 3.2 we get that

A(M) ≥
M∑
m=1

(
d(m)−

{
2 if m is even
1 otherwise.

)
implying that

(6.7) A(M) ≥
M∑
m=1

d(m)− 3

2
M.

Using the results of [4], we find that

M∑
m=1

d(m) = M logM + (2γ − 1)M +O(M
131
416 ).
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In other words, there exists a positive constant C such that

M∑
m=1

d(m) ≥M logM + (2γ − 1)M − CM 131
416

For all sufficiently large M . Combining this with (6.7) and setting c2 = −C, we
find that

A(M) ≥M logM +

(
2γ − 5

2

)
M + c2M

131
416

for all sufficiently large integers M . �

Proof of Theorem 3.4. Write E(X) to denote the number of even integers in [1, 2X)
for which the Goldbach conjecture fails. By the results of [6], there exist positive
constants c and δ such that

(6.8) E(X) ≤ cX1−δ.

In view of the results of [5], one may take δ = 0.086. Recently Pintz announced
that δ = 1/3 is admissible in (6.8).

In view of (6.4), we have that

A(M) =

M∑
m=1

∑
d|m

2d−1∑
n=1

χP(n)χP(2d− n)

for all M . By interchanging the order of the summation over m and d, we get that

A(M) =

M∑
d=1

∑
m≤M/d

2d−1∑
n=1

χP(n)χP(2m− n)

=

M∑
d=1

[
M

d

]
R(2d).

Relabelling the indices, we have shown that

A(M) =

M∑
m=1

[
M

m

]
R(2m).

and it follows that

(6.9) A(M) ≥
[log2M ]∑
k=1

2k−1∑
m=2k−1

[
M

m

]
R(2m)

for all positive integers M .

We now wish to examine each individual sum
∑2k−1
m=2k−1

[
M
m

]
R(2m). For this

purpose, let B = Bk be the number of even integers in [2k, 2k+1) for which the
Goldbach conjecture fails. Then we have

2k−1∑
m=2k−1

[
M

m

]
R(2m) ≥

∑
2k−1≤m≤2k−1

R(2m)6=0

[
M

m

]

≥
∑

2k−1≤m≤2k−1
R(2m)6=0

(
M

m
− 1

)
.
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Of course, M/m is decreasing as a function of m, so the smallest possible value of
the above summation occurs when the first B even integers in the interval [2k, 2k+1)
fail the Goldbach conjecture. Consequently, we conclude that

2k−1∑
m=2k−1

[
M

m

]
R(2m) ≥

2k−1∑
m=2k−1+B

(
M

m
− 1

)

=

M 2k−1∑
m=2k−1+B

1

m

− (2k − 2k−1 −B)

and we conclude that

(6.10)

2k−1∑
m=2k−1

[
M

m

]
R(2m) ≥

M 2k−1∑
m=2k−1+B

1

m

− 2k−1.

It is well-known that ∑
n≤x

1

n
= log x+ γ +O(x−1)

where γ is the Euler-Mascheroni constant. Hence we have

2k−1∑
m=2k−1+B

1

m
= k log 2− log(2k−1 +B) +O(2−k).

Using (6.8), we have B ≤ c2k(1−δ), which implies that

2k−1∑
m=2k−1+B

1

m
≥ k log 2− log

(
2k−1 + c2k(1−δ)

)
− c02−k

= k log 2− (k − 1) log 2− log
(
1 + c2−kδ+1

)
− c02−k

= log 2− log
(
1 + c2−kδ+1

)
− c02−k

for some constant c0 > 0. Combining this with (6.10), we obtain

2k−1∑
m=2k−1

[
M

m

]
R(2m) ≥M

(
log 2− log

(
1 + c2−kδ+1

)
− c02−k

)
− 2k−1

for every positive integer k. Now applying this with (6.9) we find that

A(M) ≥
[log2M ]∑
k=1

2k−1∑
m=2k−1

[
M

m

]
R(2m)

≥
[log2M ]∑
k=1

(
M
(
log 2− log

(
1 + c2−kδ+1

)
− c02−k

)
− 2k−1

)
.

and it follows that

A(M) ≥M log 2[log2M ]−M
[log2M ]∑
k=1

log
(
1 + c2−kδ+1

)
− c0M

[log2M ]∑
k=1

2−k −
[log2M ]∑
k=1

2k−1.(6.11)
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Now notice that
[log2M ]∑
k=1

2−k ≤
∞∑
k=1

2−k = 1

and
[log2M ]∑
k=1

2k−1 =

[log2M ]−1∑
k=0

2k =
2[log2M ] − 1

2− 1
≤M − 1 < M.

Also, since log(1 + x) ≤ x for x > 0, we have

[log2M ]∑
k=1

log
(
1 + c2−kδ+1

)
≤ 2c

[log2M ]∑
k=1

2−kδ ≤ 2c

2δ − 1
.

Combining these with (6.11), we find that

A(M) ≥M [log2M ] log 2− 2cM

2δ − 1
− c0M −M

≥M logM −M
(

log 2 +
2c

2δ − 1
+ c0 + 1

)
and the result follows by taking

C = −
(

log 2 +
2c

2δ − 1
+ c0 + 1

)
.

�

Proof of Theorem 3.6. In view of (3.1), for 1 ≤ m ≤M we have that

(6.12) a(2m) =
∑
d|m

R(2d) ∼ 4C2

∑
d|m

d

log2(2d)

∏
p|d
p>2

p− 1

p− 2
.

To establish the asymptotic lower bound for a(2m), we write, for convenience f(d) =∏
p|d
p>2

p−1
p−2 . Then we have

∑
d|m

df(d)

log2(2d)
≥
∑
d|m

df(d)

log2(2m)
.

Since df(d) is multiplicative, we obtain that∑
d|m

df(d) =
∏
pl‖m

∑
d|pl

df(d)

=
∏
pl‖m

(
1 + pf(p) + p2f(p) + · · ·+ plf(p)

)
=
∏
pl‖m

(
1 +

(
p− 1

p− 2

)
p
pl − 1

p− 1

)

=
∏
pl‖m

pl+1 − 2

p− 2

≥
∏
pl‖m

pl = m.
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Therefore,

a(2m) ≥ 4C2m

log2(2m)
∼ 4C2m

log2m
.

For the upper bound, we apply the partial summation formula to obtain that

∑
d|m

df(d)

log2(2d)
=

∑
d≤m df(d)

log2(2m)
+ 2

∫ m

1

∑
d≤t
d|m

df(d)

t log3(2t)
dt.

We see that∫ m

1

∑
d≤t
d|m

df(d)

t log3(2t)
dt ≤

∫ √m
1

∑
d≤t df(d)

t log3(2t)
dt+

∫ m

√
m

∑
d|m df(d)

t log3(2t)
dt

∼
∫ √m
1

2t

log3(2t)
dt+

∑
d|m

df(d)

(
1

2 log2(2t)

∣∣∣∣m√
m

)

≤ O
(

m

log3m

)
+

∑
d|m df(d)

2 log2(2m)
.

Hence ∑
d|m

df(d)

log2(2d)
. 2

∑
d≤m df(d)

log2(2m)
,

and therefore,

a(2m) .
8C2

log2m

∏
pl‖m

pl+1 − 2

p− 2
=

8C2m

log2m

∏
pl‖m

p− 2/pl

p− 2

establishing (3.6).
To prove (3.7), we write

Ω(n) =

{
0 if n is odd,

nf(n) if n is even.

From [3], we know that the generating function of Ω(n) has a simple pole at s = 2
with residue 1. In other words, we have that

∞∑
n=1

Ω(n)

ns
∼ 1

s− 2
, <(s) > 2,

so by the Wiener-Ikehara Theorem (e.g. see Theorem 7.7 of [1]), we have∑
n≤M

Ω(n) ∼M2.

Translating back to our definition, we have

(6.13)
∑
m≤M

mf(m) ∼ 2M2.
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In view of (6.12)

A(M) =
∑

1≤m≤M

a(2m)

=
∑

1≤m≤M

[
M

m

]
R(2m)

∼ 4C2

∑
1≤m≤M

[
M

m

]
mf(m)

log2(2m)
.

We first write∑
1≤m≤M

[
M

m

]
mf(m)

log2(2m)
=

∑
1≤k≤M

k
∑

1≤m≤M
[M/m]=k

mf(m)

log2(2m)

=
∑

1≤k≤M−1

k
∑

1≤m≤M
M/(k+1)<m≤M/k

mf(m)

log2(2m)
+

Mf(M)

log2(2M)

∼
∑

1≤k≤M−1

k
∑

1≤m≤M
M/(k+1)<m≤M/k

mf(m)

log2(2m)
.

By the partial summation formula, we have

∑
1≤m≤M

M/(k+1)<m≤M/k

mf(m)

log2(2m)
=

∫ M/k

M/(k+1)

1

log2(2t)
d
∑
m≤t

mf(m)

=

∑
m≤tmf(m)

log2(2t)

∣∣∣∣M/k

M/(k+1)

+ 2

∫ M/k

M/(k+1)

∑
m≤tmf(m)

t log3(2t)
dt

∼ 2t2

log2(2t)

∣∣∣∣M/k

M/(k+1)

+ 2

∫ M/k

M/(k+1)

2t2

t log3(2t)
dt

= 2

(
(M/k)2

log2(2M/k)
− (M/(k + 1))2

log2(2M/(k + 1))

)
+ 4

∫ M/k

M/(k+1)

t

log3(2t)
dt(6.14)

by (6.13). We now sum the right hand side of (6.14) over k with 1 ≤ k ≤ M − 1.
The first term equals

2
∑

1≤k≤M−1

k

(
(M/k)2

log2(2M/k)
− (M/(k + 1))2

log2(2M/(k + 1))

)

= 2
∑

1≤k≤M−1

kM2

k2 log2(2M/k)
− 2

∑
2≤k≤M

(k − 1)M2

k2 log2(2M/k)
(6.15)

=
2M2

log2(2M)
− 2M

log2 2
+ 2M2

∑
2≤k≤M

1

k2 log2(2M/k)
.
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By the partial summation formula again, we have that

∑
1<k≤M

1

k2 log2(2M/k)
=

∑
1<k≤x

1
k2

log2(2M/x)

∣∣∣∣∣
M

1

− 2

∫ M

1

∑
1<k≤t

1
k2

t log3(2M/t)
dt

=

∑
2≤k≤M

1
k2

log2 2
− 2

∫ M

2

∑∞
k=2

1
k2 +O(1/t)

t log3(2M/t)
dt

=

∑∞
k=2

1
k2

log2 2
+O(1/M)− 2

∞∑
k=2

1

k2

∫ M

2

dt

t log3(2M/t)
+O

(∫ M

2

dt

t2 log3(2M/t)

)
.

Now observe that∫ M

2

dt

t log3(2M/t)
=

1

2

∫ M

2

d log−2(2M/t) =
1

2 log2 2
− 1

2 log2M

and∫ M

2

dt

t2 log3(2M/t)
= −

∫ M

2

dt−1

log3(2M/t)

= − 1

M log3 2
+

1

2 log3M
+ 3

∫ M

2

dt

t2 log4(2M/t)
= O(log−3M).

Therefore, ∑
2≤k≤M

1

k2 log2(2M/k)
=

∞∑
k=2

1

k2
1

log2M
+O(log−3M)

and hence, the first term of (6.14) after summing over k is

(6.16) ∼ 2M2

log2(2M)
+ 2

( ∞∑
k=2

1

k2

)
M2

log2M
∼ 2

( ∞∑
k=1

1

k2

)
M2

log2M
=
π2

3
· M2

log2M
.

Similarly, the second term of (6.14) after summing over k is given by

2
∑

1≤k≤M−1

k

∫ M/k

M/(k+1)

dt2

log3(2t)

= 2
∑

1≤k≤M−1

k

{
t2

log3(2t)

∣∣∣∣M/k

M/(k+1)

+ 3

∫ M/k

M/(k+1)

tdt

log4(2t)

}

= 2
∑

1≤k≤M−1

k

{
(M/k)2

log3(2M/k)
− (M/(k + 1))2

log3(2M/(k + 1))

}
+O

(
M2

log3M

)

= O

(
M2

log3M

)
(6.17)

by a similar argument used to treat (6.15) except with log3(·) in the place of log2(·).
Hence in view of (6.14),(6.16) and (6.17), we have∑

1≤m≤M

[
M

m

]
mf(m)

log2(2m)
∼ π2

3
· M2

log2M
.
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Therefore,

A(M) ∼ 4π2C2M
2

3 log2M
.

This proves (3.7) and completes the proof of Theorem 3.6. �
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