Advances in Computational Mathematics (2005) 22: 249-273 © Springer 2005

Explicit construction of general multivariate Padé
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Properties of Padé approximants to the Gauss hypergeometric function » Fy (a, b; c; z) have
been studied in several papers and some of these properties have been generalized to several
variables in [6]. In this paper we derive explicit formulae for the general multivariate Padé
approximants to the Appell function Fi(a, 1, 1;a + 1;x,y) = ?}:O(axiyj/(i +j+a)),
where a is a positive integer. In particular, we prove that the denominator of the constructed
approximant of partial degree n in x and y is given by ¢g(x, y) = (—1)" (m+:l'+a)F1 (—m —
a,—n, —n; —m—n—a; x, y), where the integer m, which defines the degree of the numerator,
satisfies m > n 4+ 1 and m + a > 2n. This formula generalizes the univariate explicit form
for the Padé denominator of , F (a, 1; ¢; z), which holds for ¢ > a > 0 and only in half of
the Padé table. From the explicit formulae for the general multivariate Padé approximants, we
can deduce the normality of a particular multivariate Padé table.

Keywords: Padé approximant, hypergeometric function, multivariate

AMS subject classification: 41A63, 41A21

1. Introduction

The study of generalized hypergeometric functions of several variables has been
extensive, due to their frequent occurrence in the solutions of statistical and physical
problems. In this paper we focus on the first Appell function Fy(a, b, b’; c; x, y) as
given below.

* Research supported in part by NSERC of Canada.
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For any positive integer i, let

aa+D@+2)---(a+i—-1, i>1, (1.1)

1
@i =1, i=0.

Then the Gauss or ordinary hypergeometric function is given by

(a)i (b)i
(c);i!
where the parameters a, b, ¢ and z may be real or complex. The natural generalizations

of the Gauss hypergeometric function to two variables are the following four functions,
each called Appell function (see [12] for more details):

oo

2Fi(a,biciz) =y
i=0

z, (1.2)

/ 2\ (@)t (B)i(b) xy
Fl(a,b,b;c;x,y)zz +J ': ¥,
— (©)igjil]!
l’]
-~ i+j b i b/ xiy/
Fy(a,b,b';c,c';x,y)= Z (@)i4( )/( ?13'5 .
=0 (0)i(c);ilj!
= i N i b); iyJ
Fy(a,d.b.bicix,y)=Y (a)i(a");( )-(' ")]x Y,
i, j=0 (C)i+jl.J.
’ = (Cl)[+j (b)i+jxiyj
Fyla,b;c,c';x,y)= T
iJz::O (©)i(c) il !

All four Appell functions reduce to the Gauss function if one of the variables is
equal to zero.

Properties of Padé approximants to the Gauss function ;F(a, 1; c¢; z), where
¢ > a > 0, have been given in several papers [8,11,13,15]. Among these we find the fol-
lowing explicit formula for the Padé denominator. Let us denote the Padé approximant
of degree m in the numerator and » in the denominator by p(z)/q(z). Then if ¢ is not a
negative integer and if n < m + 1, the denominator of the Padé approximant is given by

q(z) =Fi(—a—m,—n;,—c—m—n+1;2).

Also, the table of Padé approximants to the Gauss function , F(a, 1; ¢; z), where
¢ > a > 0, has been proven to be normal, meaning that every Padé approximant occurs
only once in the entire table.

In this paper, our goal is to find explicit formulae for some general multivariate
Padé approximants to the Appell function Fy whenb =b' = landc = a + 1, i.e. to
the Appell function

ax'y’

o0
Fia,1,;a+1;x,y) = Z m

i,j=0

(1.3)
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To this end we first explicitly construct the general multivariate Padé approximants to
the g analogue of Fi(a, 1, 1;a + 1; x, y), namely

— (¢ — Dx'yl
Ly(x,y):= Z Wiﬂ_l,
i,j=0
where |g| > 1, |x]|, |y| < |q|, and @ > 1 is an integer, by using the residue theorem and
the functional equation method (see [2,16—18] for more applications of this method).
Then, under suitable conditions, we find the limit of the Padé approximant to L, (x, y)
when ¢ approaches one, which equals the general multivariate Padé approximant to the
Appell function Fi(a, 1, 1;a + 1; x, y). When considering the table of general multi-
variate Padé approximants that can be constructed using this procedure, we can prove
that this table is normal.

Let

F(x,y):= Z cijxiyj, cij € C, (1.4)
(i,j)eN?

be a formal power series, and let M, N, E be index sets in N x N =: N?. An (M, N)
general multivariate Padé approximant to F(x, y) on the lattice E is a rational function

[M/N)p . y) = o) (15)
O(x,y)
where the polynomials
P(x,y):= Y ayx'y/, a;eC,
(. ))eM o
Q(x,y):= Y byx'y/, byeC,
(i, ))eN
are such that
(FQ—P)(x,y)= Y. dyx'y/, djeC, (1.6)
(i, )EN\E
with
MCE, 1.7)
#(E\M) > #N — 1 (1.8)
and E satisfies the inclusion property
@,j)eE,0<k<i,0<I<j = (k,DekE. (1.9)

Equation (1.6) translates to the linear system of equations

dij=0, (,j)€E. (1.10)
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Using condition (1.7), we can split the system of equations (1.10) in an inhomogeneous
linear system defining the numerator coefficients a;;,

i

J
DO ewbipjv=aij,  G.)) €M, (1.11)

n=0 v=0
and a homogeneous linear system defining the denominator coefficients b;;,

i
DY b =0, (i, j)€E\M, (1.12)

n=0 v=0

where by, = O for (k,l) ¢ N. Condition (1.9) takes care of the Padé approximation
property, provided Q(0, 0) # 0, namely

P .
(F—§>(x,y)= Z e;jx'y’, ejeC.

(i./)eN?\E

It is clear that a nontrivial general multivariate Padé approximant always exists if the
equal sign applies in condition (1.8), and that it will be unique up to a constant factor
in the numerator and denominator if the coefficient matrix of the linear system (1.12)
has maximal rank #N — 1. If the rank of the coefficient matrix of (1.12) is less than the
maximal rank, then multiple solutions of Q(x, y) and P(x, y) exist and we refer to [1]
for a detailed discussion of this situation. For all definitions covered by the general
definition given here, one cannot guarantee the existence of a unique irreducible form if
multiple solutions of (1.12) exist. One may find more properties of general multivariate
Padé approximants in [3,4,7].

For the sequel we need the standard g-analogues of factorials and binomial coeffi-
cients. The g-factorial is defined by

. _d=gHd=g"H---(1-¢q)
[n]y! = [n]! = d—q )

where [0],! := 1. The g-binomial coefficient is given by

[n] :=|:ni|:=¢, 0<k<n.
k g k [k]!- [n — k]!

Note that for all 0 < k < n,

= mn=1)/2p,7) n _ ,—k—k)| T
[n],-11=g¢q [n]!, L‘L-] q [k]

n

1_[ (qfk _ qfh) — (_1)k+nq7k(k71)/27n(n+l)/2[n _ k]‘ [k]' (1 _ q)n’
h=0, h#k
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and for |t| < ¢~ (see [9]),

> [n+1
= (= 1)"Tlg 2 [ }tl. (1.13)
]_[k=0(t - q_k) ; l

We also need the Cauchy binomial theorem

n n

Z |:Z:|qk(k+l)/2xk _ 1—[(1 + qu)_ (1.14)

k=0 k=1

2. Padé approximants to the ¢ analogue of the Appell
function Fi(a,1,1;a+ 1;x, y)

In this section, we explicitly construct some general Padé approximants to the ¢
analogue of the Appell function Fi(a, 1, 1; a+1; x, y) by using the residue theorem and
the functional equation method. The functional equation and the appropriate integral
we construct, play a crucial role in finding the explicit formulae for the multivariate
Padé approximants for this function. The functional equation used here is simple but the
integral is relatively more complicated. We also prove that the rational approximants we
obtain are irreducible.

Let |g| > 1, |x|, |¥] < |gq|, and let a > 1 be integer, and let

o]

(¢“ — Dx'y’
L(x,y):=Ly(x,y) = Z Tgitita _1 (2.1
ij—0 4
As
gt 1= =D +q 1),
we find
2, axiyl
Iim L(x, y) = —— =Fi(a,1,1;a+1;x,y).
lim LGey) = ), = = Al y)

i,j=0

Hence we call L(x, y), as defined above, the ¢ analogue of the Appell function
Fi(a,1,1;a+ 1; x, y). Since for k > 0 integer, and |x|, |y| < |q],

o a _ —(+Jj) i~ J
IR (¢* — Dq x'y
L) = 3 LoD
= q
i,j=0
B o0 (qa - 1)(1 _ qi+j+a +qi+*/+“)xiy-/
- qi+j(qi+j+a -1

i,j=0
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Zq(q — Dx'y/

i+j+a _ 1

i,j=0

=q“L(x,y) —

(g“ —

@Y

i,j=0

)

then the functional equation we need is given by

L(g™*x,q7*y)=L(¢q""

where

and

Theorem 2.1. Let L(x, y) and Si(x, y) be defined by (2.1) and (2.3), and let

Letm,n e N,m >

Let

— gka —
=q""L(x.y) ;(1_

=q"L(x,y) — Si(x, y),

k
Si(x,y) ==Y
J

n—1
R,(x,y):= l—[((l — qjx)(l — qjy)).
j=0
n+12>1,and
We={G, j): 0<i,j, 0<i+j<m},
N:={G, j): 0<i, j<n},
M:=NUW,
E::{(i,j): 0<i+j<m+n, 1,]20}
1 )= i R,(tx,ty)L(tx,ty)
Y 2 Jr I i, — g~

—k+1
q

k

(1—g ') —g'y)’

X, q—lq—k+ly)

:qaL(q—k+1x’q—k+1y) _

xty/l

qi+j

(¢° =1

(I —g* )1 —g*y)

(¢* = Dg* ="

(q“

_ l)q(k—j)a

So(x, y) :=0.

— (1 —q )1 —q7y)

g x)(1 —q~Jy)

(2.2)

(2.3)

(2.4)

2.5)
2.6)
Q2.7)
2.8)

(2.9)
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where I is a circular contour containing 0, ¢°, ¢~', ..., g™, and let
( l)n n(n+1)/2 1
O(x,y) == Z( [ ] HEHDRHOFOR, (¢ x, ¢ y)  (2.10)
=
and
(—1)"g" 2 & k[”] k(k+1)/24k -k, —k
P(x,y)i=———— » (=D*| gV R, (g7 x, 7 y) Si(x, y)
(1= q)[n]! ,; k ( )
1 d™ (R, (tx,ty)F(tx,t
___{ (26 y) (xk y)} 2.11)
m! dim [Ticot—a7%  J,
Then: (1)
I(x,y) =L(x,y)Qx,y) = P(x, y);
(i)
Q(x,y)= Y byx'y/, b;eC, (2.12)
G, j)eN
P(x,y)= Z a;x'y’, a;eC. (2.13)
(. )eM
More precisely,
(_l)nqn(n+1)/2
O, y)=——"—"—
(1 —¢q)"[n]!
)i+ gii=D/2+i(i=D/2 1 — ghrmra=i=iy ) [ iy ’
X.Z{()q []1-4 ) L1
i,j=0 k=1
(2.14)
(—1)"g" D2 & k7] ke - -
P , — _1 (+1)/2+kan k , k S ,
C ) =~ ;;( 1l (¢7"x.q7"y)Si(x. y)
+ (—l)n (qa _ 1)qn(n+l)/2
y Z (_1)k+1xi+kyj+l n n n+h qk(k—l)/2+l(l—l)/2.
o (gitite—1) |k]|! h ’
i+j+h+l+k=m
0<ijh<m 0<kI<n
(2.15)
(iii)
I,y)= > diyx'y/, djeC, (2.16)

(i, )eENI\E
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with
0(0,0) #0;
(iv)
M CE and #(E\M) >#N — 1.

Hence an (M, N) general multivariate Padé approximant to L(x, y) on the lattice E is
given by
P(x,y)

M/N =
[M/N]g(x,y) = 0y

Proof. (i) We can see that the integrand in (2.9) has simple poles at t = 1,4°, ¢!,

..,q7 ", and a pole of order m 4 1 at t = 0, all inside the contour I'. By the residue
theorem, the functional equation (2.2) and (1.13), (1.14), we have

B 1 R,(tx,ty)L(tx,ty)
I(x,y)= T /thﬂ Hk —q %) dr
‘ZR g g * LG gy 1 d” {Rnax,ty)L(rx,ry)}
1_[/1 o(q_k _ q—h)) —k(m+1) m! dgm HZ:OU _ qfk) o

_ (_l)nqn(n+1)/2 n

k(k+1)/2+km —k —k
T =gyl Z} I)H Rala™xa™)

1 d" | R, (tx,ty)L(tx,ty)
kar (x, S +——{ 7 }
x (" L(x, y) — Si(x, y)) Tt—a |,

1 dem
= Q(-x’ )’)L(X» )’) - P(-x’ )’)

(ii) It is easy to see from the definition of Q(x, y) and R, (x, y) that (2.12) holds.
Now from the Cauchy binomial theorem (1.15), we have

n—1
R,(tx,ty) = 1_[((1 — qjtx)(l — qjty))

J=0

=[1((1=d’q"1x) (1 — q’q"1y))
j=1
_ (i(_l)i |:n:|qi(i+l)/2—itixi> Xn:(_l)j |:”:|qj(j+1)/2—jtjyj
' i : J
i=0 Jj=0
_ Z( 1)z+]|: ]|: i| ii—=D/2+j(j—-1D/2 lyjtiﬂ" 2.17)

i,j=0
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and then

Rn(q_kx,q_ y Z( 1)l+/|: ]|: :| i(i—1)/24+j(j—1)/2—k(@i+)) ly

i,j=0

Putting this into (2.10), we have, by using (1.15) again,

(_l)nqn(n+l)/2 n
(- gy &

x Z( 1)z+j|: j||: ] ii—1)/24j(G-1/2— k(z+])x1y

Ox,y)= (— 1) [ ] k(k+1)/2+k(m+a)

i,j=0

_1\n nn+1)/2 1
_ D" Z (_l)m[’q[ }qm D/2+jG=D/2 iy
(I —qrinl 4= i]Lj
i,j=

n n iy
% Z(_l)k [k]qk(k+1)/2+k(m+a J)}

k=0

D" I (T bemanie) Hm
— —1itJ 1 — +m+a—i—j
(1= q)[n]! ,-,,2( ) ,E( K L

xq’(’ D/2+j(— 1)/2xly

This proves (2.14). Now for 0 < k < n,

n—1
Ri(qg*x.q7*y)=]](1 — ¢/ *x)(1 —¢'y)

j=0
= [0 -q7x)(1 —q77y) (1—g’x)(1=q’y) |,
j=1 j=0
which implies that

n—k—1
Ru(q™ %, q7*y)Scx, )= (¢ = 1) | ] (1 =4’x)(1 —¢’y)

j=0
k k
x o q" M TT (1=a7x)(1=q77y).
h=1 j=1,j#h
and hence
R,l(q_kx, q_ky)Sk(x’ y) = Z S,'jxiyj, sij € C. (2.18)

(i,j)eN



258 P.B. Borwein et al. / Padé approximants

Also
00 L
(qa_l)xtyjtl—H
L(tx,ty):ijzzo T (2.19)

Then from (1.14), (2.17) and (2.19), for |¢] < g~",

R, (tx,ty)L(tx,ty) SR n[n[n+h
- = (=1 n+1_n(n+1)/2 { -1 k+l|: ] |: i| |: ]
o —qh D 2 2 4L

i, 7,h=0k,i=0
5 qk(k—l)/2+l(l—1)/2 (qa _ 1)xl+ky]+ltz+]+h+k+l
(qi+j+a —)
So
1 4 { R, (tx,ty)L(tx, ty) }
mtdim | [Tisot—a7  Jio
(_])k+lxi+ky,/+l
— (_1)n+1 qa -1 qn(n+1)/2 { a
( ) i+j+h2+1:+km (gt —=1)
0<i jh, 0< ki< n
nl|[n][n+nh _ _
3
and hence

S mxyl, mpec. @2

@, )ew

1 dm {R,,(tx,ty)L(rx,ty)} _
m! dt™ szl(f —q") =0

Thus (2.13) follows from (2.18) and (2.21), and (2.15) follows from (2.11) and (2.20).
(iii) From (2.9), (2.17) and (2.19),

/ R,(tx,ty)L(tx,ty)
r pmtn+2 HZ:O(I _ 1/(qkt))

1 R, (tx,ty)L(tx,ty) 01\ H
= — dr
27-[1 /l: tm+l’l+2 Z 1_[ qkt

J0s-rjn 20 k=0

— E q—ZZ:okjk % 1 1
2mi Jp | et 2ot i)
j05~~~,jll>o

1
I(Xay)=%

i+kyj+lti+j+k+l

Y et || ka—npria—n2 (@ — Dx
I H I Tk

i,j=0 k,1=0
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e e 1

JOsenes jn=0 i+j+l+k—(m+n+jo+--+jn+2)=-1
0<ij<00, 0K Lk<n
a __ i+k ., j+l
« qk(k—l)/2+l(l—l)/2 (g Dx™"y
(qi+j+a _ 1)

_ =Y ke k| T[T
SR S Al A 1]

it itk =mAntjo+-+jn+1
0<ij<o00, 0K Lk<n
0< jgs---vn

i+k -y, j+
s gK=D/2+11=1)/2 (q" — Dx"ys*
q (qi+j+a -1

So (2.16) holds. Now from (2.10) and (1.15), for |g| > 1,

(_l)nqn(n+1)/2 n L n »

0,0)=—"— — -1 (k+1)/2+k(m+a)
Q0.0 == i 2V e

(_l)nqn(n+l)/2 n

_ ktm+a
=gy L) 20

(iv) M C E is obvious, and

_ (m+ D(m +2)

#W =#{G, j): 0<i+j<m,i, j>0} 5

Forn <m <2n,ie.n+1<m<2n—-1,

m-—n>1, 2n—m > 1,
and
— — 1
AU =N 42 x ”)("21 ntl)
=m+D>+m—-—n)m—-n+1)=m?>+2n>=2mn+m+n+1,
#E:(m+n+l)(m+n—|—2),
2
SO

1
#(E\M):E(m+n+1)(m+n+2)—(m2+2n2—2mn+m+n+l)
3 1, 2+1 +1
= mn 2m 2n 2m 271

1 3 1
=mn — Em(m —n)—+ En(m —n)—+ E(m +n)
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1 1
=mn + E(m —n)(Bn —m) + E(m—l-n)

1 1
2mn+§(n+1)+§(m+n)

1 1
2(n+1)n+5(n+1)+§(2n+1)
>n’+2n=#N — 1.
Form > 2n,we have N C W, and hence M = W and

E\M={G, j): m+1<i+j<m+n, i j>0}

Then
#(E\M):(m+n+1)2(m+n+2) _ (m+1)2(m+2)
_n(2m—|—n+3)
B 2
>M (asm>2n)

2
>n?+2n=#N — 1.

Then forallm >n + 1,
#(E\M) = #N — 1.
Combining (i)—(iv), we have

P(x,y)
Ox,y)

This completes the proof of theorem 2.1. O

[M/Nlg(x,y) =

Theorem 2.2. Let M, N, E and L(x, y), P(x,y), Q(x, y) be defined in theorem 2.1
and let m > n + 1. Then the coefficient matrix of the homogeneous linear system (1.12)

i
Y ewbiujv=0. (. )) € E\M,

n=0 v=0

has rank #N — 1, where by; = O for (k,l) ¢ N.

Proof. From part (iv) of theorem 2.1, #(E\M) > #N — 1, so the number of variables in
the homogeneous linear system is less than or equal to the number of equations. Since we
have obtained a nontrivial solution Q(x, y) in theorem 2.1, the rank r of the coefficient
matrix of the homogeneous linear system (1.12) is at most #N — 1, i.e.

r <#N — 1. (2.22)
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To prove that also r > #N — 1, we consider the following points in the set E\M,

O,m+1) ... Oom+n—-1) (O,m-+n)
a,m A,m+1) ... A,m+n-—1)
2,m Q2m+1) ... (2.23)
(n, m)
and
(m+1,0) (m+2,0) m+3,00 --- m+n—-1,00 (m+n,0)
m+1,1) (m+2,1) m+31 --- (m+n-—1,1)

(mJ'rl,z) (mJ'rZ, 2) (mJ'r?% 2) (2.24)
m+1.n—2) (m+2n—2)
m+1,n—-1)

These n + 2n(n + 1)/2 = n(n +2) = (n + 1)> =1 = #N — 1 points of E\M
represent (#N — 1) homogeneous linear equations of the linear system (1.12). The first
n +n(n 4 1)/2 equations corresponding to the index points given in (2.23) are

co,m+1bo,0 + co.mbo,1 + -+ + Com—n+1b0,n =0,

co,m+2b0,0 + comt1bo1 + -+ + Com—nt2b0.n = 0,
n equations (1st row in (2.23))

€0,m+nb0,0 + comsn—1bo,1 + -+ - + combon = 0;

ctmbo,o + cim—1bo1 4+ -+ 4+ Clm—nbon
+ comb1,0 + com—1b1,1 + - -+ + com—nb1.n =0,
Cr.m+1boo + crmbo1 + -+ clm—n+1bon

n equations
+co,mr1b1,0 + combi1 + - -+ comnt1b1n =0, q

(2nd row in (2.23))

Ctmin—1bo,0 + ¢t min—2bo1 + -+ - + Cim—1bo

+ comtn—-1b1,0 + comin—2b1,1 + -+ com-1b1,, = 0;
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Cn,mbO,O + Cn,mflbO,l +---+ Cn,mfnbO,n
+Cn—1,mbl,0 + Cn—l,m—lbl,l +---+ Cn—l,m—nbl,n 1 equation
+--- 4+ CO,mbn,O + CO,m—lbn,l +---+ CO,m—nbn,n =0

and the following n(n 4 1) /2 equations corresponding to the index points listed in (2.24)
are

Cm+1,000,0 + Cmob10 + -+ + Cn—nt1,0b00 =0,

Cm4+2,000,0 + Cmy1,0b1,0 + -+ - + Cu—n42,0b0,0 = 0,
n equations

Cmtn,000,0 + Cmn—1,0b1,0 + - + Cm,0bn,0 = 0;

Cm+1,100,0 + Cm+41,000,1 + Cm,1b1,0 + € 0b11
+ -+ Cnng1,1b0,0 + C—nt1,000,1 =0,
Cm+2,100,0 + Cm2,0b0,1 + Cmt1,101,0 + Cmy1,0b1,1

F A Cnent2.000 + Cmont2.0b1 =0, Uy _ 1) equations

Cmtn—1,100,0 + Cmin—1,000,1 + Cmn—2,101,0 + Cmn—2,0b1,1
+- o+ Cm-1,1000 + cm—1,0bp,1 = 0;

Cmt1,n—2b0,0 + Cms1,n—3b0,1 + -+ + Cug1,0b0,0—2

+ Cmon—2b10 + Cmn—3b11 + - -+ + Cmob1 -2
+- 4 Cm—n+1,n—2bn,0 + Cm—n+1,n—3bn,l +---+ C)n—n+1,0bn,n—2 = O, .
2 equations
Cmt2,n-2b0,0 + Cg2.n—3b0,1 + - - - + Cmi2,000,n—2

+ Cmt1,n—2b10 + Cng1n—3b1,1 + - -+ Cug1,001 -2

+--- 4+ Cm—n+2,n—2bn,0 + Cm—n+2,n—3bn,1 +---+ cm—n+2,0bn,n—2 == 0;

Cmt1,n—1b0,0 + Cmg1,n—2b0,1 + -+ + Cug1,0b0,n-1
=+ Cm,n—lbl,O =+ Cm,n—Zbl,l + .-+ Cm,Obl,n—l 1 equation.

+--- 4+ Cm—n—i—l,n—lbn,O + Cm—n+l,n—2bn,l +---+ Cm—n—H,Obn,n—l - 0

The coefficient matrix of this subsystem of (1.12) equals

o=[4]
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where A has n 4 n(n + 1)/2 rows and (n + 1)? columns, B has n(n + 1)/2 rows and
(n + 1)? columns, and A and B are respectively given by

Co,m+1 Co,m—n+1
CO,m+n CO,m
Cl,m Cl,m—n Co,m e CO0,m—n
A=
Cl,m+n—1 Cl,m—1 Co,m+n—1 Co,m—1
Cn,m Cnm—n Cn—1,m Cn—1,m—n Co,m CO,m—n_
B:=
Cm+1,0 Cm—n+1,0
Cm+n,0 Cm,0
Cm+1,1 Cm+1,0 Cm—n+1,1 Cm—n+1,0
Cm+n—1,1 Cm+n—1,0 Cm—1,1 Cm—1,0
L Cm+1,n—1  Cm+1,n-2 Cm+1,0 Cm—n+1l,n—1 Cm—n+1,n-2 Cm—n+1,0_|

We observe that the coefficients ¢;; of L(x, y) defined in (2.1), satisfy the property that

fori + j =k + [, then

Cij = Ckl-

Let us now perform some elementary row operations on the matrices A and B. We start
with the last row and subtract the one but last row from the last one, the 4th last from the
2nd last, the Sth last from the 3rd last, ..., then the nth from the 2nth, ..., and finally
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the first from the (n + 1)th. In this way A is transformed to

_CO,m—H coo COm—n+1

CO,m+n . Co,m
Co,m ceo COm—n

Co0,m4n—1 oo Com—1

L Co,m oo Com—n |

We now perform similar row operations on the matrix B, starting with the last row,
subtracting the 2nd last from the last one, the 4th last from the 2nd last, ..., then the nth

from the (2n — 1)th, the (n — 1)th from the (2n — 2)th, ..., and finally the 2nd from the
(n 4+ 1)th. Then B is transformed into

Cm+1,0 e Cm—n+1,0

Cm+n,0 co Cm,0

Cm+1,0 . .- Cm—n+1,0

Cm+n—1,0 v Cm—1,0

L Cm+1,0 cee Cm—n+1,0_

Hence

D — [Dy Dy ... Dypl,
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where each D for j = 1,2,...,n+1, has n(n +2) rows and (n + 1) columns, and the
matrices D; are given by

_CO,m+l e Co,m—n+2  CO,m—n+1 ]
Co,m+n ... CO,m+1 Co,m
0 ... 0 0
D, = 0 0 0 ,
Cm+1,0
Cm+n,0
u Cm+1,0 (U
0 0 0
0 ... 0 0
Co,m oo COm—n+1 CO,m—n
Co,m4n—1 ... Co,m Co,m—1
0 ... 0 0
D2 = I
0 0 0
Cm,0
Cm+n—1,0
Cm,0 0
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Y ... 0 0 7
0 . 0 0
Co,m coo COm—n+1  COm—n
Dn+l = Cm—n+1,0
Cm,0
L Cim—n+1,0 0

By exchanging columns and rows in D, namely moving the (k(n + 1) 4 1)th column to
the (n +k+ 1)th column for k = 2, 3, ..., n, and moving the (n(n+1)/2+n+k)th row
up to the (n + k)throw for k = 1, ..., n, and by pulling the nonzero entries between the
rows together and moving them up, we have transformed D into

_An+l ]
B,
A, (0]
D= : ,
D* B,
A
B,
L Ay
where
Co,m+1 Co,m -oo Com—n+1
A= S :
_CO,m+iz COo,m+n—1 o Co,m nx(n+1)
Co,m—1 oo COm—n
An = ’
_CO,m+n - Com—1 nxn

Al = [CO,mfn]lxl
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and
Cm,0 v Cm—n+1,0
B, := ,
_Cm+n71,0 v Cm,() xn
Cm—1,0 -o+ Cm—n+1,0
anl - s
_Cm+n—3,0 o Cm—1,0 da—yx@m—-1)
-Cm7n+2,0 Cm—n+1,0
Bz = ’
LCm—n+3,0 Cm—n+2,0 %2

Bl = [Cm—n—i-l,O]lxl,

and O contains only zero entries. Observe that all the square matrices A; and B; for
j =1,...,n, are encountered in the computation of Padé approximants to the univariate
function , Fi(a, 1; a + 1; z). Since the Padé table for , F(a, 1; a + 1; z) is normal, these
matrices are all regular (see [8,13] for details) and then the rank of A ; and the rank of B;
are both j. Now write

Ay =[CA™],
where
Co,m+1
C:=
CO,m+n nxl
and
CO,m oo COm—n+1
A* =
C0,m+n—1 .. Co,m

nxn

Since the rank of A* is n, so is the rank of A, ;. Therefore the rank of D is the sum of
the ranks of A; where j = 1,...,n + 1, and B; where j = 1,...,n, i.e. the rank of
D equalsn +2n(n 4+ 1)/2 = n(n +2) = #N — 1. Since D is the coefficient matrix of
a subsystem of the linear system (1.12), we find that the rank of the coefficient matrix
of (1.12)

r > #N — 1.
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Combined with (2.22), we have

r=#N — 1. (2.25)
O

Theorem 2.3. Let M, N, E and L(x, y) be defined in theorem 2.1 and letm > n + 1
and m +a > 2n. Then the (M, N) general multivariate Padé approximant to L(x, y) on
the set £

P(x,y)
O(x,y)

[M/Nlg(x,y) =
is irreducible.

Proof. From part (iii) of theorem 2.1, Q(0, 0) # 0. This implies that a common factor
of P(x, y) and Q(x, y) needs to have a nonzero constant term. Suppose that ¢ (x, y) is a
true common factor, not only a constant, then 7 (x, y) has to contain a nonzero constant
term. From (2.14) and m 4+ a — 2n > 0 we know

(_l)nqn(3n—l)/2 . m—+a—2n
b = =G gy L1 =g 0

k=1
Hence p(x,y) in P(x,y) = p(x,y)t(x,y) and g(x, y) in Q(x,y) = g(x, y)t(x,y)
must be indexed by some index sets strictly smaller than and contained in M and N,
respectively. As t(0, 0) # 0, then 1/¢(x, y) can be expanded around the origin and then

1
t(x,y)

(FQ-P)x,»)= Y eyx'y, e;eC

(i,j)eN2\E

(Fqg — p)(x,y) =

This implies that p(x, y)/q(x, y) is another solution to the (M, N) general multivariate
Padé approximant to L(x, y) on the set E. It is impossible because of theorem 2.2. Then
t(x, y) must be a constant. This completes the proof of theorem 2.3. (]

3. Padé approximants to the Appell function F(a, 1,1;a + 1; x, y)

Now we can obtain the Padé approximant [M/N]g = p(x, y)/q(x,y) to the Ap-
pell function Fi(a, 1, 1; a 4 1; x, y) by taking the limits

lirr} L(x,y)=F(a,1,1;a+1;x,y),
q—>

31311 Q(x,y)=q(x,y),

(}gn] P(x,y)=p(x,y).

This is guaranteed by [5, theorem 3]. It states that the general multivariate Padé operator,
which maps a power series to its general multivariate Padé approximant, is continuous, if
two conditions are satisfied. First of all the system (1.12) must have maximal rank. The
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second condition, in the particular case of the sets M, N and E defined by (2.6), (2.7)
and (2.8), translates to b,, # 0 with b,, defined by (2.12). The former condition was
proved in our theorem 2.2. The latter is satisfied when m + a > 2n as in theorem 2.3:

n

1_[(1 o qk+m+a—2n) + 0.

k=1

(_l)nqn(?mfl)/Z
bnn i —
(I =)' [n]!

Moreover,
lim by, = (—1)" (“ tm ") £0.
qg—1 n

In this section, we derive an explicit formula for the general multivariate Padé approxi-
mants [M/N]g to the Appell function Fi(a, 1, 1; a + 1; x, y) in theorem 3.1, and prove
the normality of the so-called contracted table of multivariate Padé approximants for the
Appell function Fi(a, 1, 1; a + 1; x, y) in theorem 3.2.

Theorem 3.1. Let m and n be integers suchthatm > n+1,m+a > 2nandlet N, M
and E be defined by (2.6), (2.7) and (2.8), respectively. Then the general multivariate
Padé approximants [M /N ]g to the Appell function Fy(a, 1, 1;a+1; x, y), wherea > 1
is an integer, are given by

p(x,y)

M/N]lg = s
[M/N]g 7. y)

where
q(x,y) = (—D"(m +: * a) Fi(—m —a,—n,—n; —m —n —a;x, y) (3.1

and

(=D a (n\(n\ ;ip ik
plx,y)=(=1)" {7 . B e T
0§i+Zh]<n, h] —|—h2+a l ]

0< j+hy<n,
0< i, j,hy,hp <n

() )

(=D axiTkyit (n\ (n\ (m+n—i —j—k—1
-1)" .
e ) iti+a W)\ n

0Li+j+l+k<m
0<i,jh <m0<ki<n

(3.2)
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Proof. From the discussion above and (2.14), we have

q(x,y)=;irr} O(x,y)

gtz 2 iviln (i—1)/24j(j—1)/2
=(—D"lim ——— (=1 '|::||::| A
g—1 (l — q)"[ ]' Z ! J !

> l_[(l _ qk+m+a—i—j)}

k+m+a—i—
=(—=1)" hm Z( 1)’*1['1}[”_]qi<i1)/2+j<jl>/2 i Hk (I—q /)

=0 J [Tz (1 =45
=(=D" hm Z( 1)l+]|: j||: :|q‘(l D/2+jG—1)/2 zy]|:m+n +a—i —J:|
l] =0 J n
1\ . i+.m+n+a—i—j n\ (m\
- i;o( Y ]( n )(i)(j)”
_( l)n Z( 1),+,(m+n+a—z—1)v. n! . n! xjyj

! nlm+a—i—j)! ilm—1)! jln-—j)

x j
= l!]! (m+a)!(m+”+a)!/(m+n+a—i—j)! Y

_ wmtn+a)! "\ (—n);(—n),
=D nl(m +a)! UZ:O ilj!
(=D (m+a)/(m+a—i— j)x'y/
(=D (m+n+a)/im+n+a—i—j)!
_fmtnta\ - Gmien); Gm—a)iy
= ( 1)( i )Z — x'y

0 ilj! (—=m —n—a)y;

_, qwfmtn+ta > (—m—a)i+j(—n)i(—n)jxiyj
>

520 (—m —n —a)4ilj!

:(—1)”(m tn +a>F1(—m —a,—n,—n;—m—n—a;x,y).
n

Here we used the fact that

im 3] =)
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So (3.1) holds. We calculate the limits of the two parts of P(x, y) in (2.15) separately to
prove (3.2). First,

(_l)nqn(n+l)/2i KD 24k ( . k)
tim DTy [ } " Ra(g x4 75) Su(x. y)
=1 (1 =¢q)"[n]! =

n(n+l)/2 n1Mr1n
— (=" i a_q 1l+j+k
Cotlime -0 2 Z{( A mai

0<]+h2 gn
0<irjihyhy <n
xi+h1 Jj+ho
k(k+1)/2+k(m—i—j) (qk” _ q—k(hl+h2))qi(i—1)/2+j(j—1)/2 Y
q111+h2+a -1

. n xl+h1yj+h2
— (—1"1i a _ _1)itJ i(i—=1)/2+j(j—=1)/2
= (=1)" lim (" — 1) ) {( 1) [l][ ]q ET—
a 0<i+hp <n '] q

0<j+hy<n,
0< i, j,hy,hp <n

S e |

— (_l)n Z { (_l)i+ja <n> (n>xi+h1yj+h2
0<i+hy <n, hy+ha +a\i J

0< j+hy<n
0<i,jhy,hy<n

()

xdq

and
. (_1)k+lqk(k—l)/2+l(l—l)/2
hm(_l)n qa_l qn(l’l+])/2 L
e =1 . @D
0<i,jh<m0<kI<n
nl[nlln+h ki
% i Jj+
[k][l][ h }‘ ’
_ 1y Z .(—1)‘k+la n\ (n\(n+h iyt
i+j+h+l+k=m l+‘]+a k l n
0<i,j,h<m 0Lk I<n
—(=1)" Z ﬂ(n) (n) <m+n—i—j _k_l>xi+kyj+l
0i+j+i+k<m i+ j+al\k/\l h
0<ijh<m 0<kI<n
So (3.2) holds and this completes the proof of theorem 3.1. U

Now let us consider the table of Padé approximants [M/N]g for the Appell func-
tion Fi(a, 1, 1; a + 1; x, y) for increasing m > 0 and n > 0. Then we have to define the
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sets M, N and E for all m and n, also when m < n + 1 and we cannot get an explicit
formula for p(x, y) and g(x, y). Let m, n € N, and

We={G, j): 0<i, j, 0<i+j<m) (3.3)
N:={G, j): 0<i, j<n}, (3.4)
M:=(NUW)\{G0),0,i)): m+1<i<n}, (3.5)
ED{G, j): 0<i+j<m+n,i j>0]. (3.6)

Since the index set M is mainly determined by m and N solely depends on n, we can
also denote

[m/n]m—Hz = [M/N]E
Then the Padé table looks like

[0/0lo [0/11:1 [ ]
[1/01: [1/112 [1/2]3 [1/3]4
[2/012 [2/113 [ ]
[3/013 [3/114 [ ]

We know that the univariate Padé table for the Gauss function ,Fi(a, 1;a + 1;z) is
normal, which means that for each m and n the Padé approximant of degree m in
the numerator and n in the denominator occurs only once in the table. It was shown
in [6] that the table of general multivariate Padé approximants for the Appell function
Fi(a,1,1;a + 1; x, y) is highly non-normal if one considers less specific index sets
M, N and E than the ones used in this paper. Compared to the table discussed in [6],
the above table of functions [m/n],,.,(x, y) should actually be called a contracted mul-
tivariate Padé table.

Theorem 3.2. The contracted table of multivariate Padé approximants for the Appell
function Fi(a, 1, 1; a + 1; x, y) is normal.

Proof. The proof heavily relies on the univariate results obtained for Fi(a, 1, 1;a +
1,x,0) = Fi(a, 1;a+1; x). From the definitions for M, N and E it is easy to see that
for each m and n, the projected function [m/n],,,(x, 0) equals the univariate Padé ap-
proximant for ; Fy(a, 1; a+1; x) of degree n in the numerator and m in the denominator.
This is by the construction of the sets M, N and E and not because of the explicit form
for g(x, y) which was only obtained under the conditions m > n + 1 and m + a > 2n.
Then the proof goes by contradiction. Suppose that for some specific integers m, m;
and n1, n, it holds that

[ml/nl]m1+n1(x, y) = [m2/n2]m2+n2(x’ y)
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with m; % m, or ny # n,. Then

[ml/nl]m1+nl (x’ 0) = [m2/n2]m2+n2 (x’ 0)

which contradicts the normality of the Padé table for , F)(a, 1; a + 1; x). O

From theorem 3.2 we can also conclude that in the explicit formula (3.1) for p(x, y)
the coefficients a,,o and ay,, are nonzero. These coefficients are the highest degree co-
efficients in the numerators of degree m of the Padé approximants to the Gauss function
2Fi(a, 1; a 4+ 1; z). This nicely complements the result that the coefficients byy and b,,,
in g(x, y), as given in (3.2), are nonzero, as we already pointed out at the beginning of
this section.
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