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ABSTRACT

A Littlewood polynomial has all its coefficients equal to +1. We prove that the minimum value of
the Mahler measure of a nonreciprocal polynomial with all odd coefficients is the golden ratio, and
determine the smallest measures among reciprocal Littlewood polynomials with degree at most
72.
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1. Introduction

The Mahler measure of a polynomial
n n
fl@) =) air’ = an [J(z — )
i=0 i=1

is defined by
M(f) = |an| ]| max{1, |eil}. 1)
i=1

It is easy to check that the measure of a polynomial is unchanged if its coefficients
are reversed: If f*(z) = 2" f(1/z), then M(f*) = M(f). The polynomial f* is
called the reciprocal polynomial of f, and a polynomial is said to be reciprocal if
f==f

For polynomials with integer coefficients, a well-known result of Kronecker implies
that M(f) = 1 if and only if f(x) is a product of cyclotomic polynomials and
the monomial z. In 1933, D. H. Lehmer [7] asked if for any € > 0 there exists
f(z) € Z[z] with 1 < M(f) < 1+ ¢, and this problem remains open. Lehmer
noted that £(z) = 2'% + 2° — 27 — 2% — 2% — 2* — 2® + 2 + 1 has measure M ({) =
1.1762808 . .., and this remains the smallest known measure greater than 1 of a
polynomial with integer coefficients. Smyth [11] answered Lehmer’s question for
the case of nonreciprocal polynomials, proving that if f(z) € Z[x] is nonreciprocal
and f(0) # 0 then M(f) > M(2® —x —1) = 1.324717....

A Littlewood polynomial f(z) = Y i, a;x* has a; = +1 for each i. Borwein and
Choi [2] characterize the Littlewood polynomials of even degree with measure 1,
providing a sharper version of Kronecker’s theorem for this class of polynomials. In
this paper, we prove a sharp lower bound for the Mahler measure of a nonreciprocal
Littlewood polynomial, improving Smyth’s bound for this family. In fact, our main
result provides a lower bound on the measure for a larger class of nonreciprocal
polynomials.

Theorem 1. Suppose f is a monic, nonreciprocal polynomial with integer co-
efficients satisfying f = £f* mod m for some integer m > 2. Then

w(p) > AL @)

and this bound is sharp when m is even.
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We prove this theorem in section 2. Taking m = 2, we immediately obtain the
golden ratio as a sharp lower bound for the measure of a nonreciprocal Littlewood
polynomial.

Corollary 1. If f is a monic, nonreciprocal polynomial whose coefficients are
all odd integers, then M(f) > M (2> —x—1) = (14++/5)/2. In particular, this bound
holds for nonreciprocal Littlewood polynomials.

Recall that a Pisot number is a real algebraic integer greater than 1, all of whose
conjugates lie inside the open unit disk. We remark that Smyth’s lower bound is the
smallest Pisot number; the golden ratio is the smallest limit point of Pisot numbers.
See [1]*ch. 6.

An exhaustive search of Littlewood polynomials up to degree 31 initially led us
to suspect the golden ratio as the lower bound for the measure in the nonreciprocal
case. Section 3 describes some computations for the reciprocal case. We describe an
algorithm for searching for reciprocal Littlewood polynomials with small measure,
summarize its results through degree 72, and exhibit a list of fifteen measures of
Littlewood polynomials less than 1.6. The smallest measure we find is 1.496711 ...,
associated with the polynomial z1° + 28 + 217 + 216 — g5 4 g4 — 13 4 12 gl
20— — ¥ " — 2+ S -t + P+ x4+ L

2. Proof of Theorem 1

Our proof follows Smyth [11]. We require the following inequality regarding co-
efficients of power series.

Lemma 1. Suppose o(z) = > .50 72" with v; € C is analytic in an open disk
containing |z| < 1 and satisfies |p(2)] < 1 on |z| = 1. Then |v;| < 1 — |yl|* for
i> 1.

See [10]*p. 392 for a proof.

Proof of Theorem 1. Suppose f(z) = Y i oa;z' = [[i,(z — a;) satisfies the

i= )
hypotheses of Theorem 1, for a given integer m > 2. Write f*(z) = .1, d;z*, so
do =1, and let )., e;z* be the power series for 1/ f*(z). Because

certainly eg = 1, and

k-1
€ = — de_jej.
j=0
Thus each ey, is an integer. Let
G(z) = f(2)/*(2) = ) a2,
i>0

soq; € Zfori > 0. Clearly go = ao. If |ag| > 1, then in view of (1), M (f) =
lag] > m —1> (m+ vVm? +16)/4 for m > 3 (and similarly M (f) > 3 for m = 2),
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so we may assume |ag| = 1. Equating the coefficients of 27 in f*(2)G(2) = f(2)
yields >>7_ digj—; = aj, so for j > 1 we have

q; = (Iod Zdij i

Since f = £f* mod m, we have a; = god; mod m, so by induction m | g; for j > 1.
Let ¢ = —1if f(z) has a zero of odd multiplicity at z = 1, otherwise let ¢ = 1.
Noting that

1 Wz H 1—_z/<;z_ Il (-a) =

las|=1

we let

2 — _ 1—-—a5z2
g(z) =€ H e and h(z) = H o
|ai|<1 |as|>1
S0

h(z) Tl (1 - a@6z) a [T (@ — es2) )
Clearly all poles of both g(z) and h(z) lie outside the unit disk, so both functions
are analytic in a region containing |z| < 1. Further, if |2| = 1 and § € C then

(52) (50)- (50 (50)
s0 |9(2)] = |h(2)| =1 on |z| = 1. Let

sz and h(z Zc,

>0 >0

g(2) _ H?:1(z_0‘i) _ Hz”_l(z—az) _ f(®) = G(2).

Let k be the smallest positive integer for which g # 0, so |gx| > m. Since g(z) =
h(2)G(z), we obtain b; = ¢;qo for 0 < i < k and by = coqg + crqo- Thus
lcom| < [cogk| = [bx — crgo| < 2max{[bk], [cxl}- (3)

Assume without loss of generality that |cy| > |bg|- By Lemma 1, we have |cx| <
1 — ¢, and combining this with (3) and the observation that

|col = = I V/lal=1/M()
la;|>1
yields
M(f)ym < 2(M(f)* - 1).

The inequality (2) follows, and this bound is achieved when m is even by f(z)
22 +mz/2-1.

o

3. Reciprocal Littlewood polynomials with small measure

We describe an algorithm for searching for reciprocal Littlewood polynomials
with small Mahler measure, provide some details on its implementation, and report
on its results.
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3.1. Algorithm

Given a positive integer d, we wish to determine all reciprocal Littlewood poly-
nomials f(z) = Z?:o a;z’ having 1 < M(f) < M, where M is a fixed con-
stant. If f is reciprocal of even degree d, then necessarily f = f* since the mid-
dle coefficient of f is nonzero. Further, f(—=x) also has this property, and clearly
M(f(—=zx)) = M(f(x)), so we may assume a9 = a; = 1. If d is odd and f = —f*,
set g(z) = f(—z) so that g = g*. Thus we may assume ap = 1 and f = f* for odd
d.

Following [3, 4, 8], we use the Graeffe root-squaring algorithm to screen out most
polynomials f having M (f) > M and all polynomials with M (f) = 1 in an efficient
way. Recall that the Graeffe operator G applied to a polynomial f(z) written as

f(z) = g(z®) + zh(z?)
yields the polynomial
Gf(z) = g(z)* — zh(z)”.

The roots of Gf are precisely the squares of the roots of f, and M(Gf) = M(f)2.
Let ay,m denote the coefficient of z¥ in G™ f(z). Boyd [3] shows that

|ag,m| < (:) + (Z:i) (MT" + M- 2) (4)

for all m, and if in addition a1, > d —4 and m > 1, then

d d—4 o -
lak,m| < (k> + (k—2) (MZ +M? —2)+

2 (Mz’"_l M 2) ((Z::) + (Z:i)) . (5)

We apply the Graeffe operator to each polynomial at most mg times, where my is
another fixed parameter of the algorithm. A polynomial f is rejected at stage m if
the appropriate inequality (4) or (5) is not satisfied for some k, or if G™f = G™ 1 f.
In the latter case, Kronecker’s theorem implies that f is a product of cyclotomic
polynomials. Let ®,, denote the nth cyclotomic polynomial. If n = 2"s with s odd,
then G"®y-, = <I>§T_1 when m > r, so the Graeffe method is guaranteed to detect
a product of cyclotomic polynomials with total degree d if m > 1 + log, d.

3.2. Implementation

We use M = 5/3 and mg = 10 in our C++ implementation. All root-squaring
is performed using exact integer arithmetic. For each f, we store the coefficients
of the polynomial G™ f using native 32-bit integers for as many m as possible for
efficiency, then switch to a representation in software for larger m. We use the
highly optimized package GMP [6] for arithmetic with big integers; tests with our
application showed a 30% improvement in speed over the package LIP used in [8].
We use Maple to compute the measure of each polynomial that survives the Graeffe
iteration.

Since all polynomials we consider are reciprocal, we optimize performance by
storing only half the coefficients of the polynomials, and implement the Graeffe
procedure using this underlying representation. This makes our implementation of
root-squaring somewhat more complicated, but reduces computation times.
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We also allow parallel processing by partitioning the set of polynomials of a
particular degree into 2" parts of equal size, fixing n particular coefficients to some
combination of 1 and —1 in each part. Fixing n leading coefficients yields rather
uneven search times, since fewer iterations of root-squaring are required on average
for polynomials with certain prefixes. Instead, we fix the n coefficients nearest the
middle term for quite uniform times across all 2" parts. We use a Gray code to
iterate over the possible values of the free coefficients.

3.3. Results and analysis

We ran our program at HPCQSFU, the high performance computing centre at
Simon Fraser University, on The Bugaboos, a Beowulf cluster with 96 nodes, each
with two AMD Athlon 1.2 GHz processors. In two weeks we searched through degree
72, using as many as 64 processors at once and totaling 426 days of CPU time. Our
program finds 1643 Littlewood polynomials with degree at most 72 that survive ten
iterations of root-squaring; of these, 1487 have measure less than M = 5/3. Only
127 distinct measures less than 5/3 appear, since most measures occur several times.
For example, if f is a Littlewood polynomial of degree d and k is a positive integer,
then clearly (z%+! +1)f(z) and f(z*)(z* — 1)/(z — 1) are Littlewood polynomials
with the same measure as f. The complete list of polynomials found is available at
[9].

Table 1 lists the fifteen measures less than 1.6 found in our search. For each
measure, the table lists the minimal degree d of a Littlewood polynomial with this
measure, the degree dy of its noncyclotomic part, and half the coefficients of a
Littlewood polynomial realizing the measure, abbreviating + for 1 and - for —1.
Two of the polynomials in our table merit closer attention.

TABLE 1. Known measures of Littlewood polynomials less than 1.6.

Rank Measure d do Coefficients a;, for 0 <1i < d/2.
1 1.49671107561 19 12 b=
2 1.50613567955 11 6 P
3 1.50646000575 35 12 e FI——
4 1.53691794778 23 14 P
5 1.55107223951 23 12 b=t
6 1.55603019132 6 6 -
7 1.57930874185 65 20 B el o S R o el &
8 1.58234718368 7 6 -+
9 1.58501169305 35 24 ks e
10 1.59185616779 71 16 B e mat e ++—+++
11 1.59287323067 65 44 T L T RS WY RS U B B S B S
12 1.59341317381 19 12 +Ht+ -
13 1.59504631133 53 36 e it e X SEEEE
14 1.59700500917 17 10 B
15 1.59918220880 41 26 Bt S e

The seventh polynomial in Table 1 is the only one listed whose noncyclotomic
part is reducible. Its noncyclotomic factors are £'® — 27 — 2% — 23 + 1, with measure
1.230391..., and £'© — 2% + 25 — x + 1, with measure 1.283582. ... Both appear in
lists of known polynomials with particularly small measure [3, 9]; the first one has
the 33rd smallest known measure greater than 1. In fact, our search finds only one

other example of a Littlewood polynomial whose noncyclotomic part is reducible.
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Its measure is 1.651512. .., and its factors are Lehmer’s polynomial £(—z) and the
polynomial £20 42104218 — g7 g6 313 3124 510 48 o7 4 2342242241,

The tenth entry in Table 1 is the product of a noncyclotomic polynomial of degree
16 and a number of cyclotomic factors with total degree 55. The degree of 71 is
best possible: No Littlewood polynomial of smaller degree has the same measure.

There are certainly an infinite number of polynomials having {—1,0,1} coeffi-
cients with smaller measure. For example, the measure of 227+2 + g27+! 4 gnt+2 4
2"l 4+ 2" 4+ 2 + 1 approaches 1.255433 ... as n — oo. This is the smallest known
limit point of measures of integer polynomials. There are in fact an infinite num-
ber of limit points of measures of polynomials with {—1,0,1} coefficients less than
1.382. The structure of known limit points of measures, and the 48 smallest known
limit points, are described in [5]. There are also infinitely many integer polynomials
with reducible noncyclotomic part having measure less than 1.4967, since two non-
cyclotomic polynomials are known with measure less than 1.4967/1.2554 ~ 1.1922.

It therefore seems quite possible that Littlewood polynomials with Mahler mea-
sure smaller than 1.496711... exist. It appears likely however that additional tech-
niques would be required in further searches.
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