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The twelve point Desmic configuration in Euclidean three space is composed of
three finite sets with the property that any line intersecting points of two of the sets
also intersects the remaining set. The Desmic conjecture asserts that this is the only
such configuration. In this paper the Desmic conjecture is proven.

1. INTRODUCTION

The Desmic configuration is a three-dimensional configuration consisting
of three sets each containing four points with the property that any line that
intersects two of these sets also intersects the third set. (See Fig. 1.) Edelstein
and Kelly in 1963 asked whether any other such confugurations exist. This
problem soldified into the Desmic conjecture.
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The Desmic Conjecture. Let #(red), .#(blue), and ¥ (green) be three
finite disjoint sets whose union spans E* (Euclidean three space). If every
line through any two of the sets intersects the remaining set, then the
configuration is (projectively equivalent to) the Desmic configuration,

Edelstein and Kelly pose this problem in [1] and prove a number of
related results. They show that many configurations of the above type exist
in the plane and that none exist in four or more dimensions. We shall call
any configuration satisfying the conditions of the conjecture *“Desmic-like.”
Nwankpa, in his 1970 doctoral thesis under the supervision of Kelly, showed
exhaustively that the only Desmic-like configuration with fewer than twenty-
seven points is, in fact, the Desmic configuration. The remainder of this
paper is concerned with deriving a series of propositions that combine to
establish the Desmic conjecture.

2. Mixep LINES

We shall refer to any line (or plane) intersection two or more of the sets
under consideration as “mixed”. A line (or plane) intersecting only one of
the sets will be termed “monochrome”. A line through exactly two points is
called a “‘normal line”. The triangle defined by three points, M, P, and P,
will be denoted by A(P,, P,, P,) and the segment defined by P, and P, will
be denoted by S(P,,P,). The conjecture is valid in real projective three
space though some of the arguments are more conveniently phrased in
Euclidean space.

The first proposition concerns mixed lines and is due to Edelstein. It is
reproduced in Nwankpa’s thesis and represents the only substantial progress
towards the conjecture. Since it is vital to what follows and has not appeared
in any conventional form elsewhere, we present it now.

ProrosiTiON | (Edelstein). Every mixed line in a Desmic-like
configuration contains exactly three points.

Proof.  Suppose there exists a mixed line / that intersects one of the sets
(say #) in at least two points P, and P,. We show that this is impossible.
Project .2 % from P, into a plane 7 that is not parallel to any line of the
configuration. If S is the intersection of / with x, then all lines through S and
any point of the projection contain at least one additional point. Motzkin |2
show that this implies that every line bounding the “residence” of $ must be
normal. (The lines of the configuration that do not pass through § divide the
plane into components. The component that contains S is its residence.) Let
!’ be such a bounding line and let Q, and Q, be two of the points that define
it. We note that there must be a point P, in .%# so that its image Q, under the
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same projection lies on I’ and is distinct from Q, and @,. Since every mixed
linc contains at least three points it follows that the set of all connecting lines
of the projection of .#\J ¥ is identical to the set of all connecting lines of
the projection of .4\ ¥ U (P,}. Furthermore, the line joining S and Q,
contains an additional point of the projection. Thus, !/’ is a nonnormal
bounding line of S in the projection of .9 U ¥\ {P,} which contradicts the
aforementioned result of Motzkin. 1

An immediate consequence of the previous proposition is that card(/#) =
card(.#) = card(¥’) in any Desmic-like configuration. Also, if 7 is any mixed
plane, then card(# M) = card(P N x) = card(¥ M 7).

.

3. MONOCHROME LINES
The next step is to examine lines defined by points of one set.

PROPOSITION 2. Every monochrome line in a Desmic-like configuration
eontains exactly two points.

Suppose there exists a Desmic-like configuration with three collinear
points of the same colour (say red). If we project this configuration from one
of these points to a plane we get a configuration of . and ¢ points
(corresponding to the projection of the red points and the other points,
respectively) that satisfies the following three conditions:

{a) Every line through two .2 points contains a . point.

(b) Every line through a % point and a ¢ point contains an
additional .2 point.

(c) There is a special .#* point P (corresponding to the projection of
the three collinear red points) with the p-operty that every line through P
and a .2 point contains at least two addit:onal 2 points.

These conditions follow from the observations that in a Desmic-like
configuration every mixed line contains exactly one point of each colour and
that every mixed plane contains exactly the same number of points of each
colour. Thus, a plane through the point of projection that contains exactly
k2 points of each colour projects to a line that contains exactly k ¥ points’
and at least one .%* point.

In Lemma | we prove, in dual formulation, that such a configuration
cannot exist. This, of course, establishes Proposition 2.

LemmA 1. There does not exist (a noncurrent) finite configuration of .#
and Z lines in the plane that satisfies the following three conditions:
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(a) Every vertex that contains two ¥ lines contains an . % line.

{b) Every vertex that contains an .Z line and a g line contains an
additional ¥ line.

(c) There is a special % line I, with the property that every vertex on
ly that contains a g line contains at least two additional & lines.

Progf.  We represent %" lines by solid lines and 2 lines by broken lines.
Consider the following minimum configuration: Let 4(P,,P,,P;) be a
triangle with edges composed of .%" lines and with base S(P,, P,) on I, with
the additional requirements:

(1) there is a mixed vertex V between P, and P,;
(2) 4(,,P,,P,) has minimum altitude (from S(P,, P,));

(3) if more than one such triangle exists, then 4(P,, P,, P,) is also
assumed to have minimum area.

It can be seen that [, must be cut by at least two .2 lines and at least one
¢ line. Thus, by performing an initial collineation, il necessary, we can
ensure that such a configuration exists.

Since vertex V lies on [, at least three @ lines pass through V and at least
two of the, say [, and [,, cut one side of 4(P,, P,, P,). (See Fig. 2.)

Let /, be the %" line that cuts I, at a point 4 in such a way that no other

.4 line cuts [, between 4 and V and let [, be the .2 line that cuts [, at a
point B so that no other .2 line cuts./, between B and V. (4 or 4 and B may
possibly lie on S(P,, P,).) Note that, by the minimality assumptions, neither
I, nor I, cuts S(P,, P,) or S(V, P,). Now, include % lines so that the convex
region (V, B, Q,,..,Q,) has no,% lines passing through its interior. (See

- Fig. 3.) .

FIGURE 2
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FIGURE 3

The vertex at B contains an additional # line I;. This line cannot cut .
S(4, V) since this would generate a prohibited .2" line. Nor can it cut the
interior of the segment S(P,, Q:) without violating the minimality
assumptions. Thus, it must cut S(Qy, V). Call this point W. (See Fig. 4.)
Note that W 3 V. There are two additional # lines through W that cannot
intersect S(8, V). No two Z lines meet in (V, B, Q, ..., Q.) and we find it is
now impossible to place the requisite additional # line through C (the point
where one of these lines intersects the boundary of (V, B, Q,,..., Q,)) without
contradicting the minimality assumptions. (The case where W = Q, needs a
small additional argument of the same variety.) 1

Figure 4
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4. MIXED PLANES

Il we project a Desmic-like configuration from any point of the
conliguration to a plane, in the same fashion as in the comments following
the statement ol Proposition 2, we find that we have a configuration of .%
and .Z points which satisfy:

(a) Every line through a .2 point and a .%° point contains an
additional _¢ point.

(b) Every line through exactly k . points contains exactly k — 1 .
points.

Condition (b) is a consequence of Propositions | and 2.
We now show, one again in dual formulation, that if such a planar
configuration exists, then every mixed line contains exactly three points.

LEMMA 2. There does not exist a (nonconcurrent) finite configuration of
% and g lines in the plane that satisfies these three conditions:

(a) Every vertex formed by the intersection of an %" line and a ¥ line
contains an additional F line.

(b) Every vertex that contains exactly k @ lines contains exactly
k—1.2% lines.

(c) At least one vertex V contains three or more ¥ lines.

Proof. Once again.# lines are represented by solid lines and Z lines by
broken lines. We make the following observation: any triangle with edges in
¢ has an even number of lines of the configuration cutting into it at the
vertices. (By cutting we mean passing through the interior.) This follows
since any line cutting a triangle cuts it twice and at any vertex on the interior
of an edge of the triangle there are an even number of lines (excluding the
edge itsell) cutting the triangle. Thus, to preserve parity, an even number
must cut at vertices.

We project the vertex V to infinity in such a way that no line of the
configuration goes to the line at infinity and so that the lines through ¥ are
vertical. Let /,,..., I, be the k >3 # lines passing through V ordered as in
Fig. 5. Let I* be a # line chosen so that no % line intersects I/, above the
vertex formed by /, and I*. Let A, ={,MI* for i= |, 2,..., k. The vertex 4,
must be cut by an .Z line and since S(V,4,) is uncut it must intersect
S(V,A,). (See Fig. 5.) There is an odd number of lines through every mixed
vertex by condition (b). There is an even number of lines cutting triangle
4(4,,A4,, V) at its vertices. No line cuts into 4(4,, A4,, V) at A, since such a
line would cut [, above A,. Thus, there exists a line through ¥ that cuts
A(A,,A,, V). Since I, and [, are adjacent & lines through V this cutting line
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must be in .#. Repeating the argument verbatim for the triangles
444y, V), =3,k — 1, we deduce that there is an .2 line cutting
each of these triangles at V. If we reverse the procedure (that is, consider the
line that cuts /, at the “highest” point) we see that there must also be an .2
line cutting A4(4,,A,,¥) at V. This shown that each 4(A; A, ,, V) has
precisely one .2 line cutting it at V. Now, consider a & line I** that cuts /,
in such a way that no line cuts [, above the vertex C formed by the inter-
section of /** and /,. Let B and D denote the intersections of {, and [, with
[** (see Fig. 6). The triangle A(B, D, V) is uncut at vertices B and D and has
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exactly three lines cutting it at V. This, however, is contrary to the previous
observation that the number of vertex cuts must be even. |

Propasitions 1 and 2 and L.emma 2 combine to yield .

ProposITION 3. Every mixed plane in a Desmic-like configuration
contains exactly six points.

5. COMPLETION OF PROOF

We now know enough about the structure of Desmic-like configurations to
finish the proof of the conjecture. The next proposition, in conjunction with
the result of Nwankpa mentioned in the introduction, shows that every
Desmic-like configuration consists of exactly twelve points.

ProrosiTiON 4. If every mixed plane in a Desmic-like configuration
contains exactly six points, then the total number of points in the
configuration is less than twenty seven.

Proof. U we project from an # point R (as in the comments following
the statement of Proposition 2), we arrive at a planar configuration of .%* and
-Z points.

Any three .# points come from the projection of three ¥ and three .#
points. These six points in conjunction with R complete to a twelve point
Desmic configuration. (One can deduce from the previous results that the
remaining five points are uniquely determined.) There are only two possible
projections of a twelve point Desmic configuration. (See Fig. 1.)

Thus we observe that if we completely triangulate the .2 points, then every
triangle in the triangulation has exactly one .# point on its edges.

a P

FIGURE 7
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If we assume the existence of at least twenty-seven points in total, we
guarantce the existence of a least nine 2 points in general position. This in
turn ensures the existence of a convex pentagon with vertices in -2 and with,
at most, one 7 point in its interior. An exhaustive argument shows that it is
not possible that every triangulation of this pentagon has . points in the
required locations. |}
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