MERIT FACTORS OF POLYNOMIALS FORMED BY JACOBI SYMBOLS

PETER BORWEIN AND KWOK-KWONG STEPHEN CHOI

August 1, 1999

ABSTRACT. We give explicit formulas for the L4 norm (or equivalently for the merit factors) of various
sequences of polynomials related to the polynomials

N-1
n
n=0
and N1
— /n+t
n=0
where (W) is the Jacobi symbol.

Two cases of particular interest are when N = pq is a product of two primes and p = ¢+ 2 or p = g + 4.
This extends work of Hgholdt, Jensen and Jensen and of the authors.

This study arises from a number of conjectures of Erdés, Littlewood and others that concern the norms
of polynomials with —1,1 coefficients on the disc. The current best examples are of the above form when
N is prime and it is natural to see what happens for composite N.

1. INTRODUCTION

There are a number of old conjectures of Erdéds, Littlewood, Turyn and others that concern the
norms of polynomials with —1,1 coefficients. See [BC-98, BC-99, E-57, E-62, L-68, NB-90, S-90,
M-94].

Littlewood’s conjecture is that it is possible to find p a polynomial of degree n with coefficients —1,1
so that

Civn < |p(2)] < Cov/n

for all z of modulus 1 and for two constants C7,C> independent of n. This is complemented by a
conjecture of Erdds that says that the constant C'y above cannot be arbitrarily close to 1. The most
significant related results may be found in [K-80] and [B-95].
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This latter conjecture of Erdés would be proved by showing that the L4 norm of such polynomials
is bounded below by Csy/n for some C3 > 1. The Ly norm is attractive to work with because
it computationally far more tractable than the sup norm. These problems arose separately in
the mathematics community and the engineering community. In the engineering community the
problems arose as signal processing questions and here again the L; norm is natural to consider
[G-83].

The example, due to Turyn and proved by Hgholdt and Jensen [HJ-88], that gives the smallest

asymptotic Ly norm is of the form
-1

where (5) is the Legendre symbol and p is prime. This is discussed in [BC-98] where explicit
formulae for these L, norms are given. In the above case the L, norm is asymptotic to (7/ 6)1/4pt/2.
In this paper we extend the analyze to the non-prime case.

Suppose N is odd. Let x(n) be a real primitive character modulo N. Then N is a product of distinct
primes p1ps - - - pr With p; < ps < ---p, and

(1) O

where (%) is the Jacobi symbol. We consider the polynomial formed by x(n) as

N-1 N n
(1.2) f(z) = Z x(n)z" = Z (N) 2",
n=0

Then f(z) is a polynomial having coefficients either 0 or 1. We also consider the shifted polynomial
fi(2) by shifting the coefficients of f(z) to the left by ¢t. Thus, if 1 <¢ < N, then

(1.3) filz) = :_01 ("T“> p

n

In particular, fn(z) = f(2).

We are particularly interested in the behavior of the growth of the Ly norm of these polynomials.
For the case that N is a product of twin primes, we are able to derive an exact formula for the
L4 norm of the unshifted polynomial f(z). A similar formula for the case when N = pg with odd
primes p,q, p= ¢+ 4 and p = 3 (mod 4) can also be derived. We have the following theorem.

Theorem 1.1. Let N = pq and f(z) be the polynomial defined in (1.2). If p = q + 2, then

1714 ——(5N2 +9N +4— (8N +1)(p+q))

q 2 P 2 5 12,
249 (9_ (2 —uP (1_(Z d
- N2< (p)>h N? ( (q)>hq+N2hN



and if p=q+4 and ¢ = 3 (mod 4) then

17§ =5(GN? + 9N +4 = (SN +1)(p+ )

3 3
q 2 2 p 2 2 12 5
v (55 (2))s 5o (1 (2)) e+ 2
where by == """} n (%) for odd integer I.
For the general case, we obtain an asymptotic estimation for the Ly norm and prove

Theorem 1.2. Let N = pipa---pr with p1 < pa < -+ < pp and fi(2) is defined in (1.3) with
1<t< N. Then

5 N2+e
(1.4) I felld = gN2 — 4Nt +8t* + O ( , ) )
1

Theorem 1.2 immediately implies that if we define the merit factor of a sequence {z,}"_ by

L7113

MF = ———————
IE115 — I1F1l3

where F(z) := Zf;ol 22", then from (1.4), we have the merit factor M F of the Jacobi sequence
satisfying

1 2t t\? -

It follows that if N¢p; ! —5 0 when N — oo, then

1 2t t\°
VT S (N)
In particular for T approximately N/4 the merit factors approach 6 which is conjectured by some
to be best possible [G-83].

This should be compared with the result of T. Hgholdt, H. Jensen and J. Jensen in [HJJ-91]. They
5 4

showed that the same asymptotic formula but a weaker error term O ((HQ)N#) for the special

case N = pq. So we generalize their result to N = pips - - - p, and also improve the error term.

Additional history of this problem is outlined in [BC-98] and [BC-99].

2. Ly NORM FOR CHARACTER POLYNOMIAL

Let x be a non-principal primitive character mod N. Let

N—

f2) = x(n)z"

n=0

=
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be the character polynomial associated to x. Let w := e2™/N and 7(x) be the Gaussian sum defined

by
= x(nw"

=0

2

3

Since x is primitive,
(2.1) FW*) = 100X (k).

for k=0,1,---,N —1. Also we have, |7(x)|*> = N and 7(x) = x(—1)7(X) (see Chapter 8 in [A-80]).
The shifted polynomial f;(z) by shifting the coefficients of f(z) to the left by ¢ is defined as

N-1

fe2) =) x(n+1t)z"
n=0
for 1 <t < N and fn(2) = f(2). It is easy to see that
(2.2) fe@) = wT (W)

for any 0 < k < N — 1. We are interested in estimating the L4 norm of f;(z). It can be shown (see
[HJ-88, BC-98]) that

1 N-1 N-1
(23) 1Al = 55 { SR+ |ft<—w'“)|4}-
k=0 k=0

Using (2.1) and (2.2), the first summation above is N?¢(N). It remains to evaluate the second

summation
N—-1
> Ife(=F)
k=0

For1<t<Nand 0<k <N —1, we have
I (—wF) = w0 x(=1) f(—w ).

In particular, we have |f;(—w*)| = |fnv_¢r1(—w™F)| for 0 < k < N — 1 and hence from now on we
may assume 1 <t < (N +1)/2.

We employ an interpolation formula as in [HJ-88, BC-98] and by (2.8), (2.9) and (2.10) in [BC-99]
which is

(2.4) Z_ |fe(=w™)|* = %(A +B+0C)
where

]‘ y a
A= ENZ(NZ+2) ;) [ fe(w)]*

N-1 ak
———%{Zm IFh thw —ui|2+1)}
k=1

s (£

(2.5)
N-—1

C=N>>"|filw)

a=0

Z b
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In this section, we will simplify the terms A, B and C by using (2.1) and evaluate them in the next
section. Using (2.1) and (2.2), we have

(2.6) A=

Using (2.1) and (2.2) again, we have

N4 wtk(wk + 1) N-1
7\%{2 Wk — 1) x(n)x(n — k)
k=1 n=0
A2 N-1 N-1 N-1
= 7?)% ab Z whitatb) (k4 1) x(n)x(n — k)
a,b=1 k=1 n=0
N2 N-1 N-1 N-1
A ab (W k(1+t+a+tb) +wk(t+a+b) Z x(n
2 a,b=1 k=0 n=0
NY(N = 1)?$(N)
(2.7) - 1 )
because
N-1
1 1 ,
- Jn
(2.8) oIS W 2 nw

forj=1,2,--- ,N—1.
For the term C, the second term in (2.5) equals to
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from (2.1) and (2.8). Using (2.1) again, this is equals to

n=1

- pw { S o+ D +) Y- e “<"+m+2t>}

n,m=1 a=0

N* (N -1\’ -1 ) A=
g (T) ¢(N)—|— %{T an (n +t) f(WHt™)

n=1

N2 o N1 N-1

=— 7% {T(X) n%:zl nmx(n + t)x(m +t) az: X2( “("+m+2t)}
40N 1)2 an N-1
2.9) N (N —1)2¢(N) N N4(N -1) .
8 2 —
(n+t,N)=1

Similarly, the first term in (2.5) equals to

N-1 N-1 ooy |2
=N ¥ e | X 2

2

N a—k)
—N* %
Z X*(a oF —1
N-1 N-1
=N3 Z nmx(n + t)x(m + t) Z Ix?(a)|w™=™
nm=1 a=0
NY(N — 1)2¢(N =
(2.10) + ( 1 JOIN) _ NY(N -1) n
(nttN)=1

and hence from (2.5), (2.9) and (2.10)

N-1 N-1
C=- N—%{ 00 Y mmx(n+ Oxm+1) S x2<a)wa<"+m+2t>} L+ NV = 1))

n,m=1 a—0 8
(2.11)
= N-1
Sl L P, N4(N -1
+N® H;I nmx(n + t)x(m + )Cn(n —m) — % Z .
) (n+t,N) 1

where C(1) is the usual Ramanujan sum defined as
k—1

2mrinl
> e
n=0
(n,k)=1

We remark that formulas (2.3), (2.4), (2.6), (2.7) and (2.11) hold for any non-principal primitive
character. In the next section, we will confine our consideration to Jacobi symbol.
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3. REAL PRIMITIVE CHARACTER MODULO pgq
Lemma 3.1. If1 <k < N, then

N-1 N
> nm =~ (N* = 6N — 1+ 6k + 3Nk — 3k%).

n,m=1
k+n+m=0 (mod N)

Proof. This is Lemma 2 in [BC-98]. O

Lemma 3.2. Let pi,ps,---,pr be distinct primes and x = x1x2 - Xr where Xx; are non-principal
characters modulo p;. Let N = pips---p,. Then

N-1 N-—

-

- N if(,N)=1,
(3.1) S ()X —F) = { .
o — 0 otherwise
= n=0
Proof. Let wy = e’s". Then
p1—1 pr—1 p1—1 pr—1
Z T Z wl;;l T 'w,l.f:l Z T Z x1(m)xi(na — k1) - xr (ne) X (007 — kir)
k1=0  k.=0 n=0  n,.=0
r pj—1 pj—1
=1 D_ wi' >~ xi(n)x;(n; — k))
j=1k;=0 n;=0
r pi—1
=[I{pi— > wpf
j=1 k;=0
because
it - pj—1 if pjlk;
(v (s — ki) = J 1%
T;OXJ( 3% (3 3) {0 otherwise.

Hence the summation in (3.1) equals to N if (I, N) =1 and 0 otherwise. O

(From (2.7), we have if p1,po,--- ,p, are distinct primes and x = x1Xx2--- X with non-principal
characters x; modulo p;, then

N: = N3 = NN - 1)24(N)
(3.2) B=— >, abtm ) ab — i
a,b=1 a,b=1
(a+b+t+1,N)=1 (a+b+t,N)=1

by Lemma 3.2.



Lemma 3.3. If N = pq then we have

N-1

1
. = —N(@BN?-7N - 2)¢(N
(3:3) é ab= -N@BN? = TN = 2)4(N)
(a—H,),N):l
and
N-1 1
(3.4) agl ab= S N(N —1)(3N — 4)¢(N)
(a-+b+1,N)=1
Proof. Write
N-1 N-1 N-1 N-1 N-1
(3.5) Z ab = Z ab — Z ab — Z ab + Z ab.
a,b=1 a,b=1 a,b=1 a,b=1 a,b=1
(a+b,N)=1 a+b=0 (mod p) a+b=0 (mod q) a+b=0 (mod N)

We then apply Lemma 3.1 to the last three summations. Formula (3.4) can be proved in the same
way. O

Now from (3.2)-(3.4), if t = N and N = pq, then we have

1
(3.6) B = -5 N (N +2)¢(N).
Lemma 3.4. If N = pq, then we have
N-1 1
(3.7 a= §N¢(N)
(' M)=1

and

N-1
(3.8) a’? = —N(2N +1)¢(N)

(asN)=1

Proof. The proof is similar to Lemma 3.3. O

It remains to compute the term C' using (2.11). Suppose x is real and ¢ = N. Then the first term



in (2.11) equals to

n,m=1
4 N1 N-1 3 N—1
:—NT n %) (%) CN(n—m)+N7 2 nm (%) Cn(n—m)
n=1 m=1 n,m=1
5 N—1 3 N-1
:_N7 n %) (%)+N7 Z nm (%) Cn(n —m)
n=1 n,m=1
5 N-1 3 N-1
= _N7 > n+ NT Z_lnm (%) Cn(n—m)
(mN)=1 e

Hence from this together with (2.11) and (3.7), we have

3.9 C= %N3 n;ﬂ nm (%) On(n —m) + ]f—ﬁ (N(N = 1)2¢*(N) — 4N2$(N) — 8(N — 1)) .

The last step is to evaluate the summation
N-1 nm
Z nm (W) Cn(n —m).
n,m=1

Since Cn (1) is a multiplicative function of N (see §8.3 of [A-80]) and also if p is a prime, then

(-1 if (p,k) =1
Colk) _{p—l if (p,k) # 1

so if N = pgq, then

N-1
nm (%) Cn(n—m)
n,m=1
N-1
= nm (%) Cp(n —m)Cq(n —m)
n,m=1
(3.10)
N-1 N-1 N-1
=N Z n?—p z nm(%)—q Z nm(%)—kh%.
n=1 n,m=0 n,m=0

(n,N)=1 n—m=0 (mod p) n—m=0 (mod q)
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Lemma 3.5. Let p and q be primes greater than 3 and N = pq. If p=q + 2 then

1o a0 2o, (2 2
LN - 1)+ (1 (q))hq

N-1

(3.11) S m (%)

n,m=0
n=m (mod p)

and
e nm 1 2
R R 202 _ 2 _ “ 2
(3.12) n§m::0 nm ( N) SN(p?—1) -2 (2 (p)) h2.

n=m (mod q)
Ifp=q+4 and g =3 (mod 4) then

N-1

(3.13) Y mm (%) - %N2(q2 — 1) + 3p? (1 - (g)) h2
and

(3.14) NZ_I nm (%) = %NQ(pQ —1) - ¢ (5 -3 (%)) h2.

n,m=0
n=m (mod q)

Proof. We only give a proof for (3.11). The proof for (3.12)-(3.14) is similar.

N-1 g—1 p—1

S (m)- e (222 (22
N pq pq
n,m=0 a,b=0 n,m=0
n—m=0 (mod p) n—m=0 (mod p)
p—1 q—1
b
-y <@> 3" (n + pa)(m + pb) (””’“) (m”’)
n,m=0 p a,b=0 q q

(e ()

a,

1]

b

[3%]
; =N
M

n—m=0 (mod p)
=p’ S abp_1 (n +pa) (” +pb>
a,b=0 n=1 q q
g—1 p—1 q—1
2 ex () () - 2 () ()
a,b=0 n=0 q q a,b=0 q q
g—1 p—1
(3.15) =p? ab (n —;pa) (n—;pb) —p2h§.
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If p=gq+ 2 then

”i (nzpa> (n-;pb) Ay (n-&(—12a> (n-;2b>

(3.16) - E(MM) N (%ﬁ) N ((2a+1)q(2b+1)>

The first summation on the right hand side of (3.16) (see P.58 of [BEW-98]) is

_{q—l ifa=b (mod q)
-1 otherwise .

Hence, the first term in (3.15) is

-1

q—1 q—1 q—1 q
= p? —Zab-i—q Z ab+ ab(%b)+2ab(w)
0

a,b=0 a,b=0 a,b= a,b=0 q
a=b (mod q)

o) e (B )}
s ()

This proves (3.11). O

So, if p =g+ 2, then
N-1

Z nm (%) Cn(n—m)

n,m=1
2

N 2 2 .
:ﬁ(4N2 —5N(p+q)+6N — (p+q) +2) — 2p° (1 - (5)> h +2¢° (2 - (5)) 3 + hi.
(From (3.9), we obtain

N4 3 2 2 3,.3 2 2 3.3 2 2 3 312
C= ?(N +3N*+3N+1-(2N*+N+1)(p+q))—3N°p° | 1 — . hy+3N>q 2—; h,,+5N hi.

Therefore, using this, (2.4), (2.6) and (3.6), we have if p = ¢ + 2, then

N—
" If (-t =5 (TN + 15N +8 — (13N + 2)(p + )

k=0
3 3
q 2 9 p 2 5 24,
48— (2 — | — — 48— (1—{ - —
- SN( (p))hp 8N( (Q>)hq+NhN

=
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and

1/l =5 (587 + 9N +4— (8N +1)(p +0))

3 3
q 2 9 p 2 9 12 4
T2 (2 - (5)) o = 2 (1 - <E>) T+l

Similarly, if p = ¢ + 4 and ¢ = 3 (mod 4) and instead of using (3.11) and (3.12) in Lemma 3.5, we
employ (3.13) and (3.14), then we obtain

N—

—_

|f(—wF)|* :%(7N2 + 15N + 8 — (13N +2)(p+ q))

3 3
C (e _a 2\ 2 _ o (1 _(2)) 2, 240
+24N(5 3(p))hp ) (1 (q))hq+NhN

k=0

and

114 =5 (6N + 9N + 4~ (8N + 1)(p+ )

3 3
q 2 5 p 2 5 12 ,
+ 12—N2 (5 -3 (5)> hp - 36—N2 (1 — <5)> hq + Nz hy.

This proves Theorem 1.1.

4. AsYMPTOTIC ESTIMATE FOR REAL PRIMITIVE CHARACTER

Let x be a real primitive character modulo N with odd N. Then N = pip2---p, with p1 < p2 <

--- < pr and
=G G -6

In view of (2.4), we need to estimate the term A, B and C. The term A has been evaluated in (2.6).
We now consider the term B using formula (3.2). We first prove the following lemma.

Lemma 4.1. For any 1 <t < N, we have
N-1 1
_ - A3 3+¢
(4.1) > ab= T V?O(N) + O(N?*).
a,b=1
(a+b+t,N)=1
For any 1 <t < N, then

— 1 1+e€
(4.2) Y. n=ZNe(N)+ 0N
n<N
(n+t,N)=1
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and
1
(4.3) S n?= SN2H(N) + O(N*Fe).
3
n<N
(n+t,N)=1

Here all the implicit constants are independent of t and N .

Proof. The summation in (4.1) is

a,b=1 d|N

(4.4) =) u(d) ab.

Using Lemma 3.1, we have

N-1

Z ab

a,b=1
a+b+t=0 (mod d)

F-1 d—1
= Z Z (a+dn)(b+ dm)

a,b=0
a+b+t=0 (mod d)

i1 d—1 N2 d—1 a1 d—1
2
=d Z nm Z 1+d—2 Z ab+2d2n Z
n,m=0 a,b=0 a,b=0 n,m=0 a,b=0
a+b+t=0 (mod d) a+b+t=0 (mod d) a+b+t=0 (mod d)
Nt N3 9
_H - 2_d + O(N d)
It follows now from (4.4) that
N-1
N pd 1 p(d)
- P\ _N3 Ll St N2 2
a,b=1 d|N d|N d|N
(a+b+t,N)=1

The proof of (4.2) and (4.3) are similar. O
Therefore, using (3.2) and Lemma 4.1,

(4.5) B <« Nb6+¢,
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We next estimate the term C using formula (2.11). The summation in the first term of (2.11) is

7

= nmx(n + t)x(m +t)Cn(n + m + 2t)

n,m=1
N-1 N
= nmx(n + t)x(m + t) z du (E)
n,m=1 d|\n+m+2t
AN
i n+t m+t
=~ X (%) (%)

n+m+2t,50 (mod N)

(4.6) +0|[ > d NZ_I nm (”T“> (mT“>

d|N n,m=1
d<N |n+m+2t=0 (mod d)

because ck(l) = 34,4 (K /d) (see §8.3 in [A-80]).

The error term in (4.6) is

alz

-1

«Yd¥ % (n + ad)(m + bd) ("+7\f+t) (mJ“]Zd”)
m=0

d/IN |a,b=0 n,m=
d<N n+m+2t=0 (mod d)
d—1 !
3 n+t\ [m+t n+ad+t\ (m+bd+t
< dzj:v ‘ ngzo ( d ) ( d a;O “ N/d N/d

d<N n+m+2t=0 (mod d)

d—1 J-1
3 n+ad+1 m+bd +t
< E d E E a (7N/d E N/d .
d\N n,m=0 a=0 =0
d<N n+m+2t=0 (mod d)

We next employ Polya’s inequality for character sums (see Theorem 13.15 in [A-80]), namely, if ¢
is any nonprincipal character modulo &, then for all z > 2 we have

Z P(m) < k7 logk.

m<z

Using this inequality and the partial summation formula, we have for any square-free odd integer k
and any integer [,

(")

a=0

< k3 log k
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and hence the error term in (4.6) becomes

3 - N? o,
< Z d Z & log*(N/d)
d\N n,m=0

d<N n+m+2t=0 (mod d)
<N® " dlog*(N/d)

d|N
d<N
N4+e
<K
b1
Thus
N-1
Z nmx(n +t)x(m +t)Cn(n +m + 2t)
n,m=1
N-1
n+t\ [m+t Nite
4.7 =N —_— _— 0] .
67 o om0

n+m+2t=0 (mod N)
In the same manner, we can prove that the summation in the third term of (2.11) is

N-1
= Z nmx(n + t)x(m +t)Cn(n —m)
n,m=1
N-1
n+t\ (m+t N4te
v () () (%)

n=m (mod N)

N-1
N4+e
=N Z n?+0 ( )

b1

n=1
(n+t,N)=1

1 N4+e
(4.8) =zN°¢(N)+ 0 ( )

3 P
using (4.3) in Lemma 4.1. Now it remains to consider the main terms in (4.7). If 1 < ¢ <
Af L (nt) (mt

N N

n,m=1
n+m+2t=0 (mod N)

_1 N-1
=| == nm
() X

n+m+2t=0 (mod N)
(n+t,N)=1

1 N-2t N-1
=<W> Z n(N —n —2t) + Z n(2N —n — 2t)

n=1 n=N-—2t+1
(n+t,N)=1 (n+t,N)=1

(4.9)

(_Wl) é¢(z\r)(z\r2 + 6Nt — 12t%) + O(N?*°)
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by (4.2) and (4.3). It can be easily verified that (4.9) is also true for ¢ = &L Thus, from (2.11),
(4.2), (4.7), (4.8) and (4.9), the term C' is
1 1
C — g1\77 _ ENGt + N5t2 4 O(N7+e/p1)

and hence

N-1
St = §N3 —8N%t + 16Nt* + O(N>*¢/p;)
k=0
from (2.4), (2.6) and (4.5). Finally, Theorem 1.2 follows from this and (2.1) and (2.3).
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