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ABSTRACT. Although mathematicians commonly recognize the decimal expan-
sions of numbers such as m and /2, few recognize the decimal expansions of
numbers such as 27 + In(2) or 1 + /2 + /3. The objective of this paper is to
demonstrate a set of algorithms that aid in the identification of numerically
computed constants. Most of these algorithms rely upon the ability to find a
small integer relation for a vector x € R™ when one exists, that is a nonzero
vector m € Z"™ such that x-m = 0.
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1. INTRODUCTION

The calculation of transcendental and algebraic constants has been of great in-
terest historically. The ancient Babylonians developed algorithms for computing
V2. Archimedes method for computing 7= was one of the triumphs of ancient
Greek mathematics. Named constants are, by and large, particular values of spe-
cial functions and throughout the ages, faster and more efficient algorithms have
been devised for such explicit evaluations.

The most ambitious projects so far that attempt to find closed form expressions
for numerical values are A Dictionary of Real Numbers [1] and The Inverse Symbolic
Calculator [6]. Although both work reasonably well, the fact that they are primarily
table based imposes limitations stemming from the restricted number of entries in
a table and the fixed precision to which each entry is given. Even though a certain
value may have a simple closed form expression, approaches of this type will find it
only if it has been included in a table. A failure to find a corresponding expression
cannot exclude the possibility that the number is from a given class. Furthermore,
in the event that the decimal expansion of a number is known to greater accuracy
than the values given in a table, these additional digits will not be used in an
attempt to identify the number. Whereas the expressions one gets from a set of
tables may agree with the expansion of the number in the first few places, they
may be very poor approximations of the original value.

Rather than taking a table based approach, we attempt to construct closed form
expressions for a numerical value using various algorithms. Although this does not
allow us to search in such a wide class of numbers as the previous two projects,
it allows for more thorough searches within a given class and allows us to know
exactly what types of numbers have and have not been considered.

This paper presents an algorithmic method, called identify, to determine whether
a numerical value most probably has a closed form. The identify function is based
on algorithm and code given in the Master’s thesis by Alan Meichsner, Integer
Relation Algorithms and the Recognition of Numerical Constants [5].

Consider a problem such as:

4.555806216
/ c0s(1.045493011z)dz.
1.414213562

Running identify on this will return:

V247
/ cos(ﬁx)dw.
V2 13

The function identify takes a floating point number (or an expression containing
floating point numbers) to some precision, and tries to determine which known
constant or combination of constants best fits this floating point number. This
algorithm makes significant use of integer relation algorithms to perform a large
number of checks to determine, with some probability, to what explicit constant a
numerical value corresponds.

Definition 1.1 (Integer Relation). There exists an integer relation amongst the
numbers Ty1,%s,... Ty if there are integers ai,as,... ,a,, not all zero, such that
S aiz; = 0. For the vector x = [T1,%2,...,%,]7, the nonzero vector a € Z™ is
an integer relation for x if a-x = 0.



Although the Euclidean and Continued Fraction Algorithms solve the problem
of finding integer relations for the vector [1, 2, - ,z,] when n = 2, until recently
there were no known polynomial time algorithms that solved the problem for n > 3.
A breakthrough was made in 1977 with Ferguson and Forcade’s Generalized Fu-
clidean Algorithm [2], a recursive algorithm that was guaranteed to find an integer
relation when one existed. Following this, a number of non-recursive algorithms
were developed, among which are the PSLQ algorithm, the HJLS algorithm, and a
method based on the LLL algorithm [3, 4].

2. RECOGNIZING RATIONAL NUMBERS

Given a truncated decimal expansion T of the value x, we would like to decide
whether or not z is rational. Although we cannot make any claims with certainty
that are based only on the value T, we will claim z is rational if there exist small
integers p and ¢ such that p/q is a good approximation of Z.

As a number is rational if and only if it has either a terminating or repeating
decimal expansion, one method to search for appropriate values of p and ¢ is to
examine T and see if it appears periodic. However, in order for such a method
to succeed, T must contain at least one complete period. This is not a reason-
able expectation as it is possible for rational numbers with small denominators to
have decimal expansions with long periods. For example, the decimal expansion of
13/877 has a period of length 438. It is unreasonable to expect that we will have
enough digits in the expansion of Z to contain a complete period. A further problem
with this method is that a failure cannot be used to rule out the possibility that
there exist small integers p and ¢ with p/q being a good rational approximation of
Z. Instead, we will consider the continued fraction convergents of Z which have the
following qualities [7]:

1. For any rational number r/s and continued fraction convergent py, /gy of Z, if

|Z —r/s| < |T — pr/qr| then |s| > gx.

2. For any continued fraction convergent py/qx, of Z, |Z — pr/qx| < 1/4;.

It should be noted that although these results are usually given for the convergents
of an irrational number, they also hold for the convergents of rational values.

We will define a convergent of Z to be a good, small rational approximation of T
if |T — pr/qx| < € where € is the maximum error we are willing to tolerate and the
number of digits in gy is less than or equal to 1/3 the number of digits to which
we know Z. If € is small enough, then this is roughly equivalent to requiring both
|T — pr/ar| < € and |T — pi/qi| < 1/q3 where we have increased the exponent of gy
to 3 in order to single out exceptional convergents.

To find a good, small rational approximation of Z, we need only compute the
continued fraction convergents of T until either |Z — py/qr| < € or the number of
digits in gy, is greater than 1/3 the number of digits to which we know Z. If this
process terminates with the length of ¢ less than or equal to 1/3 the length of Z,
then |Z — pr/qx| < € and so py /gy satisfies our definition of a good, small rational
approximation. In this case we will claim z is the rational number py,/qgy.

On the other hand, if the process terminates with the length of g greater than
1/3 the length of T, then we shall consider the convergent py_1/qr—1 of T. As
|ZT — pr—1/qr—1| > €, there exist no rational values r/s such that |s| < gx—1 and
|Z — r/s| < e. We can claim that T is not a rational number with denominator less
than or equal to gx_1 and so we will claim 2z is not a small rational number. Even



though |Z — pr,_1/qr—1| > €, the convergent pr_1/gr_1 may still be of interest to us
when looking for functions of small rationals that are good approximations of the
input.

Example 1. An example of identifying a rational number

> v := evalf(1/13);
v := .07692307692

> identify(v);
1

13

3. RECOGNIZING ALGEBRAIC NUMBERS

Again, given a truncated decimal expansion T of the value z, we would like to
decide if x is algebraic. As an algebraic number is a root of its minimal polynomial
there is an obvious way to proceed. If we can find an irreducible polynomial p with
integer coefficients for which Z is a good approximation of a root, and p is in some
sense simple compared to T, then we will say z is algebraic and identify it as a root
of p. We will claim T is a good approximation of a root «a if |@ — Z| < € where
€ is the maximum error we are willing to tolerate and we will claim p is simple
compared to T if the total number of digits in the coefficients of p is no more than
1/3 the number of digits in Z. Although there is some reason behind the choice of
1/3 in the rational case, the choice here is fairly arbitrary.

To proceed, we shall try to construct a minimal polynomial for 2 by looking for
an integer relation amongst the powers of Z. Working with the default size of n=6
and using the PSLQ algorithm, we will attempt to construct an integer relation
for the vector [1,7,... ,Z"]7. If a suspected relation is returned, then we need to
examine the corresponding polynomial p. If T is a good approximation for a root
of p, and p is simple in comparison to Z, then we shall say z is an algebraic number
and identify it as a root of p. On the other hand, if the PSLQ algorithm returns
a lower bound T on the norm of any possible integer relation, then we can claim
there does not exist a polynomial of degree n and height less than T for which T is
a root.

Although the implementation given here defaults to looking only for polynomials
of degree less than or equal to 6, this method can be used to find a minimal
polynomial of arbitrary degree provided we are given the value T to high enough
precision. An option exists to allow a higher degree polynomial to be examined.

Example 2. An example of identifying an algebraic number

> v := evalf((2+3°(1/3))"(1/3), 20);
v = 1.5098974493323553401

> identify(v, basisSizeAlg=9 );
2+ 3(1/3))(1/3)

Note that identify returns a closed form as opposed to a minimal polynomial.



4. RECOGNIZING SUMS AND ProDUCTS OF KNOWN CONSTANTS

Given an approximation Z of the value z, if z is neither rational nor algebraic,
then we will attempt to identify it by trying to construct an integer relation between
T and a set of preselected constants. If one has some insight into what constants
may be related to z, then the chance of success can be increased. Now suppose
€1,C2,- . .,Cy are the constants we have selected and [—ao, ay, . . . ,a,]7 is a suspected
integer relation for the vector [Z,cy1,c,... ,c,]? in which ag does not equal zero.
Let € be the maximum error we are willing to tolerate in an approximation of T
and for a rational number p/q in reduced form, define the size of p/q to be the
maximum of the number of digits in p and the number of digits in ¢. In the event
that |T — (Z—;cl + Z—f)cz +...+ Z—zcn) < € and the sum of the sizes of the nonzero
rationals 2% is no more than 1 /3 the number of digits in Z, we will claim z is the
value (gter+ G2c2+...+ $2cp). Again, the choice of 1/3 as a measure of simplicity
is somewhat arbitrary.

In our implementation, this procedure is applied in the following three ways. In
each case, the constant n is dependent upon the accuracy to which we know z.

1. The first application is used to identify a sum of powers of a given transcenden-
tal number. For each member £ in a list of selected transcendental numbers,
we attempt to construct an integer relation for the vector [T, &, £P1 gP2 ... ¢Pn]T.
The default choices for the £ are 7, e and In(2), although an option exists to
search other possibilities.

2. The second application is used to identify a sum of various constants. For all
subsets of size n from a selected set of constants {cy, ¢z, ... ,cm}, we attempt
to construct an integer relation for the vector [T, ci,, Ciy, - - 5 i, ]T. To avoid
combinatorial explosion, the constant m should not be too large. The de-
fault choice for the set of constants is {1,v/2,v/3,((3),,¢(5),e,1n(2),In(3)},
although an option exists to search other possibilities.

3. The third method of application is used to identify a product of various con-
stants. For all subsets of size n from a preselected set of positive constants
{k1,k2,... ,kn}, we attempt to construct an integer relation for the vector
[log |Z|,log(ki, ), log(ki,), - - - ,log(k:,)]*. If [—ag,a1,-.. ,a,]? is found to be
a suitable integer relation, then we claim |z| is the value H?:l (ks; )%/, Tt
is useful in this case for some of the constants k; to be small primes. The
default choice for the set of constants is {2, 3,5, 7,7, e, In(2),1n(3), ((3),{(5)},
although an option exists to search other possibilities.

This procedure is also used in conjunction with the method given in section 5 to
identify expressions involving functions of certain constants.

It should be noted that with an appropriate choice of constants, this procedure
can be used to identify simple expressions involving both sums and products. If
the constants ¢, c¢a,. .. , ¢, involve products or the constants ki, ks, ... , k, involve
sums, then the resulting expressions may involve both sums and products.

Example 3. An example of identifying sums, and products of known constants.

> v := evalf(exp(2)+exp(1), 20);
v := 10.107337927389695463



> identify(v);
e+ (e)?

> v := evalf(Pi+1n(7));
v := 5.087502803

> identify(v,extension={1n(7)});
7+ In(7)

> v := evalf(Pixexp(2));
v = 23.21340436

> identify(v);

5. RECOGNIZING FUNCTIONS OF RECOGNIZABLE VALUES

Following the lead given by the ISC, we can apply a set of simple transformations
to the input before attempting to identify it. This is the approach we shall use to
identify functions of small rational and algebraic numbers, as well as functions of
sums and products of known constants. The identify function does not check if the
value is a function of a -linear combination of known constants by default, but
there exist options to perform this check. Given a decimal approximation Z of x
and an invertible function F', we will first check to see if 7 is in the domain of F~!.
If it is, then we will set ¥ = F~1(Z) and apply the previous methods for identifying
constants to y.

When looking for an approximation « of g, it is not critical to return what we
consider to be a good approximation. Depending on the slope of the function F' at
7, the difference between a and 7 may not reflect the difference between F'(a) and
T. We will instead focus mainly on finding a small recognizable approximations for
y and then check to see if both « is in the domain of F' and |F(a) — Z| < € where
€ is the maximum error we are willing to tolerate. In the event that « is in the
domain of F and this difference is less than €, we will claim z is the value F'(a).

In our implementation, we consider the following functions: sin, arcsin, cos,
arccos, tan, arctan, csc, arccsc, sec, arcsec, cot, arccot, sinh, arcsinh, cosh, arccosh,
tanh, arctanh, csch, arccsch, sech, arcsech, coth, arccoth, exp, In, and the Lam-
bertW function. The inverse of each of these functions is readily available from
Maple’s invfunc array. Any function for which one can compute the inverse can
easily be added. It is important to realize that a failure of this method cannot rule
out the possibility that = F(a) for some small rational or algebraic number . If
a is not in the range of the inverse function, then this method will not succeed.

Example 4. An example of identifying a function of a recognizable constant.



> v := evalf(cos(sqrt(2)), 20);
v := .15594369476537447346

> identify(v);

cos(V'2)
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