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ABSTRACT. The Fekete polynomials are defined as

Fy(z) := qz_:l (E> 2*

k=1 V94

where (5 is the Legendre symbol. These polynomials arise in a number of
contexts in analysis and number theory. For example, after cyclic permutation
they provide sequences with smallest known L4 norm out of the polynomials
with +1 coefficients.

The main purpose of this paper is to prove the following extremal property
that characterizes the Fekete polynomials by their size at roots of unity.

Theorem 0.1. Let f(z) = a1z + a2a” + -+ + ax—12" "' with odd N and
an, = £1. If
max{|f(w*)|: 0 <k < N —1} = VN,

2mi

then N must be an odd prime and f(z) is +Fy(z). Here w := e N .

This result also gives a partial answer to a problem of Harvey Cohn on
character sums.
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1. INTRODUCTION

As in the abstract the Fekete polynomials are defined as

g—1 k
Fy(z) =) (—) 2
k=1 ¢
where (5) is the Legendre symbol. In [4] we gave explicit formulas for the L, norm
(or equivalently for the merit factors) of various sequences of polynomials related

to the Fekete polynomials. For example for ¢ an odd prime,

5¢> 4
|1 Fqll == 5 = 3¢+ 3~ 12(h(—q))*

where h(—q) is the class number of Q(y/—¢). A similar explicit formula is given for
an example of Turyn’s that is constructed by cyclically permuting the first quarter
of the coefficients of F,;. This is the sequence of polynomials with +1 coefficients
that has the smallest known asymptotic Ly norm on the unit disc (see [4] where
this old problem is discussed further). Explicitly,

g—1
k+[q/4
R,(2) == Z <7[ / ]) P
k=0 q
where [-] denotes the nearest integer, satisfies
7> 1

(XTI P
where
h(—q)(h(—q) —4) if ¢=1,5 (mod 8),
Vg = 4 12(h(=q))? if ¢g=3 (mod 8),
0 if ¢g=7 (mod 8).

The point of this note is to explore the sense in which the Fekete polynomials are
extremal in the supremum norm on the disc. Because of Gauss’ lemma, we have
for0<k<g-1

M) ﬁ(%) ifg=1 (mod4),
i/g (g) ifg=3 (mod 4).
and we see that F} is of constant modulus on the gth roots of unity. The point of

this note is to prove that Fj is also uniquely of smallest possible supremum norm
at these points. Precisely

Theorem 1.1. Let f(z) = aiz+asz? +---+ay_12™V ' with odd N and a,, = +1.
Then we have

N-1
(L.1) S IfWh)* > N2 (N —1)
k=0
and
(1.2) max{|f(wW)|:0< k<N -1} > VN.

Inequalities (1.1) and (1.2) are optimal and equality holds in (1.2) if and only if N
is an odd prime and f(z) is £F,(x). Here w := e~ .
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We should remark here that Theorem 1.1 is not really restricted to polynomials
with zero constant term since multiplication by z does not change the value of
| f(wF)|- The assumption that ag = 0 in Theorem 1.1 just simplifies the presenta-
tion.

Despite the fact that Fekete polynomial F;, has modulus ,/q at each gth root
of unity Montgomery ([8]) shows that the supremum norm on the whole unit disc
grows at least like /gloglogg. This and further properties of Fekete polynomials,
including, the behavior of their zeros are discussed in [6].

A consequence of Theorem 1.1 is the following. If f(z) is a polynomial in Theo-
rem 1.1 with ag = 0, then from Lemma, 3.1 below, the equality of (1.2) holds if and

only if
e =40 E=0
N ifk#0,

which can also be shown (see Theorem 3 in [7]) to be equivalent to
NZ‘I o {N ~1 ifk=0,
nlntk = .
= -1 if k #0.
It follows from Theorem 1.1 that

Corollary 1.2. If ¢ : Zy — R is a mapping such that ¥(0) = 0,4(1) =
1,|¥(a)| =1 for all a # 0 in Zn, then

N—-1
3 wn)d(n+k) =1 for all k#0
n=0

if and only if N = q and v is the Legendre symbol modulo q.

This corollary gives a partial answer to a problem of Harvey Cohn on char-
acter sums. He asks (see p.202 in [9]) whether a multiplicative character can be
characterized by a kind of “two-level autocorrelation” property, viz.

If F is a finite field, ¢ : F — C with ¢(0) = 0,%(1) = 1,|¢(a)| = 1 for all

a#0in F,and ), »¥(b)¢(b+a) = —1 for all a # 0, does it follow that 1)
is a nontrivial multiplicative character of F'?

Corollary 1.2 shows that for the case ¢ : F; — R, the answer to Cohn’s problem
is affirmative. The same result is also proved independently by S-L. Ma, M-K.
Siu and Z. Zheng in [7] and A. Biré in [3]. Recently, M-K. Siu and the second
author have solved Cohn’s problem and they showed in [5] that the answer to
Cohn’s problem is negative when |F| = ¢®* > 4 and s > 1. They in fact gave
many counter-examples for non-multiplicative functions which satisfy the two-level
autocorrelation property. The idea of their proof originates from our Theorem 1.1.

2. RESULTS

Let f(z) = a1 + az2® + --- + axy_12V ! with odd N and a, = £1. Let
D*:={1<n<N-1l:a,=1}and D:=D*U{0}. Forany 1 <n <N —1, we

define b, := 2=tL and hence

1 ifneD*
2.1 b, = ’
(2.1) " {0 otherwise.



4 PETER BORWEIN, KWOK-KWONG STEPHEN CHOI AND SOROOSH YAZDANI

We denote e & by w. Since a,, = £1, we have

N-1
(2.2) > I Z anGm Zw’“(" ™ = N(N -1).
k=0

n,m=1

On the other hand,

N-1 N-1
DSUWHIT = YW WTHP
k=0 k=0

N-1|N-1 N-1 >

= Z Ay p W
k=0 [ I=0 |n—m=l (mod N)
N-1 2
Z anam}
n—m=l (mod N)

N-1 N-1 >
= N{(N-1)2+ Z G,
n—m=

=1 =l (mod N)

Il
=2
T2
INNgh
——

(2.3) > N((N—-1)2+(N—-1))=N*N-1)
because
N-1
Z anam =N —-2=1 (mod 2)
n—m=l (mod N)

for 1 <1< N — 1. Thus we have the following lemma

Lemma 2.1. Let f(z) = a1z + az2® +--- + ay_12V ! with odd N and a,, = +1.
We have

S 1f@HP = N(V - 1)
k=0

and

(2.4) Z [f(@WH)* > N*(NV —1).

Furthermore, we have

(2.5) S (N 1f@)P) (V= [ @)P) <o.
0<i<j<N—1

Proof. Tt remains to prove (2.5). If we let z; = N — |f(w?)|> for 0 < i < N —1,
then (2.2) and (2.3) become

(2.6) Z_ x; =

=0
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and
N—-1

(2.7) > @ >N
i=0

Now taking the square of both sides in (2.6) and using (2.7), we get

N-1
2 _ 2 2
N* = x; +2 zix; > N°+2 ZTiTj.
i=0 0<i<j<N-1 0<i<j<N-1

This proves (2.5). It should also be noted that from (2.3), the equality of (2.4)
holds if and only if S0 ) (od Ny Gnlm = +1for 1<I< N — 1. O

Now inequality (1.2) is an immediate consequence of (2.5). For if | f(w¥)|? < N,
then the summation in (2.5) would be positive and this contradicts (2.5).
By Gauss’s lemma (see §9.10 in [1]), we have for 0 < k < ¢g—1
. [va(%) ifg=1 (mod 1),
(2.8) Fyle e )=4q ; Y
/4 (E) ifg=3 (mod 4).
This shows that the inequality (1.2) is actually optimal and the equality can be

attained by Fekete polynomials. We are going to prove Theorem 1.1 and this shows
that Fekete polynomials are the only polynomials attaining the equality of (1.2).

3. PROOF OF THEOREM 1.1

Lemma 3.1. Let f(2) = a1 + as2® + --- + ay_12V ™! with odd N and a,, = +1.
If the equality of (1.2) holds, then

(3.1) |f(WH)P =N
for1<k<N-—1and f(1) =0.
Proof. If the equality of (1.2) holds, then (N — |f(w?)|?) > 0 for all i and hence
0< > (N=If@)P)W = [f @)

0<i<j<N—1
Now from (2.5), the above double summation must be zero and hence every term
(N = |f(w)[?) (N — | f(w?)|?) must also be zero for 0 < i # j < N — 1 since they are
all non-negative. On the other hand, since |f(w’)| = |f(wN9),if 1 <j < N -1,
then j # N — j and

0=(N—[fW)P )WV = [fN ) = (N = |F )P

It follows that |f(w?)|> = N for all 1 < j < N — 1. Finally, f(1) = 0 follows from
(2.2). O
Lemma 3.2. Let f(z) = a1z + a2®> +--- + any_12V ! with odd N and a,, = +1.
If the equality of (1.2) holds, then f(z) is symmetric if N = 1 (mod 4) and is
anti-symmetric if N = 3 (mod 4).

Proof. Let g(z) = f(z) + 14+ 2+ ---+ 2™V ~1. On using (2.1)

N-1
glx)y=1+2 Z bpz™.
n=1
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Also from Lemma 3.1, we have g(1) = N and |g(w*)|? = |f(w*)]2 =N for 1 <k <
N — 1. It follows that

N —1

(3.2) g@)glz =N+ (N -1) (mod =™ — 1)

z—1
by evaluating both sides at 1 and the N-th roots of unity. On the other hand,

N-1 N-1
g(x)g(z™!) = (1 +2 Z bk:ck> (1 +2 Z bkmN_k>
k=1 k=1
N-1 N-1
= 142 Z(bk + bek)CL'k +4 Z 0k$k
k=1 k=0
N—1
(3.3) = 2N—-1+ (46y, + 2bg + 2bn_1) ¥ (mod 2V —1).
k=1
Here

O = S bib

i—j=k (mod N)

for 0 < k < N —1 and we have used that |D*| = % because f(1) = 0. Comparing
coefficients in (3.2) and (3.3), we have

(3.4) 40 + 2by +2by =N -1

for 1 <k < N —1. Hence 2(by, + by_) = N —1 (mod 4) for 1 < k < N — 1.
Therefore if N =1 (mod 4), we have

b +bnv_r =0 (mod 2)

and hence by = by_g for 1 < k < N — 1 because by, is either 0 or 1. So f(z) is
symmetric. Similarly, if N =3 (mod 4), we have

b +by-r =1 (mod 2)

and hence by, and by _j, are different for 1 < k < N — 1. So f(z) is anti-symmetric.
This proves Lemma 3.2. |

Let ®;(z) be the lth cyclotomic polynomial.

Lemma 3.3. Let G(x) be a polynomial of degree N — 1 with integer coefficients
and for any divisor d of N, let

G4(r) = G(z) (mod ¥4(x)).

Then
G(z) = % S Ga(@)Ba(#) (mod 2V —1)
AN
where
N _
Baw) == 3 wldfrirs =1

r|d

and p(r) is Mobius function.
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Proof. By the Chinese Remainder Theorem, we only need to verify that
1
3 Gul#)Ba(#) = G, (@) (mod @, (x))
AN

for all divisors r of N. Clearly, if r and s are divisors of N, then

2V -1 {% (mod ®,(zx)) if r divides s,

=1 |0 (mod ®,.(z)) otherwise.
Thus when d divides N, we have

Baw)= Y u(2)s7 =N X u(2) (mod 2.

r|s,s|d r|s,s|d

It follows that Bg(z) = N (mod ®4(z)) and B4(z) =0 (mod ®,.(z)) if r # d. This
proves our lemma. O

We now come to the proof of Theorem 1.1. If N = 3 (mod 4), then since f(x)
is anti-symmetric, f(w*) is purely imaginary for 1 < k < N — 1. Hence if we let
F(z) =1+ f(z), then

F@RE =1+ F@HP =1+ f@H)P = N +1.
for1< k<N -1and F(1) =1. Recall that D* ={1<n <N —-1:a, =1} and
D = D* U {0} where f(z) = EnNz_ll anz™. It turns out that D is a cyclic difference
set. A subset E = {d;,ds,--- ,di} of Zy is a (cyclic) (N, k, A)-difference set (see

[2]) if for any o # 0 (mod N) the congruence equation d; — d; = o (mod N) has
exactly A solution pairs (d;,d;) in E x E. If we let

{1 ifn € E,
en =

-1 ifn¢gkE,
it is known (see §1.D in [2]) that E is a (IV, k, A)-difference set if and only if
N-1
N if k= N
(3.5) Y cnen= {N oy ESO mod )
n—m=k (mod N) —4(k—X) otherwise.

Johnsen proved (see Theorem 4.15 of [2]) that the only cyclic difference sets with
parameters N = 4t — 1,k = 2t — 1 and A = ¢t — 1 for some positive integer ¢t and
en = —en_p for 1 <n < N —1 are given by the quadratic residues of a prime = 3
(mod 4), more precisely, N must be an odd prime = 3 (mod 4) and e, = €o (%)
for 1 <mn < N — 1. Using similar calculation as in the proof of (2.3), one can
show that if |[F(w*)]> = N+ 1for all 1 < k < N — 1, then condition (3.5) is
satisfied with k = &1 and A = %. Thus D is a cyclic (N, %, %)—difference
set. For N = 3 (mod 4), D satisfies the conditions in Johnsen’s theorem since
f(z) is anti-symmetric. Hence N = ¢ and f(z) = £F,(z) by Johnsen’s theorem.
For the case N = 1 (mod 4), D is no longer a cyclic difference set. However,
using similar methods to the proof of Johnsen’s Theorem, we can still conclude
that f(z) = £F,(z). Since f(z) is symmetric in this case, f(w*) is real and hence

f(w*) = +v/N for 1 < k < N — 1. For any divisor d > 1 of N, we let
(3.6) f(’T) = eaVN,
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where e = £1. We first claim that N can’t be a perfect square. Suppose not, then
VN is an integer. So from (3.6)

f(z) =egVN (mod ®4(z))

for any divisor d > 1 of N and f(z) =0 (mod ®1(x)) because f(1) = 0. By Lemma
3.3, we have

f@) = % Y co/NBa(a)

d\N d>1

o X wXau(d)r = (mod sV —1).

dIN,d>1  r|d

Considering the absolute value of the coefficient of the term z at both sides which
only comes from the term when r = 1 on the right hand side, we have

d(N)—1
Y )| < M1

\/_ d|N,d>1 VN
where d(N) is the number of divisors of N. However, d(N) < v/N when N is odd.
This is a contradiction. Thus N can’t be a perfect square and hence VN ¢ Q.
Next we suppose p and q are two distinct primes dividing N then f (e » ) = ep\/N
belongs to Q(e > ) and f(e +) = ¢,V/N belongs to Qe ). So VN N belongs to

2mi

Qe »)NQe s ) =Q. This contradicts that VN ¢ Q and therefore, N must be
a prime power. Now let N = ¢° with odd s. Without loss of generality, we assume
that e, = 1. If s = 1, then from (2.8), we have

fw) = Fy(w)

and hence f(w*) = F,(w*) for 0 < k < ¢ — 1 by considering their images under the
automorphisms of Q(w) which map w to w* for 1 < k < ¢ — 1. Since they have the
same degree less than ¢, f(z) must be F,(x). It remains to show that s can’t be
greater than 1. From (2.8), we have

2mi s—1 2mi

fled ) =eiq ™ Fy(es

)
for j =1,2,---,s. Hence
(@) = €uq™® Fy(@®) (mod dy(a))
for j =1,2,--- ;s and f(z) =0 (mod ®;(z)). By Lemma 3.3, we have

(3.7) flz) = % Y e T F " )By(e) (mod sV - 1),
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Since F,(1) =0,

7 N -1 N
Fq(.fL' )mzo (mOd.fE —].),
for j =0,1,---,s. Thus, (3.8) becomes
(3.9)
s—1 s—1 1 st 2j4s—1 o N —1
f(@) = €pq = Fy(z? )+ NZan‘q—J > Fy(af? )m (mod 2V —1).
j=1

Note that the degree of the polynomials Fq(xqj_l);”:;:ll is less than N. So the

polynomial in the right hand side of (3.9) must have integer coefficients. However,

if s > 3, the coefficient of the term z, which only comes from the term j = 1, is
s+1 —s+1

equals to %eqq% =gq 5 ¢ 7. Therefore s must be one and this completes the

proof of Theorem 1.1
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