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AN OLD CONJECTURE OF ERDOS-TURAN ON ADDITIVE
BASES

PETER BORWEIN, STEPHEN CHOI, AND FRANK CHU

ABSTRACT. There is a 1941 conjecture of Erdés and Turan on what are now
called additive basis that restates as

Conjecture 0.1 (Erdés and Turdn). Suppose that, 0 = §p < 61 < d2 < d3 - -~
is an increasing sequence of integers and

o o]
s(z) == Z 2%,
i=0
Suppose that

oo
s2(2) := Zblzq‘
i=0
If by > 0 for all i, then {bn} is unbounded.

Our main purpose is to show that the sequence {b,} cannot be bounded
by 7. There is a surprisingly simple though computationally very intensive
algorithm that establishes this.

1. INTRODUCTION

Suppose that, 0 = dg < d; < d2 < d3--- is an increasing sequence of integers
and

and
s%(z) == Z bzt
=0

with b; > 0 for all 4. Then the set A := {01 < d2 < d3---} is called a basis of order
two, or simply a basis (that is every natural number can be written as a sum of
two elements of A). Hence the Erdos and Turdn conjecture can be rephrased as:
for any basis, the number of representations is unbounded.

We prove, as our main result, the following theorem.
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Theorem 1.1. Suppose that, each a; is a non negative integer, and

Suppose that
f2(z) = Zbizi.
i=0

If b; > 0O for all i, then sup{b;} > 8. In other words, the mazimum number of
representations of any basis is > 8.

This improves a previous result by Grekos, Haddad, Helou and Pihko in [5] where
they prove that the maximum number of representations of any basis is > 6. The
method we employ is surprisingly simple though computationally very intensive.
The methods in [5] involve considerably more analysis and less computation.

Erdés and Turdn [3] raised this problem in a 1941 paper on Sidon sets and related
problems and not in the language of additive basis.

On page 48 of “Old and New problems and results in combinatorial number
theory”, by Erdés and Graham [4] the conjecture is one of the open problems
and there is a $500 prize offered. (The problem is described in terms of bases of
order 2 after a discussion of bases.) Erdés and Graham [4] also ask for an explicit
construction where

1< b; =o0(i)
for all positive e.

If the sequence of §; is allowed to include negative integers then the conjecture
is false. This is due to Nathanson [6]. In this case there is a simple explicit
construction. For other related problems, we refer to [1], [2] and [7].

2. ERDOS-TURAN CONJECTURE

This old conjecture restates in a number of ways.

Conjecture 2.1 (Erdés and Turdn — Original Version). Suppose that, each a; is a
non negative integer, and

Suppose that
oo
f2(z) = Zbizi.
=0
If b; > 0 for all but finitely many i, then {b,} is unbounded.

This is in fact equivalent to the (apparently stronger) statement below. This
follows on noticing that adding any finite number of positive terms to the sum f(z)
does not change the boundedness of {b,}.
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Conjecture 2.2 (Erd6s and Turdn — Version 2). Suppose that, each a; is a non
negative integer, and
f(z):= Zaizi.

Suppose that
() = Zbizi.
=0
If b; > 0 for all i, then {b,} is unbounded.

In this conjecture, on consideration of what happens if each positive integer a;
in a minimal example is replaced by 1, it is obviously necessary and sufficient to
consider series of the form

oo
s(z) = Z 2%
i=0

where 0 = dg < §1 < d2 < d3--- and each ¢; is an integer. This is the form of the
conjecture we analyze.

Conjecture 2.3 (Erdds and Turdn — Version 3). Suppose that, 0 = §p < §; < d2 <
d3--- 48 an increasing sequence of integers and

s(z) = Z 2%,
=0
Suppose that
s2(2) == Z bzt
i=0
If b; > 0 for all i, then {b,} is unbounded.

From now on we suppose that, 0 = §p < 1 < d2 < d3--- is an increasing
sequence of integers.

Lemma 2.4. Forn >0 let

n
sn(z) == Z 2%
i=0

and let (the finite sum)

Then we have B;(n) < B;(n 4+ 1) for all i > 0 and B;(n) = B;y(n + 1) for i =
0,1,...,0,.

Proof. Tt follows easily from
Bi(n) =#{0;+ 6 =19:0<j4,1<n}

and {6, } is a strictly increasing sequence. O
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Corollary 2.5. Suppose that

s(z) = i": 2%
i=0

and suppose that

s2(z) = Z bzt
=0
has each
b; >0
Then
n
sn(z) = Z 2%
i=0
and
oo
s2(2) = Z B;z'
i=0
satisfy
B;>0,i=0,1,...,6,
and

maz{B;} < maxz{b;}.

Proof. In view of Lemma 2.4, B; < b; for all i > 0 and B; = b; for i =0,1,...,6,.
The corollary follows. O

Lemma 2.6. Fiz k and let E, (k) denote the set of polynomials of the form

n
sn(z) = Z 20
=0

where 0 = g < 01 < 02 < ... < d,, and where
s2(2) = Z B;z
i=0

with
B;>0,i=0,1,...,0,
and
maz{B;} < k.
Then each element of p(z) € E,(k) is an extension of an element of ¢(z) € E,_1(k)
of at most one more than twice the degree, in the sense that
p(z) =27 +q(2)
where
degree(q) < v < 2degree(q) + 1.
In particular, the largest degree of p(z) in E,(k) is at most n®> + 2n — 2 and

(2.1) |En (k)| < (n? = 2)| En 1 (R)].
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Proof. If s,(2) = 1+ 2% 4---+2% € E, (k) with0 =y < §; < --- < &y, then from
Lemma 2.4, we have B;(n — 1) < B;(n) < k for all 4 and B;(n — 1) = B;(n) > 0 for
i=0,1,---,6, 1. Hence s,,_1(z) belongs to E, 1(k) and s,(2) = 2% + 5, 1(2).
Furthermore, if 6,, > 26,1 + 1, then &; +J; # 26,1 + 1 for 0 <i,j < n and hence

Bos,_1+1(n) = #{6i +6; = 26,1 +1:0<4,5 <n} =0.
This contradicts s,(z) € E,(k). Thus, we have
(2.2) Op—1 < 0p <20p,-1 + 1.
On the other hand, we have

20n
(n+17 =5 = Y B
=0
> (Bo+: -+ Bs,)+ Bs,+1+ Bas,, -

If s,(2) € En(k), then By,---,Bs, > 1 and clearly Bys, = 1 and Bs, 41 > 1
because §; always equals 1. Thus for n > 1, we have

(2.3) Sp<(n+1)*-3=n?+2n-2.
Now since s,,(z) = 2% + s,,_1(2), we have
|En(k)| < (n* = 2)| Ep_1 (k)]
by (2.2) and (2.3). O
From (2.1), if there is some mng such that E, (k) = (), then E,(k) = § for all
n > ng.

The utility is that it suggests an algorithm for generating

that terminates exactly when E,(k) is empty for some n. Hence we have the
following result.

Theorem 2.7. In the notation of the previous corollary, if, for some n, E, (k) is
empty or equivalently, E(k) is finite, then no series of the form

s(z) == i 2%
i=0

where -
s%(2) :== Zbizi
i=0
has each
b; >0
and
maz{b;} <k

can exist. Furthermore, if for every k, E(k) is finite, then Erdés and Turdn con-
jecture is true.

Proof. Since E(k) is finite if and only if, for some n, E, (k) is empty, so the lemma
follows from Lemma 2.6. a
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3. COMPUTATIONS

Each element of p € E, (k) is an extension of an element of ¢ € E,,_;(k) of at
most twice the degree plus one. So E, (k) can be generated readily from E,,_1(k)
in at most NM steps where N is the size of E,,_; (k) and M is one more than the
largest degree of an element of E,,_1 (k).

So for example E(3) is

{Lz+1,2°+z+ L, +z+ 12" +2° +z+1L,2° + 2+ + L,2° + 2° + o+ 1,

m7+$4+x2+m+1,$8+x5+m2+$+1}.

Here
Eo(3) = {1},
Ei(3) ={z+1},
Ey3)={z* +z+1,2° +z + 1},
Es3)={a'+22+rx+1,254+ 22+ 2+ 1,2 + 2 + 2 + 1},
and

E@3)={z"+2* +2°+2x+ 1,28 +2° +2* +z + 1}.
Notice how the elements extend. Also E,(3) := ) for all n > 4.

It is a computation that E(4) contains exactly 404 elements all of degree 40 or
less. And E(5) contains exactly 6355 elements all of degree 52 or less. A typical
element is

ti=a + 230+ 20 e e 42 2B 42+t 2 e+
with
2= 282420 422 42T 42 25842 256 1.2 28312 452 1 280 1 4 457 1 2 256 1 3 451 1 4 251
+41942218 4221142151421 1221345212 4421 14 21042 230 412 238 12 137 14 436
+42% +42°4 4227 42272 + 423 45230+ 2% + 427 42277 43270 42270 4222
4222 + 222 4422 + 2220 422" + 428 + 2217 + 5210 42215 4 221 4 4213
+2z2 + 22" + 20 +42° + 5% + 227 +32% + 425 + 42 + 223 + 22 + 22 + 1.

A first attempt at computing E(6) shows very quickly that it is much larger than
that of E(5). So the straightforward breadth first search has to be optimized in
several ways to compute E(6) and E(7).

First, the search needs to be depth first, because the intermediate sets E,,(6) are
large. (A trial execution of the breadth-first algorithm showed us that E;7(6) has
as many as 200 million sets! This is clearly a memory-wise problem.)

Another key optimization is to prune the search during an extension, as the
following lemma allows.
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| k| |E(k)| | maxlength(k) | maxdegree(k) |
2 3 3 3
3 9 5 8
4 404 12 40
5 6,355 14 52
6| 11,482,910,373 35 264
711,268, 361, 281, 038 a1 328

TABLE 1. Results of Computation

Lemma 3.1. Let s,(2) € Ep(k) so

n
sn(2) = Z 2%
=0

where 0 = g < 01 < 82 < ... < 8, and where
s2(z) = Z B;z
1=0

with

Bi>0,i=0,1,...,0,
and

maz{B;} < k.
Suppose ¢ is the first index such that By = 0. Then
0n < ¢ <26, +1,

and any extension spy1(z) € Ent1(k) of sn(z) is of the form

Snt1(2) = sp(2) + 27,

where
v< ¢

Proof. The proof is similar to Lemma 2.4. O

These optimizations are only heuristics and do not better the time complexity
of the algorithm. However, they prove to be valuable in speeding up the searches
and make computation of E(6) and E(7) feasible.

We give the size of E(k) in Table 1, and the complete results in Table 3. To
present our results, we define

maxlength(k) = sup{n+1:s, € E(k)}

and
maxdegree(k) = sup{deg(s,) : sn € E(k)}.

E(6) was computed in approximately 6.5 hours on a personal computer with
clock speed about 2.2GHz. The size of E(7) was evidently too large for a single
computer to handle. To aid the computation, we used XGrid, Apple’s distributed
system.
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| k | min maxlength(k) |

6 35
7 39
8 70
9 76
10 127
11 134

TABLE 2. Lower Bound on maxlength for 6 < k£ < 11

XGrid is a software that lets us turn our cluster of Apple G4’s into a parallel
distributed system. It provides parallel computation by queuing multiple jobs and
distributing them to the cluster when there are free resources. Our algorithm lends
itself nicely to distributed computing, as searches starting on different elements of
the same size are completely independent.

So, to distribute E(7), we first compute Fg(7), which has 65 elements. We then
submit a job to XGrid for each of these 65 elements (we had 65 G4’s at our disposal),
using it as a starting point of the search. We then combine the results of each of
these jobs.

The current design of XGrid will run each job independently, on an individual
computer at a given time. Thus, the power we harnessed from XGrid was equiv-
alent to 65 G4’s running individually. The total time it took XGrid to finish its
computations was about one month.

We see, from the results, a dramatic increase in size between E(5) (around 7
thousand) and E(6) (around 11 billion). If the growth rate maintains then the size
of E(7) should have been at least a million times larger than that of F(6). However,
that is not the case.

This behavior is tied to the parity of k. We believe that when going from an
even value of k to an odd value of k, the increase in size will not be as dramatic as
going from an odd value to an even value. The argument is that the B;’s in s2(2)
will increase by 2 when some distinct pair 27, 2* is in s,(z) where j + k = 4, and
only by 1 if the pair is not distinct. The latter case is much less frequent than the
first. As such, when k is small (say < 15), the parity of k is likely to have a big
effect on the size of E(k).

It is likely that this parity argument will break down when k is large. However,
as for our case, it is a legitimate conjecture, as reflected in the size of E(7). The
size of E(7) is only about 100 times bigger than E(6), and maxlength(7) is also not
much greater than maxlength(6). We have even stronger support for this argument
in our preliminary results for F(8) and up in Table 2.

The results in Table 2 were obtained by running our algorithm for 1 hour and
collecting the largest polynomial we discover. As can be seen, there is a much bigger
difference when going from an odd & to an even k, than from an even £ to an odd
k. Although these results give only the lower bound, the pattern it exhibits is far
from being coincidental. At very least, |E(8)| is quite a few magnitudes larger than
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|E(7)|, and we believe our current algorithm will not be able to compute E(k) for
k > 8 in any reasonable amounts of time. It seems reasonable to believe that the
size of E(k) grows exponentially, or even faster, with respect to k.

Table 3 shows data for the size of E,, (k). Note that for each value of k, the E,, (k)
values follow an interesting pattern. The number of digits seem to grow linearly
with respect to n, until in the middle when it starts to fall linearly again.

The authors would like to thank Ron Ferguson for his help in the computation
of E(7).

TABLE 3. Complete Results

=46

k 3 4 )
[E(%)] 9 104 6,355
maxlength(k) | 5 12 14
maxdegree(k) | 8 40 52
|E1(5)] =1
BE@ =1 | |BG) =1
B =1 | |BG)| =2
SR E
4 =35 55 =1
ool 21| IB@| =15 | |E) =60
|Bs(3)] =2 |Ee(4)] =38 |E7(5)] =201
|Ey(3)] =3 |E7(4)] =89 |Es(5)] =552
Bl —o | IBs(@)l =122 | [Es(5)] =1,100
) [Bod) =86 | |Eio(5) =1,568
|E10(4)] =38 |E11(5)] =1,580
O
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k 6 7
|E(k)] 11,482,910, 373 1,268,361, 281,038
maxlength(k) | 35 41
maxdegree(k) | 264 328
|E(7)] =1
|E2(7)] =1
|Es(7)] =2
|E1(6)] =1 |Es(7)] =35
Bx(6)] =1 |Bs(7)] =17
|E3(6)| =2 |E6(7)| =65
|Ba(6)] =5 |B2(7)] =292
|E5(6)] =17 |Es(7)| =1,417
|E6(6)] =65 |Eo(7)| =7,378
|E7(6)] =287 |E1o(7)| = 39,477
|Es(6)] =1,321 |E11(7)] = 210,874
|Eq(6)] = 6,343 |E2(7)] = 1,094,795
|E10(6)] = 30,221 |E15(7)| = 5,399,767
|E11(6)] = 139,151 |E1a(7)] = 24,895,176
|E12(6)] = 603,811 |E15(7)] = 105,687,436
|E13(6)] = 2,426,694 |E16(7)| = 407,526,539
|E14(6)] = 8,860,674 |E17(7)] = 1,411,405,293
|E15(6)] = 28,978,826 |Ews(7)| = 4,344,872,108
|E16(6)] = 83,731,261 |Ero(7)| = 11,776,406, 154
|FE17(6)] = 211,235,073 |E20(7)| = 27,875,217,790
|E15(6)|] = 460,185,450 |E21(7)| = 57,185,490,034
|E19(6)] = 857,598,737 |E22(7)] = 100,976,600, 458
|E20(6)] =1,354,122,593 | |Eq3(7)| = 152,386,266,107
|E21(6)] =1,797,582,753 | |E2u(7)| = 195,293,555,650
|E22(6)] = 1,989,846,915 | |Es5(7)| = 211,272,996, 767
|E23(6)] =1,821,587,616 | |Ex6(7)| = 191,754,175,058
|E»4(6)] =1,369,557,963 | |E27(7)] = 145,199,909,103
|Ea5(6)] = 839,984,280 |Eas(7)| = 91,265,176,047
|E2(6)] = 417,713,111 |Ea9(7)| = 47,338,748,249
|Ea27(6)| = 167,597,147 |Eso(7)| = 20,167,141,016
|E2s(6)] = 53,944,794 |Es1(7)| = 17,024,029, 669
|Ea9(6)] = 13,841,595 |E32(7)] = 1,989,639, 547
|E30(6)] = 2,817,369 |Es3(7)| = 456,172,652
|E51(6)] = 453,040 |Es4(7)| = 84,420,512
|E32(6)] = 57,203 |Es5(7)| = 12,546,383
|E53(6)] =5,615 |Es36(7)| = 1,495,308
|E54(6)| =412 |Es7(7)| = 142,467
|E35(6)] =27 |E3s(7)| = 10,732
|Eso(7)] =677
|Es(7)] =14
|[En(7)] =1
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