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THE MAHLER MEASURE OF POLYNOMIALS
WITH ODD COEFFICIENTS

PETER BORWEIN, KEVIN G. HARE and MICHAEL J. MOSSINGHOFF

Abstract

The minimum value of the Mahler measure of a nonreciprocal polynomial whose coefficients are all
odd integers is proved here to be the golden ratio. The smallest measures of reciprocal polynomials
with ±1 coefficients and degree at most 72 are also determined.

1. Introduction

The Mahler measure of a polynomial

f(x)=
n∑

i=0

aix
i = an

n∏
i=1

(x − αi)

is defined by

M(f) = |an|
n∏

i=1

max{1, |αi|}. (1)

It is easy to check that the measure of a polynomial is unchanged if its coefficients
are reversed: if f∗(x)= xnf(1/x), then M(f∗)= M(f). The polynomial f∗ is called
the reciprocal polynomial of f , and a polynomial is said to be reciprocal if f = ±f∗.

For polynomials with integer coefficients, a well-known result of Kronecker implies
that M(f)= 1 if and only if f(x) is a product of cyclotomic polynomials and the
monomial x. In 1933, D. H. Lehmer [7] asked if, for any ε> 0, there exists

f(x) ∈ Z[x], with 1 < M(f) < 1 + ε;

this problem remains open. Lehmer noted that

�(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1

has measure M(�) = 1.1762808 . . . ; this remains the smallest known measure greater
than 1 of a polynomial with integer coefficients. Smyth [11] answered Lehmer’s
question for the case of nonreciprocal polynomials, proving that if f(x) ∈ Z[x] is
nonreciprocal and f(0) �= 0, then M(f) � M(x3 − x − 1)= 1.324717 . . . .

A polynomial f(x)=
∑n

i=0 aix
i is said to be a Littlewood polynomial if ai = ± 1

for 0 � i� n. Borwein and Choi [2] characterize the Littlewood polynomials of even
degree with measure 1, providing a sharper version of Kronecker’s theorem for this
class of polynomials.
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In this paper, we prove a sharp lower bound for the Mahler measure of a non-
reciprocal Littlewood polynomial, improving Smyth’s bound for this family. In fact,
our main result provides a lower bound on the measure for a larger class of non-
reciprocal polynomials. If f(x) =

∑n
i=0 aix

i has integer coefficients and m � 2 is
an integer, we write f ≡ ±f∗ mod m if either

ai ≡ an−i mod m, for 0 � i � n, or ai ≡ −an−i mod m, for each i. (2)

Theorem 1.1. Suppose that f is a monic, nonreciprocal polynomial with
integer coefficients satisfying f ≡ ±f∗ mod m for some integer m � 2. Then

M(f) � m +
√

m2 + 16
4

, (3)

and this bound is sharp when m is even.

We prove this theorem in Section 2. Taking m = 2, we immediately obtain the
golden ratio as a sharp lower bound for the measure of a nonreciprocal Littlewood
polynomial.

Corollary 1.2. If f is a nonreciprocal polynomial whose coefficients are all
odd integers, then

M(f) � M(x2 − x − 1) =
1 +

√
5

2
.

In particular, this bound holds for nonreciprocal Littlewood polynomials.

Recall that a Pisot number is a real algebraic integer, greater than 1, whose
conjugates lie inside the open unit disk. We remark that Smyth’s lower bound is
the smallest Pisot number; the golden ratio is the smallest limit point of Pisot
numbers (see [1, Chapter 6]).

An exhaustive search of Littlewood polynomials up to degree 31 initially led us
to suspect the golden ratio as the lower bound for the measure in the nonreciprocal
case. Section 3 describes some computations for the reciprocal case. We describe an
algorithm for searching for reciprocal Littlewood polynomials with small measure,
summarize its results through degree 72, and exhibit a list of fifteen measures
of Littlewood polynomials less than 1.6. The smallest measure that we find is
1.496711 . . . , associated with the polynomial

x19 + x18 + x17 + x16 − x15 + x14 − x13 + x12 − x11

− x10 − x9 − x8 + x7 − x6 + x5 − x4 + x3 + x2 + x + 1.

2. Proof of Theorem 1.1

Our proof follows that of Smyth [11]. We require the following inequality
regarding coefficients of power series.

Lemma 2.1. Suppose that ϕ(z) =
∑

i�0 γiz
i, with γi ∈ C, is analytic in an open

disk containing |z| � 1 and satisfies |ϕ(z)| � 1 on |z| = 1. Then |γi| � 1 − |γ0|2 for
i � 1.

See [10, p. 392] for a proof.
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Proof of Theorem 1.1. Suppose that f(z) =
∑n

i=0 aiz
i =

∏n
i=1(z − αi) satisfies

the hypotheses of Theorem 1.1, for a given integer m � 2.
Write f∗(z) =

∑n
i=0 diz

i (so d0 = 1), and let
∑

i�0 eiz
i be the power series for

1/f∗(z). Because (
n∑

i=0

diz
i

) (∑
i�0

eiz
i

)
= 1,

certainly e0 = 1, and

ek = −
k−1∑
j=0

dk−jej .

Thus each ek is an integer. Let

G(z) = f(z)/f∗(z) =
∑
i�0

qiz
i,

so qi ∈ Z for i � 0. Clearly, q0 = a0. If |a0| > 1, then in view of (1) and (2),

M(f) = M(f∗) � |a0| � m − 1 � m +
√

m2 + 16
4

for m � 3 (and similarly, M(f) � 3 for m = 2), so we may assume that |a0| = 1.
Equating the coefficients of zj in f∗(z)G(z) = f(z) yields

∑j
i=0 diqj−i = aj , so for

j � 1 we have

qj = (aj − q0dj) −
j−1∑
i=1

diqj−i.

Since f ≡ ±f∗ mod m, we have aj ≡ q0dj mod m, so by induction m | qj for j � 1.
Let ε = −1 if f(z) has a zero of odd multiplicity at z = 1; otherwise, let ε = 1.

Noting that ∏
|αi |=1

z − αi

1 − αiz
=

∏
|αi |=1

z − αi

1 − z/αi
=

∏
|αi |=1

(−αi) = ε,

we let

g(z) = ε
∏

|αi |<1

z − αi

1 − αiz
and h(z) =

∏
|αi |>1

1 − αiz

z − αi
,

so
g(z)
h(z)

=
∏n

i=1(z − αi)∏n
i=1(1 − αiz)

=
∏n

i=1(z − αi)∏n
i=1(1 − αiz)

=
f(z)
f∗(z)

= G(z).

Clearly, all poles of both g(z) and h(z) lie outside the unit disk, so both functions
are analytic in a region containing |z| � 1. Further, if |z| = 1 and β ∈ C, then(

z − β

1 − βz

) (
z − β

1 − βz

)
=

(
z − β

1 − βz

) (
1/z − β

1 − β/z

)
= 1,

so |g(z)| = |h(z)| = 1 on |z| = 1. Let

g(z) =
∑
i�0

biz
i and h(z) =

∑
i�0

ciz
i.

Let k be the smallest positive integer for which qk �= 0, so |qk| � m. Since g(z) =
h(z)G(z), we obtain bi = ciq0 for 0 � i < k and bk = c0qk + ckq0. Thus

|c0m| � |c0qk| = |bk − ckq0| � 2max{|bk| , |ck|}. (4)



the mahler measure of polynomials 335

Assume, without loss of generality, that |ck| � |bk|. By Lemma 2.1, we have |ck| �
1 − c2

0, and combining this with (4) and the observation that

|c0| = |h(0)| =
∏

|αi |>1

1/ |αi| = 1/M(f)

yields

M(f)m � 2(M(f)2 − 1).

The inequality (3) follows, and this bound is achieved when m is even by f(z) =
z2 ± mz/2 − 1.

3. Reciprocal Littlewood polynomials with small measure

We describe an algorithm for searching for reciprocal Littlewood polynomials
with small Mahler measure, provide some details on its implementation, and report
on its results.

3.1. Algorithm

Given a positive integer d, we wish to determine all reciprocal Littlewood
polynomials f(x)=

∑d
i=0 aix

i having 1< M(f)< M , where M is a fixed constant.
If f is reciprocal of even degree d, then necessarily f = f∗, since the middle
coefficient of f is nonzero. Further, f(−x) also has this property, and clearly
M(f(−x)) = M(f(x)), so we may assume that a0 = a1 = 1. If d is odd and f = −f∗,
set g(x)= f(−x) so that g = g∗. Thus we may assume that a0 = 1 and f = f∗ for
odd d.

Following [3, 4, 8], we use the Graeffe root-squaring algorithm to screen out most
polynomials f having M(f)> M , and all polynomials with M(f)= 1, in an efficient
way. Recall that the Graeffe operator G applied to a polynomial f(x) written as

f(x) = g(x2) + xh(x2)

yields the polynomial

Gf(x) = g(x)2 − xh(x)2.

The roots of Gf are precisely the squares of the roots of f , and M(Gf) = M(f)2.
Let ak,m denote the coefficient of xk in Gmf(x). Boyd [3] shows that if M(f) � M ,
then

|ak,m| �
(

d

k

)
+

(
d − 2
k − 1

)(
M2m

+M−2m − 2
)

(5)

for all m, and if in addition a1,m � d − 4 and m � 1, then

|ak,m| �
(

d

k

)
+

(
d − 4
k − 2

)(
M2m

+ M−2m − 2
)

+ 2
(
M2m −1

+ M−2m −1 − 2
) ((

d − 4
k − 3

)
+

(
d − 4
k − 1

))
.

(6)

We apply the Graeffe operator to each polynomial at most m0 times, where m0 is
another fixed parameter of the algorithm. A polynomial f is rejected at stage m if
the appropriate inequality (5) or (6) is not satisfied for some k, or if Gmf = Gm−1f .
In the latter case, Kronecker’s theorem implies that f is a product of cyclotomic
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polynomials. Let Φn denote the nth cyclotomic polynomial. If n = 2rs with s odd,
then GmΦ2r s = Φ2r−1

s when m � r, so the Graeffe method is guaranteed to detect
a product of cyclotomic polynomials with total degree d if m � 1 + log2 d.

3.2. Implementation

We use M = 5/3 and m0 = 10 in our C++ implementation. All root-squaring
is performed using exact integer arithmetic. For each f , we store the coefficients
of the polynomial Gmf using native 32-bit integers for as many m as possible for
efficiency, and then switch to a representation in software for larger m. We use the
highly optimized package GMP [6] for arithmetic with big integers; tests with our
application showed a 30% improvement in speed over the package LIP used in [8].
We use Maple to compute the measure of each polynomial that survives the Graeffe
iteration.

We also allow parallel processing by partitioning the set of polynomials of a
particular degree into 2n parts of equal size, fixing n particular coefficients to some
combination of 1 and −1 in each part. Fixing n leading coefficients yields rather
uneven search times, since fewer iterations of root-squaring are required on average
for polynomials with certain prefixes. Instead, we fix the n coefficients nearest the
middle term for quite uniform times across all 2n parts. We use a Gray code to
iterate over the possible values of the free coefficients.

3.3. Results and analysis

We ran our program at HPC@SFU, the high-performance computing centre at
Simon Fraser University, on the Bugaboos, a Beowulf cluster with 96 nodes, each
with two AMD Athlon 1.2 GHz processors. In two weeks we searched through degree
72, using as many as 64 processors at once and totalling 426 days of CPU time. Our
program found 1643 Littlewood polynomials with degree at most 72 that survive ten
iterations of root-squaring; of these, 1487 have measure less than M = 5/3. Only
127 distinct measures less than 5/3 appear, since most measures occur several times.
For example, if f is a Littlewood polynomial of degree d, and k is a positive integer,
then clearly (xd+1 + 1)f(x) and f(xk)(xk − 1)/(x − 1) are Littlewood polynomials
with the same measure as f . The complete list of polynomials found is available
at [9].

Table 1 lists the fifteen measures less than 1.6 found in our search. For each
measure, the table lists the minimal degree d of a Littlewood polynomial with this
measure, the degree d0 of its noncyclotomic part, and the first half of the sequence
of coefficients of a Littlewood polynomial realizing the measure, abbreviating to ‘+’
for 1 and ‘-’ for −1. Two of the polynomials in our table merit closer attention.

The seventh polynomial in Table 1 is the only one listed whose noncyclotomic
part is reducible. Its noncyclotomic factors are x10−x7−x5−x3 +1, with measure
1.230391 . . . , and x10 − x9 + x5 − x + 1, with measure 1.283582 . . . . Both appear in
lists of known polynomials with particularly small measure [3, 9]; the first one has
the 33rd smallest known measure greater than 1. In fact, our search finds only one
other example of a Littlewood polynomial whose noncyclotomic part is reducible.
Its measure is 1.651512 . . . , and its factors are Lehmer’s polynomial �(−x) and the
polynomial

x20 + 2x19 + x18 − x17 − x16 − x13 − x12 + x10 − x8 − x7 − x4 − x3 + x2 + 2x + 1.
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Table 1. Known measures of Littlewood polynomials less than 1.6.

Measure d d0 Coefficients ai , for 0 � i � d/2.

1. 1.49671107561 19 12 ++++-+-+--

2. 1.50613567955 11 6 +-+---

3. 1.50646000575 35 12 ++------+++--+---+

4. 1.53691794778 23 14 ++++----+-+-

5. 1.55107223951 23 12 +++++++--++-

6. 1.55603019132 6 6 ++--

7. 1.57930874185 65 20 +--++--++--+--++--++--+--++--++--

8. 1.58234718368 7 6 ++-+

9. 1.58501169305 35 24 ++++++-------+-+-+

10. 1.59185616779 71 16 +-+--+-+--+-++-++++-+--+------++-+++

11. 1.59287323067 65 44 +-+-+-+-+-+-+-+-+-+-+-+++++++++++

12. 1.59341317381 19 12 ++++-++++-

13. 1.59504631133 53 36 +-+-+-+-+-+-+-+-+----------

14. 1.59700500917 17 10 ++-++-++-

15. 1.59918220880 41 26 +-+-+-+-+-+-+-+++++++

The tenth entry in Table 1 is the product of a noncyclotomic polynomial of degree
16 and a number of cyclotomic factors with total degree 55. The degree of 71 is
best possible: no Littlewood polynomial of smaller degree has the same measure.

There is certainly an infinite number of polynomials having {−1, 0, 1} coefficients
with smaller measure. For example, the measure of

x2n+2 + x2n+1 + xn+2 + xn+1 + xn + x + 1

approaches 1.255433 . . . as n→∞. This is the smallest known limit point of
measures of integer polynomials. There are, in fact, an infinite number of limit
points of measures of polynomials with {−1, 0, 1} coefficients less than 1.382. The
structure of known limit points of measures, and the 48 smallest known limit
points, are described in [5]. There are also infinitely many integer polynomials
with reducible noncyclotomic part having measure less than 1.4967, since two
noncyclotomic polynomials are known with measure less than 1.4967/1.2554 ≈
1.1922.

It therefore seems quite possible that Littlewood polynomials with Mahler
measure smaller than 1.496711 . . . exist. It appears likely, however, that additional
techniques would be required in further searches.
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