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ABSTRACT. We study the problem of determining the minimal degree d(m)
of a polynomial that has all coefficients in {0,1} and a zero of multiplicity
m at —1. We show that a greedy solution is optimal precisely when m < 5,
mirroring a result of Boyd on polynomials with +1 coefficients. We then
examine polynomials of the form [] . ;(z® + 1), where E is a set of m positive
odd integers with distinct subset sums, and we develop algorithms to determine
the minimal degree of such a polynomial. We determine that d(m) satisfies
inequalities of the form 2™ +c¢1m < d(m) < % -2™ + 5. Last, we consider the
related problem of finding a set of m positive integers with distinct subset sums
and minimal largest element and show that the Conway-Guy sequence yields
the optimal solution for m < 9, extending some computations of Lunnon.

1. INTRODUCTION

A Newman polynomial is a univariate polynomial with all coefficients in {0, 1}.
We denote the set of such polynomials by A. In this paper, we study Newman

polynomials having a zero of prescribed multiplicity at x = —1 and degree as small
as possible. To this end, we define
(1) d(m) = min{deg(f) : (x +1)™ | f(z) and f € N'}.

Similar quantities have been studied for other families of polynomials. Boyd
[4, 5] investigates an analogous problem for the class £ of Littlewood polynomials,
which have all coefficients in {—1,1}. Byrnes asked if the minimal degree of a
Littlewood polynomial having a zero of multiplicity m at z = 1 is 2™ — 1, since the
polynomial

m
2) II (aﬁk‘l - 1)

k=1
satisfies the criteria. Boyd proves that this greedy construction is optimal precisely
for m < 5, determines the minimal degrees for m = 6 and 7, and shows that the
minimal degree in general exceeds exp(y/m(1 + o(1))).

The authors [3] study the similar problem of minimizing the degree of a polyno-
mial with {—1,0,1} coefficients and prescribed vanishing at z = 1. The minimal
degree di(m) in this case is known to satisfy m? < d;(m) < m?2logm, and we
determine the exact value of d;(m) for m < 10 and find explicit upper bounds for
m < 21. Central to this work and the research of Boyd is the observation that
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polynomials with low height, bounded degree, and a high order of vanishing at
z = 1 must also vanish at pth roots of unity, for several small p.

Of course, since the set of allowed coefficients is symmetric in these other two
problems, the results apply equally well when we require m-fold vanishing at —1
instead of 1. Clearly f(1) > 0 for a nonzero f € N, so it is natural to inquire about
vanishing at —1 in this case.

The distribution of complex zeros of Newman polynomials is studied by Odlyzko
and Poonen in [13].

In Section 2, we develop an algorithm for computing d(m), trimming the search
space by exploiting some arithmetic properties of the terms appearing in an ex-
tremal polynomial. We show that a simple greedy construction analogous to (2) for
Littlewood polynomials is optimal for m < 5 but not for m > 6, just as in Boyd’s
result.

In Section 3, we study polynomials of the form

m

(3) H (% +1).

k=1
We call such a polynomial a pure product and denote it by [e1, .. .,ex]. Certainly a
pure product is a Newman polynomial if and only if the subsets of {e1, ..., e, } have

distinct sums, and we say a set with this property is sum-distinct. We are interested
in the case where the e are all odd integers, so that the resulting polynomial has
an m-fold zero at —1. Let

(4) e(m) = min {Z uw:U C2Zt —1,|Ul =m, and U is sum—distinct} .
u€U

We develop an algorithm to compute e(m) and use it to find the minimal pure
product polynomials for m < 11. Our results allow us to refine our upper bound
on d(m) for larger m.

In Section 4, we apply our methods to a similar problem posed by Erdds: De-
termine the smallest possible value of the largest element of a sum-distinct set.
Let

(5)  w(m)=min{max(U):U C Z", |U| =m, and U is sum-distinct} .

Erdds offered $500 to determine if w(m) = Q(2™), and Guy [8] makes the stronger
conjecture that w(m) > 2™~3. This problem also appears in [9, problem C8]. The
best known asymptotic result on this problem is due to Bohman [2], who shows
that w(m) < .22002 - 2™ for sufficiently large m. This slightly improves the bound
of .23513 - 2™ given by the Conway-Guy sequence, defined by

Ug = 0, Uy = ].,

6
©) U1 = 2Um — Uy fomy, M 21,

where (a) denotes the integer nearest a. The first few terms of this sequence are
(7 0,1,2,4,7,13,24,44,84,161, 309, 594, 1164, 2284, 4484, 8807, . . ..

Let Uy, denote the set {u,, —uy : 0 < k < m}. Conway and Guy [6] show that U,,
is sum-distinct for m < 40, Lunnon [10] for m < 79, and Bohman [1] for all positive
m. Lunnon also shows that w(m) = u,, for m < 8. We show that w(9) = ug and
that Uy is the unique optimal set.
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2. OPTIMAL NEWMAN POLYNOMIALS

In this section, we first determine an upper bound on d(m) by explicitly con-
structing Newman polynomials with high orders of vanishing at —1. We then derive
some properties of the optimal Newman polynomials we seek, and use them to de-
velop an algorithm for finding them.

2.1. Properties of optimal polynomials. A sequence is superincreasing if each
element in the sequence is larger than the sum of all the preceding elements. If
{e1,...,em} is a superincreasing sequence of positive odd integers, then clearly
the pure product (3) is a Newman polynomial with a zero of order m at x = —1.
We may therefore derive an upper bound on d(m) by using the following greedy
construction. Define the sequence {Ji} by

Ji=1,
k—1
Te=ri+Y_ Ji k=2,
=1

where ry =1 if k£ is odd and ry = 2 if k£ is even. Setting Jy = 1 for convenience, it
is easy to derive the equivalent recurrence

J() = Jl = 1,
Jp = Jpo1 +2Jp—2, k22,

and a routine calculation shows that

Jk — % (2k+1 + (_1)k) .

The sequence {Jy } is called the Jacobsthal sequence. Many of its properties appear
in [?]. Let

m

(8) gm(@) = [ (@™ +1).
k=1
We conclude that
9) d(m) < deg(gm) = g .gm _ g n (_é)m'

We would like to determine if this greedy construction is optimal.

We require the following notation. For a polynomial f € A, let E(f) denote
the set of exponents appearing in f, so f(z) = ZeeE(f) z¢. Let Eo(f) denote the
subset of even integers in E(f), and E;(f) the subset of odd integers. Let N(f)
denote the number of monomials of f, so N(f) = |E(f)|, and let Ny ;(f) denote
the number of elements of E(f) that are congruent to a modulo b. Last, let ®,,(z)
denote the nth cyclotomic polynomial.

The following lemma lists some properties of the polynomials we seek.

Lemma 1. Suppose f € N has a zero of order m at —1 and deg(f) = d(m). Then
() N(f)=2m.
(i) For 0 <k < m, we have Z rk = Z sk,
r€Eq(f) s€EEL(f)
(iid) If m > 4 and k > 0 then 28+ divides Z rk.
r€Eo(f)
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() If m = 5, then Noa(f) = Naa(f) = 2 mod 4; if m > 6, then Noa(f) =
N2’4(f) =0 mod 4.

(v) If m > 5 then the 4-tuple (N1,s(f), N3,s(f), Nss(f), N7s(f)) is congruent
modulo 4 to one of the tuples shown in Table 1.

(vi) If ®,(z) | f(z) and n > 2 then n is not a prime power.

TABLE 1. Allowed values of (N1,5(f), N3,s(f), Ns,s(f), N7s(f)) mod 4.

m>6
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Proof. First, since (z +1)™ | f(z) and N(f) = f(1), clearly 2™ | N(f). Using (8),
we have deg(f) < 3(2™ —1) < 2™ —1,s0 N(f) < 2™*!, and hence N(f) = 2™.
Second, let D denote the operation D(f) = zf'(x), and let D* denote its k-fold
iterate. The m-fold zero of f at —1 implies that D*(f)(—1) = 0 for 0 < k < m,
which yields (ii).
Third, from (i) and (i), we have |Eo(f)| = |E1(f)| = 2™ 1. Thus,

Z 2= |Ei(f)]=0 mod8

s€E1(f)
since m > 4. Also, for k > 1, note that

> (5) =Ml mod2,

r€Eo(f)

and using (ii) to combine these facts we conclude that N2 4(f) is even.
Fourth, if m > 5, then using (ii) and (iii) we find

> s*=Nis(f) + Nos(f) + 17(Ns(f) + Nss(f)) =0 mod 32.
s€E1(f)
Since |E1(f)] = 2™ 1, it follows that
16(N3s(f) + Nss(f)) +2™ ' =0 mod 32.
Consequently,
(10) Nas(f) + Nsg(f) = Nig(f) + Nog(f) =2™° mod 2.
Next, reducing the identity in (ii) modulo 16 with k& = 2, we see that
Ni1g(f) + N s(f) + 9(N35(f) + N5 (f)) =4N2,4(f) mod 16,
S0
8(Nss(f) + N5 s(f)) = 4N2,4(f) mod 16.
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Combining this with (10), we conclude that N 4(f) = 2™ * mod 4. Since |Ey(f)| =
2m~1_ clearly the same congruence holds for No 4(f).
Fifth, since

z 8° = N1s(f) + 3N3,8(f) + 5Ns8(f) + TN75(f) =0 mod 8,
s€E1(f)

we have
N3g(f) +2N58(f) = N7g(f) mod 4.

Combining this observation with (10) and the fact that |E;(f)| = 0 mod 4 yields
Table 1.

Last, from the proof of (i) we see that if g is an irreducible factor of f and
g(—1) # 0, then g(1) = +1. However, if p is a prime number and k£ > 1 then
[ (].) =p. O

p

We use part (i) of the lemma to derive a lower bound on d(m).
Corollary 1. For every positive integer m, we have d(m) > 2™ + (m — 3)/2.

Proof. Suppose f(z) € N has a zero of order m at x = —1 and that deg(f) = d(m).
Let r = deg(f) +1 — N(f) = d(m) +1 —2™, so r is the number of coefficients of
f(z) equal to 0. Let h(x) = (x + 1) f(—z). Then N(h) < 2r + 2, so by Descartes’
rule of signs, the polynomial h(z) has at most 2r + 1 positive real zeros counting
multiplicities. Hence m < 2r + 1, and the inequality follows. O

2.2. Algorithm. We use these properties to develop an algorithm to determine
the exact value of d(m) for several m. We first implement a simple procedure in
Maple to test all Newman polynomials f(z) of a particular degree having |Eq(f)| =
|E1(f)] = 2™~!. Using this program we find that d(m) = deg(g,,) for m < 4, and
that g,,(z) is the unique solution in this range.

For m > 5 we implement a more sophisticated algorithm that uses more of the
properties given by Lemma 1 to narrow the search by more than a factor of 1000.
Parts (ii), (iv), and (v) of the lemma are particularly helpful. Part (vi) does not
play a role in our method, but we include it in the lemma to contrast our problem
with the similar problems studied by Boyd and the authors ([3], [4], [5]), where the
extremal polynomials are known to be divisible by several cyclotomic polynomials
with small index.

Algorithm 1. Newman polynomials with low degree and prescribed vanishing at —1.

Input. Positive integers m and d, with m > 5 and 2™ < d < deg(gm)-
Output. All Newman polynomials with degree d and a zero of order m at —1.
Invariants. E is a set of nonnegative integers with min(FE) = 0 and max(FE) = d,
f(x) = >, cpx°, and for every k with 1 < k < m/, the number
Sk =Y .cp(—1)%€*. Here, m' is a positive integer with m’ < m —1
whose value is selected to minimize the computation time. (We use
m' =4.)
Description.
Step 0. Initialize.
Set E={0,...,d},no=[(d+1)/2] —2™", ny = [(d+1)/2] — 2™,
and B = 2?201(21')’”1. The quantity ng is the number of even integers



Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.
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we must eliminate from E in order to create a candidate Newman poly-
nomial and n; is the number of odd integers.

Select odd residue classes.
For each tuple (r1,r3,r5,77) in Table 1 for the given m, do Step 2.

Remove combinations of odd integers from E.

We enumerate all sets T of positive odd integers with |T'| = n; and
max(T) < d—1suchthat [{e€ E\T :e =14 mod 8} =r; mod4forie
{1,3,5,7}. We use a backtracking strategy with four levels to accomplish
this. Each level handles a different congruence class mod 8, and has two
main parts. An outer loop runs through the different possible sizes of
sets of integers to select from this class for T so that the corresponding
congruence condition is satisfied. An inner loop uses the revolving door
algorithm [12] to enumerate all subsets from the congruence class of the
desired size. Under this algorithm, each subset constructed differs from
the previous one in a minimal way: One element is inserted and another
is deleted. This allows us to update E, f(z), and the Sy quickly each
time we alter T'.

For each combination of odd integers T' removed from FE, perform Step 3.

Test impasse condition.

If S, < B, then clearly we cannot reduce S’ to zero by eliminating
ng even integers from FE. Thus, if this is the case, return to Step 2;
otherwise continue with Step 4.

Remove combinations of integers congruent to 2 mod 4 from E.

As in Step 2, an outer loop runs through the possible sizes p < ng of
sets of integers congruent to 2 mod 4 to remove from E in order for the
congruence required in part (iv) of Lemma 1 to hold. An inner loop uses
the revolving door algorithm to construct all such subsets of the given
size p. Set ¢ =ng — p.

Test impasse conditions.

We test two necessary conditions. First, we ensure that Sy = 0 mod 4F
for each k, since subsequent changes to E affect only integers divisible
by 4. Our enumeration strategy in fact guarantees this condition for
k =1 and 2, so we test this for 3 < k < m' only. Second, we check if it is
possible to reduce the value of Sy to 0 by eliminating ¢ integers divisible
by 4 from E'\ {d}. We require 2¢(q + 1) < S; < 4tq — 2¢(q — 1), where
t = [(d—1)/4]. If both conditions are satisfied, continue with Step 6;
otherwise, return to Step 4.

Remove combinations of integers congruent to 0 mod 4 from E.

We enumerate all subsets V' of size ¢ from {4,8,...,4t} with sum S;.
Step 5 guarantees that there exists at least one such subset. To this end,
note that if max(V') = 4r then S; — 4r must lie between the sum of the
g —1 smallest and ¢ — 1 largest elements of {4, 8, ...,4r —4}. This yields
S1/q+2(g—1) < 4r < S1 —2¢(¢—1). We therefore obtain the following
recursive algorithm: If ¢ = 1 return {5} }; otherwise, for each r satisfying
the inequalities above, adjoin 4r to each subset of {4, 8, ... ,4r—4} having
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cardinality ¢ — 1 and sum S; — 47. We update E, f(z), and the Sy each
time an r is selected, and invoke Step 7 on each polynomial constructed.

Step 7. Test f(x).
If S, =0 for 2 <k <m'and f*)(—1) =0 for m' +1 < k < m —1, then
print f(z).

2.3. Results. We implement this algorithm in C++ and use it to determine the
value of d(m) for m = 5 and m = 6. We find that the greedy construction is
optimal for m = 5, although it is not unique. Another solution is given by the pure
product [1,5,7,9,19], and a third is the pure product [1,3,5,7,11] multiplied by
the noncyclotomic polynomial
hs(z) =2 + 22 -2 —2% 4+ 2% — 2" + 25 —2® — 2% + 22 + 1.

The program requires about 0.2 seconds on a Sun UltraSPARC to complete this
search, invoking Step 7 on 1578 polynomials.

We find that the greedy construction is not optimal for m = 6. The optimal
Newman polynomial is unique and has degree 76, while deg(gs) = 84. The optimal

polynomial is the pure product [1,3,5,7,13,17] multiplied by the noncyclotomic
polynomial

he(z) = 230 _ g2T 4 p26 225 4 024 023 L 022 21 4 9,20
— 19 4 18 917 4 216 _ 15 4 214 913 | 12
—aM 4ot TS — St — 2 41

The program requires about 4.5 hours to determine this, invoking Step 7 on about
936 million polynomials.
We summarize our results in Table 2.

TABLE 2. Optimal Newman polynomials.

m d(m) deg(gm,) Optimal polynomials

1 1 [

2 4 1,3

3 9 [1,3,5]

4 20 20 [1,3,5,11]

5 41 41 [1,3,5,11,21]
[1,5,7,9,19]
[1,3,5,7,11] - hs()

6 76 84  [1,3,5,7,13,17] - he(z)

We obtain an improved upper bound on d(m) for m > 7 by analyzing the
polynomials in this table. Let {aq,...,as} denote the sequence of exponents in the
pure product [1,5,7,9,19]. Because this polynomial has no x2, 2%, or z* term, it
is easy to see that we can extend this sequence so that for any m the polynomial
[a1,...,am] € N and has an m-fold zero at —1. We set

k—1
(11) a =1 + Zai
i=1
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for £k > 6, where 1, = —3 if k is odd and r;, = —4 if k is even. Equivalently,
ar = ag—1 + 2ax—» for k > 6, and we calculate
- 7 7 (=)™
d < ==.2M4 - —
(m) <3 ax=5-2"+5- "
k=1
form > 7.

Our solution for m = 6 yields a slightly better upper bound. Because this
polynomial has no z? or z® term, we may extend the sequence {b;} of exponents
appearing in the pure product by defining

k-1
bk=7“k+2bi
i=1
for k > 6, where rp = —3 if k is odd and 2 if k is even. We find
d(m) < deg(he) + > be = L-2m 4 24 3 (Cqym
< deglfe k—6 275

k=1
for m > 7. In the next section, we obtain substantially better bounds on d(m) by
studying e(m).

3. SUM-DISTINCT SETS OF ODD INTEGERS

We develop an algorithm to determine sum-distinct sets of positive odd integers
with minimal sum. Our results allow us to derive an improved bound on d(m).
Before describing our algorithm, we first investigate a property that often arises in
the study of sum-distinct sets.

3.1. Pseudo-sum-distinct sets. A set S is pseudo-sum-distinct if nonempty, dis-
joint subsets of S having the same cardinality have distinct sums. Unlike sum-
distinct sets, pseudo-sum-distinct sets are translation invariant, so when we define
a quantity p(m) for these sets analogous to our definition of w(m) for sum-distinct
sets, we fix the minimal element of the sets involved at 0:

p(m) = min {max(S) : S C Z, |S| = m, min(S) = 0, and S is pseudo-sum-distinct} .

The values of p(m) give us information on minimal gaps between elements in
sum-distinct sets.

Lemma 2. Suppose {e1,...,en} is sum-distinct and e; < --- < en,. Then for
each i and j with 1 <i < j <m, we havee; —e; > p(j —i+1).

Proof. The set {e;,...,e;} is sum-distinct, so the set {0,e;41 — €;,...,€; — €;} is
pseudo-sum-distinct, hence e; —e; > p(j — i + 1). O

Some lower bounds for p(m) are known. A simple combinatorial argument that
considers subsets of size |m/2] yields

(mj2)) =1,
p(m) > “mjz]

Elkies [7] uses an analytic method to obtain a bound that is asymptotically v/2m /7
times better,

2m+3
> — — 1.
p(m) = (2m + 1)x?
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We derive an upper bound for p(m) in terms of the Conway-Guy sequence (6).
We first require a few facts from Guy [8] about this sequence.

Lemma 3. Let {u} denote the Conway-Guy sequence.
(4) {ur} is strictly increasing.

(i) Forn > 1, upy1 > Up + Up_1.

(i#i) Forn>1, Y0 0 ug < 2up.

Proof. For (i), since u1 > ug and w41 — up = up — u,, (Vamy» the result follows
by induction. For (ii), we first verify the inequality for n = 1 and 2. Suppose
that n > 3 and v, > up_1 + un—_s. Then u,_o > Up_(/3m) by (i), SO Upy1 =
2up —u,, (amy 2 2Up — Up—2 > Up + Up—1. The inequality (iii) clearly holds for
n =1 and 2. Suppose that n > 2 and ZZ;S ug, < 2uy,. Then, using (i) and (ii), we
have > ) up < 2up+Un = Upt1 FUp_(yomy Hn < UntptFUn-1+Un < 2Untr. O

We remark that Guy in fact proves a stronger version of this last inequality,
showing that ZZ;& ug < Up + Up—3 for n > 5.

We say that a sequence is pseudo-sum-distinct if any finite collection of its terms
has this property. The result of Bohman [1] shows that the Conway-Guy sequence
is pseudo-sum-distinct, and we use this fact to derive an upper bound on p(m).

Lemma 4. Let {u} denote the Conway-Guy sequence. Then p(m) < 3u,_3 + 1.

Proof. Let P = {3uo,...,3u,} U {3u, — 1,3u, + 1}, and suppose A and B are
nonempty, disjoint subsets of P with the same cardinality and sum. Certainly
{3un — 1,3u, + 1} C AU B by Bohman’s result, and further by considering the
sums modulo 3 both 3u,, —1 and 3u,,+1 must be in the same set, say A. If 3u,, ¢ B,
then using part (iii) of Lemma 3, we have >~ B < 3 ZZ;I up < 6u, <A, acon-
tradiction. If 3u,, € B, then the hypothesis that A = {3ay,...,3a,,3u,—1,3u,+1}
and B = {3b1,...,3br41,3u,} have equal sums implies that {a1,...,a,,un} and
{b1,...,br41} have equal sums, again a contradiction. O

Maltby [11] employs a similar construction in the study of sum-distinct sets.
We next develop an algorithm to compute the exact value of p(m).

Algorithm 2. Optimal pseudo-sum-distinct sets.

Input. Positive integers m and B, and the values of p(k) for k < m.
Output. All pseudo-sum-distinct sets U with |U| = m, min(U) = 0, and
max(U) = B.

Invariants. U is pseudo-sum-distinct, and for each k with 1 < k < |[m/2], the set
Ty ={>A: ACU and |A| =k}.
Description.
Step 0. Set U = {0,B}, Ty = {0,B}, T, = {B},and T}, = {} for 3 < k < |m/2].

Step 1. If |U| = m then print U. Otherwise, let e = max(U \ {B}). For each ¢
satisfying max(e + 1,p(|U|)) <t < B —p(m — |U| + 1), perform Step 2.

Step 2. Test if U U {t} is pseudo-sum-distinct: For each k with 1 < k < |[m/2],
and for each u € Ty, test if u +t € Tkyq. If all tests are negative,
continue with Step 3.
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Step 3. Add t to U, and for each k from |m /2] —1 down to 1, then each u € T,
insert w + t into Tk41. Perform Step 1. Remove ¢ from U, and for each
k from 1 to |[m/2| — 1, then each u € T}, remove u + t from Tj41.

Proof. Suppose |U| = k in Step 1. The lower bound on ¢ in this step arises from
choosing ¢ = 1 then ¢ = k — 1 together with j = k in Lemma 2; the upper bound
from i =k and j = m. O

Implementation. The set U is implemented efficiently using a sorted array. Since
we require fast insertions, searches, and removals on the sets T}, we implement
these sets using randomized binary search trees [14] so that all operations run in
expected O(logn) time.

Results. We use Algorithm 2 to determine the value of p(m) for m < 10 and find
that in fact p(m) = 3u,,_3+1 in this range. In most cases, there are exactly two ex-
tremal sets: The set P constructed in Lemma 4, and its complement —P + max(P).
For example, for m = 7 we apply the construction of the lemma to {0,1,2,4,7} to
obtain {0, 3,6,12, 20, 21,22}, its complement is {0,1,2,10,16,19,22}. Additional
pairs appear for m = 6 by applying the same construction to {0,2, 3,4} and for
m = 8 by starting with {0,1,2,7,10,13}.

We remark that we do not expect equality in Lemma 4 for larger m. Certainly
any pseudo-sum-distinct sequence satisfying (iii) of Lemma 3 may be used in the
construction of Lemma 4, and particular sequences may be used to improve this
bound. For example, the sequences w! and w? recorded by Lunnon [10, p. 312]
have the required properties, and using w! improves our bound on p(m) for m > 15;
using w? improves it further for m > 16.

3.2. Sum-distinct sets. We now describe an algorithm for computing e(m).
Algorithm 3. Sum-distinct sets of odd integers with minimal sum.

Input. Positive integers m and B, and the values of p(k) for & < m.
Output. All sum-distinct sets U of positive odd integers with >~ U < B.
Invariants. U = {e1,...,ex} is sum-distinct, e; < --- < e, f(z) = Hf’zl(xei +1)
is a Newman polynomial.
Description.
Step 0. For each e satisfying 1 < e; < (B —2%_7", p(i))/m, set U = {e1} and
f(z) =z + 1, and perform Step 1.

Step 1. If [U| = m then print U. Otherwise, let k = |U|, and for each odd ¢
satisfying

B-YU-221""p(i)

2 2p(k+1)} <t <
max{ey, +2,e1 +2p(k + 1)} <t < p—

y

perform Step 2.

Step 2. If (2t + 1) f(z) is a Newman polynomial, set ex,; = t, admit ex1 to U,
and multiply f(z) by z¢+1 + 1. Perform Step 1, then remove e, from
U and divide f(z) by ¢ + 1.

Proof. For the lower bound in Step 1, if S = {e;, ..., ek, t} is a sum-distinct set of
odd integers, then %(S — ;) is a pseudo-sum-distinct set of integers with minimal
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element zero, and consequently ¢t — e; > 2p(k — i + 2). For efficiency we select only
i =1 and i = k when computing the lower bound.

For the upper bound in Steps 0 and 1, suppose that |U| = k, so that the elements
€k+1, --- , &m are not yet chosen. By the previous argument, we have e; — ef41 >
2p(i — k) for ¢ > k, and so

m—k m
(m —k)ept1 + 2 Zp(i) < Z €i SB—ZU-
i=1 i=k+1

O

Implementation. We represent f(z) as a bit vector so that we can operate on blocks
of coefficients in a single step. This is particularly useful on a computer with a 64
bit word size. To test if (z* +1) f(z) is a Newman polynomial, we use bitwise “and”
to test each block of coefficients against the bits ¢ positions higher. The product is
a Newman polynomial if each result is zero. Multiplication is similar, only we use
bitwise “or” to set the new terms of f(x), and we must take care to work from the
high bits to the low bits to prevent newly set bits from propagating into successive
blocks. For division, we use bitwise “xor” to clear bits, working from low bits to
high. We may operate on blocks provided ¢ is greater than the block size, and C++
allows one to address blocks of different sizes in a bit vector (often 8, 16, 32, and
sometimes 64 bits), so only in the rare case when ¢ < 8 must we operate on single
bits.

Results. We use Algorithm 3 to determine e(m) for m < 11. The results of Algo-
rithm 2 provide the required values of p(m) for m < 10; for m = 11, we use the
lower bound p(11) > p(10) + 1 = 134. The optimal sets for each m are recorded in
Table 3.

TABLE 3. Sum-distinct sets of odd integers with minimal sum.

m e(m) Optimal sets
1 {1}

2 {1,3}

3 9 {1,3,5}
4

5

20 {1,3,5,11}

41 {1,3,5,11,21}
{1,5,7,9,19}

78  {1,5,7,9,19,37}
153 {1,5,7,9,19,37,75}
302 {1,5,7,9,19,37,75,149}

601 {1,5,7,9,19,37,75,149,299}
{3,7,11,19, 25, 31,69, 149, 287}

10 1180 {3,5,11,17,27,37,71,145,287,577}
11 2313 {1,9,11,13,35,53,71,141, 283,565, 1131}

© Co 9 O

We find that the sequence {ay} discussed in Section 2 is optimal for 5 <m <9,
but not for m = 10 and 11. We determine improved upper bounds on d(m) by
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analyzing these and other sequences detected by Algorithm 3. As in (11), each
sequence {er} may be extended using a recurrence relation of the form

k—1
e =71+ E €;
i=1

where the value of r; depends only on the parity of k, so we obtain again the
Jacobsthal recurrence e, = e_1 + 2e;_o for sufficiently large k. Thus, for each
sequence {er} we may compute c so that deg([es,...,en]) ~c-2™.

We compute this constant ¢ for several sequences found by Algorithm 3, including
all of the sequences in Table 3. These values are listed in Table 4.

TABLE 4. Asymptotic growth associated with sum-distinct sequences.

C €1,€2,€3,...
4/3  1,3,...

7/6  1,5,7,9,19,...
109/96 3,7,11,19,25,31,69,149, ...

9/8  3,5,11,17,27,37,71, ..
9,11,13,31,43,49, 75,141, ..

107/96 3,5,7,11,17,73,107,141,287,..

53/48  1,9,11,13,35,53,71,141, ...
7,11,15,37,39, 53,67, 145, . .

211/192 1,23,39,43,45,47,55,133,289, ...
421/384 11,27,31,35,43,75,97, 119,269,573, . .
35/32  1,9,13,17,35,67,69,147, . ..
3,5,11,17,27,71,105,139, 281, . ..
103/96 1,13,15,17,43,69,103,137,275,. ..
11,13,15,37, 59, 73,103,133, 279, ..

Among all sequences detected by our method, the first sequence with ¢ = 103/96
in Table 4 produces the best polynomials for m > 12. Using this sequence we find
that

103 247 (-1)™

(12) d(m) < e(m) < 5= 2"+ = -

for m > 12.
We conjecture that for any € > 0 we have d(m) < (1 +¢€) - 2™ for sufficiently
large m.

4. SUM-DISTINCT SETS WITH MINIMAL LARGEST ELEMENT

While it is straightforward to amend Algorithm 3 to compute sum-distinct sets
with minimal largest element, we find that an algorithm incorporating some of
the techniques of Lunnon [10] is significantly faster for computing w(m). Like the
previous algorithm, the following method uses p(m) to determine bounds on the
elements ey, selected. Unlike Algorithm 3, it selects the elements in descending
order, and replaces the Newman polynomial f(z) with another generating function
that allows us to select successive elements more quickly.
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Algorithm 4. Sum-distinct sets with minimal largest element.

Input. Positive integers m and B, and the values of p(k) for k < m.
Output. All sum-distinct sets U of positive integers with max(U) < B.
Invariants. U = {ey,...,er} is sum-distinct and e; > --- > ey.
Description.

Step 0. For each ¢ from B down to p(m) + 1, set e; =t, U = {e1 }, and fi(z) =
1+ + 7.

Step 1. Let k = |U|. If Kk = m then print {e1,...,en}. Otherwise, for each ¢
from min{ey — 1,e; — p(k + 1)} down to 1+ p(m — k) for which 2* does
not appear in fi(z), set eg+1 = ¢, admit exy; to U, and set fri1(z) =
(1+ 2t + 7% fr(z). Perform Step 1, then remove ej41 from U.

Proof. If {ey,...,en} is sum-distinct, then e; — eg1 > p(k + 1) and efy1 — ey >
p(m — k). Combining these facts with e,, > 1 yields the bounds on ¢ in Steps 0
and 1. Also, the term z! appears in f(z) if and only if there exist disjoint subsets
A and B of U = {ey,...,ex} such that > A — > B = t, so z* does not appear in
fr(z) if and only if U U {¢t} is sum-distinct. O

Implementation. We describe some features of our implementation, some of which
are also employed by Lunnon. First, it is convenient to represent each f(x) as a
product of terms of the form 1 + z% + z?¢ so that bits are shifted in only one
direction when multiplying. Second, we use 0 to represent a coefficient that is
present in each fi(z) and 1 to indicate a coefficient that is absent. This simplifies
the code used to search for a valid ¢ in Step 1. We find it is efficient to check
blocks of 16 coefficients at once in this search, and whenever a block having at
least one set bit is detected, we first split the block into two 8-bit halves to narrow
the search before checking bit by bit. Third, we often do not have to compute the
entire polynomial fy(z) in Step 1. Rather, we need only compute those bits which
are significant for the selection of the e; for ¢ > k. Since e; < e; — p(i) for each
i, this greatly reduces the effort needed to compute fi(z) for larger k, where the
algorithm spends most of its time.
Our implementation requires about 300 lines of source code in C++.

Results. We use Algorithm 4 to compute w(m) for m < 9, extending Lunnon’s
computations by one step. The computations for m < 8 require about two minutes
using a Silicon Graphics computer with a MIPS R10000 processor; the case m =9
requires almost 20 hours. We find that w(m) = u,, for m < 9, and that the set
Uy constructed from the Conway-Guy sequence is the unique optimal solution for
m = 9. The optimal sets for m < 9 are listed in Table 5, where the set U,, appears
first for each m.
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