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ABSTRACT. Let ¢ be a prime and x be a non-principal character mod gq. Let

qg—1
ff((z) = Z x(n +t)z"
n=0

for 1 <t < ¢ be the character polynomial associated to x (cyclically permuted ¢ places).

Our principal result is the following.
Theorem. For any non-principal and non-real character x modulo q and 1 <t < q, we have
t 4_ 4o 3/2 7,2
[1fx(2)lla = 34 + 0(¢°/*log® q)
where the implicit constant is independent of t and q. Here ||-||4 denotes the Ly norm on the unit circle.

It follows from this that all cyclically permuted character polynomials associated with non-principal and
non-real characters have merit factors that approach 3. This compliments and completes results of Golay,
Hgholdt and Jensen, and Turyn (and others). These results show that the merit factors of cyclically per-
muted character polynomials associated with non-principal real characters vary asymptotically between
3/2 and 6.

We also compute the averages of the L4 norms:

Theorem. Let g be a prime number. We have

> I =(2¢-3)@-1)°

X (mod q)

where the summation is over all characters modulo q.
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1. INTRODUCTION

The problem we address in this paper is the computation of the Ly norm, or equivalently the merit
factor, of cyclically permuted character polynomials associated with non-principal and non-real
characters. Let ¢ be a prime and x be a non-principal character mod ¢q. Let

q—1

fi(z) = Z x(n +t)z"

n=0

for 1 <t < ¢ be a permutation of the character polynomial associated to x. As usual the L, norm
on the boundary of the unit disc is defined by by

27 1/p
= (5= [ Iseras)

Any polynomial of degree n with coefficients of modulus 1 (as is the case for the character polynomials
we consider) has L norm ,/q. We are particularly interested in polynomials of the above form with
small Ly norm. These arise naturally in a variety of signal processing problems and have been much
studied. See [BC-98, Go-77, Go-83, Bo-98, Ne-90]. The question is how close can the Ly norm be
made to the Ly norm.

There are two natural measures of smallness for the L, norm of a polynomial f. One is the ratio

of the Ly norm to the Ly norm, ||f||4/||f||2- The other (obviously equivalent) measure is the merit
factor, defined by
ey - s

AL = A1

The merit factor is a useful normalization. It tends to give interesting sequences integer limits and
makes the expected merit factor of a polynomial with £1 coefficients 1.

For polynomials with real coefficients of modulus 1 (that is coefficients 1) it is conjectured that the
merit factor is bounded. The best asymptotic bound known is 6, which is approached, for q prime,

by
Ry(z) = qi (M) i
q

k=0

where [-] denotes the nearest integer. Here (E) denotes the Legendre symbol. This is an old obser-
vation of Turyn that was first proved in [Hg-88]. (The asymptotic bound of 6 has been conjectured
to be best possible, though not, in the authors’ opinion for any compelling reason.) In [BC-98] we
show that the merit factor is explicitly given in terms of the class number. That is

7q* 1

Rllt="L —gq—=—
IRl = —q— 2~

where
(=g)(h(—-q) —4) if ¢g=1,5 (mod 8),
¥q := < 12(h(—q))? if ¢=3 (mod ),
0 if ¢=7 (mod 8).



and h(—g) is the class number of Q(\/—¢q).

For polynomials with complex coefficients of modulus 1 it is possible to have asymptotically un-
bounded merit factors as the following example mostly due to Littlewood shows. Let

n-l k(k+1)mi
L,(z):= Z e 2
k=0

913/2 1/2
45, +0m )

L,||3 =n?
IEalld = n? + == -

where
P { -2 if n=0,1 (mod 4),

1 if n=2,3 (mod 4).

Another old problem of a similar flavor is due to Littlewood [Li-68]. See [Ka-80, Be-91, Saf-90]. It
asks whether it is possible to have a sequence of polynomials with modulus 1 coefficients so that
the Lo, norms are asymptotic to the Ly norm. Erd&s conjectures that this is not possible if the
coefficients are real (this has now been open for over forty years) though in a remarkable paper
Kahane [Ka-80] shows that it is possible if the coefficients are complex and of modulus 1.

As mentioned in the abstract results of Golay, Hsholdt and Jensen, and Turyn (and others) show
that the merit factors of cyclically permuted character polynomials associated with non-principal
real characters (the Legendre symbol) vary asymptotically between 3/2 and 6.

The main result of this paper, Theorem 3.2, shows that for non-real characters the asymptotic merit
factor is always 3. The underlying methods are based on an interpolation formula of Hgholdt and
Jensen for the Ly norm [Hg-88].

2. ExprLiciT FORMULA FOR Ly NORM

As before let ¢ be a prime and x be a non-principal character mod q. Let

by

Since x is primitive,

(2.1) FxW®) = 700X ().
for k=0,1,---,q— 1. Also we have, |7(x)|*> = ¢ and 7(x) = x(=1)7(X) (see Chapter 8 in [Ap-80]).
Let

q—1

f;(z) = Z x(n +1t)z"

n=0
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for 1 <t < ¢. Thus, fi(z) is the character polynomial obtained by shifting the coefficients of f,(2)
to the left by ¢. In particular, f] (2) = fx(2). It should be noted that since not all the coefficients of
fL(z) are non-zero, in particular, f!(z) has degree ¢ —2 while f!(z) has degree g—1forall2 <t <q.
If x is real and non-principal, then x is just the Legendre symbol and f,(z) becomes the Fekete
polynomial and we have shown in [BC-98] that if x(n) = (%), then

2

-1
1 8 1/-1\) |5 n+t
(2.2) IFENl3 = = (5¢% + 3q +4) + 8> — 4qt — 8t — — (1 — - (—)) Y on (—) ;
3 q 2\ ¢ —_ q
and [|f27H|3 = [|fLl11 if 1 < ¢ < (¢ +1)/2. From now on, we suppose x is a non-principal and

non-real character modulo q. The main result in this section is the following.

Theorem 2.1. Let q be a prime and x be a non-principal and non-real character modulo q. Then

2

1 8 |2 4 _
(2.3) [If2ll1 = 3—q(7q3 —21¢% + 2¢ + 24qt — 12¢*) — 2 D nx(n+t)| — e {r()*r(*)H(x 1)}
n=1
and ||| = |fillz for 1 <t < (¢+1)/2. Here
qg—1
H(x,t)= > nmx(n+t)X(m+t)x*(m+n +2t).
n,m=1

Lemma 2.2. For any 1 <t < g, we have

Proof. Since

1 1 ;
(2.4) == Z nw’™,

forj=1,---,q—1, it follows that

Lemma 2.2 now follows from (2.1). O



Lemma 2.3. If1 <k <gq, then

(2.5)

qg—1
Z nm —%(q —6q — 1+ 6k + 3qgk — 3k?).

n,m=1

k+n+m=0 (mod q)

Proof. This is Lemma 2 in [BC-98]. O

Lemma 2.4. If1 <k <gq, then

nk

q—
1
Z 2=—ﬁ(q +6q + 5 — 12k — 6gk + 6k°).

Proof. This is (3.6) in [BC-98]. O

It is easy to see that

(2.6)

Y@h) = w i wh)

forany 0 <k <qg—1. Welet

then

On the other hand,

and similarly

q—1
Z x(n +t)x(m +1t)

nm:

qg—1
||ft||4 / |ft 270 |4d0 / 27rzk9 do

k——(q 1)
= Z lekl* = leol® + 22 lex |-
k=—(g—1)
2
1 q—1 g—1 q—1
MM CHEDY Y x(n+t)x(m+1)
q k=0 k=0 n,m=0
n—m=k (mod q)
q—1
= leol” + Y lex + Tl
k=1

1 qg—1 q—1
I = ol + D Jer — Tl
q k=0 k=1



Thus, we have

q—1 qg—1
27 WA = 5 {Z @+ |f;(—w’“)|4} :
q k=0 k=0

In view of (2.1) and (2.6), the first summation in (2.7) is ¢>(g — 1). We are going to evaluate the
second summation in (2.7).

For1<t<qgand 0 <k <gqg—1, we have

qg—1
FHN (=) = D x(n+ g — t+ 1)(-wF)"
n=0
= (—w —(g—t+1) { qz + qZ

n=t

} x(n)(—wk)"
n=q—t+1
1 t—1
:(_ —(g—t+1) { Z+Z}X n)(_wk)q—n
n=1
= (k) @Dy (1) (—w { )
= w Fx(-1) fL(—w").

In particular, we have | ff(—w")| = |2~ (—=w*)| for 0 < k < ¢ — 1 and hence from now on we may
assume 1 <t < (¢ +1)/2.

5o

t—
n= =t

We employ an interpolation formula as in [Hg-88, BC-98] which is

28) SO (M)t = g(A+B +C+D)
where
1 =
A= 2@+ I
a=0
2 el ) , ey — w® + Wb
p=T X IREIPEEIAERS + HFED) (=55)
a#b

c--2% 2|f§(w“)|2< ;‘(wb)f’t‘(wc)“”"+fi<wc)fi<wb>W“+c>

(@h =) (" — w?)

2§ RETEORE + R R
4

(@ = W) = wr)

a,b,c:O
a#b
¢ S AU PIFL )P0 + fLwh) FLw 2w + fL(w?)? fL(wh)2w?
b= _Z a,zb;0 (W — wb)?

a#b
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We can further simplify the terms B,C and D. For the term B, we have

Fwhw? (@ + ')

2 i
B:%éﬁ Zlft |2f( )

a,b=0 (wa_wb)2
a;éb
9 q—1 q—1 2 h a=b 1
= —%% Zo|f§(wa)|2 ;(w“)bz fX(r:)a)((:_ 172 )
a=| =0
b#a
TN CE NSRS
(2.9) = _E%{a:0| ;(w )2 ;(W )/; [k — 1|2 }

Similarly, we have

= Sy (we L

C=) |fiw >|2{Z X Z e
a=0 k=1

2 g—1 q—1 ft(wa k 1 — ))2
_%%{Z(;(w“)y{(Z wk =1 ) Z wk_l }}

=1

and

q-1 wa—kY|2 2 9—1 =1 (et a—k\\2
D=¢") |fw) Z'ﬁ’;k 1|)2' —%%{Z(ﬂi(w“))? 7(12’;(5} - 1))3 }

a=0 a=0 k=1

Thus,

(2.10)
g—1 q—1 rt( a—k 2 g—1 q—1 ¢t

C+D:q22|f;(w 2ZfX(w_1) _%%{Z(ft(wa)P(wa(k_l)) }

a=0 k=1 a=0 k=1

We now evaluate A, B and C' + D separately. Using (2.1) and (2.6), we have

¢ (g—1)(¢*+2)
(2.11) A= i




and
g—1 4k k
B w *x(a—k)(w* +1)
B=- {ZX ) ok — 12
k=1
91 —th(
w w +1)
2 Z —1P ZX }
|
k=1
_q“m{ql Lf”“(w +1)}
~ 9 E_ 1|2
2 = |wk — 1|
¢ {_1 wkt(wk+1)}
=75 (F —1)2
2 = (wk —1)
:_%4%{ lwkt_llc_wkl(t—i-l)}
o W
4
(2.12) - %(qQ +3q+2— 6t — 6qt + 6t2)

by (2.1), (2.6) ,(2.9) and Lemma 2.4. Here we have used the fact (see Lemma 2 in [CGP-98]) that

a1 _(g¢—1 ifk=0 (mod q)
(2.13) ;x a)x(a—k) = { -1 ifk#0 (mod g).

Using (2.1), (2.4), (2.6), (2.13) and Lemma 2.2, the first term of (2.10) equals

2

2 X( k)
a-|m(x | Z|X ZW
k=1
e lla-l 1y ?
w a—k
:q4z Z 3’6(—1 )
a=1 |k=1
) q—1 Wtk=0) {§ S
=q p -~ x(a —k)x(a—1) = x(k)x(0)
i WD =1
g1 g1 2 1
1 w wx (k)
_5 4 4
q Z|wk 1z~ ¢ Zwk 1 ) oF —1
k=1 k=1 k=1
5¢.2 1
_4 (q12 ) qt (q t )
- D@ -2+3) , [ 2
(2.14) = 5 +a'a-t(t—1)—¢|D nx(n+1)
n=1

It remains to evaluate the second term in (2.10) and using (2.1), (2.4) and (2.6) again, this is equal



to

q—1 1 ¢—1 g¢-1 1 2
ére{ o (L mae o - ) }
q—1 1 q—1 S 2

R x*() (5 nwt (W) - %x(co)

_ %9% {‘1_ X2(a) (% qi nw“(t+")X(t + n) — ('Ig—]-W) } .
=0 n=1

a

We now multiply the inner square out and interchange the order of summation and get

—-Lyp {T(x) qi nmx(n +t)x(m +t) qi X (a)w“(”"‘“”}

n,m=1 a=0

I {@ : nx(n +1) ;x(a)w‘l("“)}

n=

2 . 4/ 1y 971
- _ %%{T(X)2T(Y2)H(X;t)} . q4(q8 1)3 + q (CI2 1) Zn|x(n+t)|2
¢ _ ¢*(¢—1?° ¢'(¢—=1) (qlg—1)
= TR {0 H () - LIS TUZD (1021 ()
(2.15)
=~ LR {00 ) + LOTNED Ly,

Here we have used the fact that x? is not a principal character for non-real x and hence (2.1) can
be applied. Therefore, from (2.8), (2.10), (2.11), (2.12), (2.14) and (2.15) we have

2

q—1 qg—1
. 1 16 8 —

|ff<(—uﬂ)|4 = 5(11q3 —39q° +4q+48qt —24t*) — " Z nx(n+1t)| — q—2§R {r(x)*r(x*)H(x,t)} -
j=0 n=1
Finally, from (2.7), we conclude that

1 8 <= Ty
I£LN% = 3—q(7q3 —21¢% + 2q + 24qt — 12¢*) — 7 D nx(n+t)| — q—3%{r(x)2f(x2)H(x,t)}
n=1

and completes the proof of Theorem 2.1.
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3. ASYMPTOTIC FORMULA FOR L4y NORM

In this section, we are going to prove the asymptotic formula for the L4 norm of character polyno-
mials. In view of (2.3), we need to estimate the following character sums H(x,t).

Theorem 3.1. For any non-principal and non-real character x modulo ¢ and 1 <t < ¢, we have

¢1(x%)?

(3.1) H(x,t) = 500 + 0(¢®log® q)

where the implicit constant is independent of t and q.
Using (2.3), we obtain the following result immediately from (3.1).

Theorem 3.2. For any non-principal and non-real character x modulo ¢ and 1 <t < ¢, we have

4
£ @3 = 34° + O(¢*/*1og” q)
where the implicit constant is independent of t and q.

Proof. Theorem 3.2 follows from Theorems 2.1 and 3.1 on observing that

1 q—1 t—1 1 g—1
— Y nx(n+t) =Y x(n)+ =Y nx(n).
q n=1 n=1 q n=1

This is coupled with Pélya’s inequality (see Theorem 8.21 in [Ap-80])

t—1
> x(n)

and on using partial summation formula, we have

qg—1
> nx(n)

< q% log q

< q% log q.

O

S

When g is large and 3332 < I < 3"{5/5, then ||f€_)(z)||i < 3¢ < |IFL(2)[l- So the shifted character

polynomial for the real character usually has the smallest L4 norm among all the other characters
modulo q.

Lemma 3.3. For any character x modulo q¢ and 0 <t < g —1, we have

H(x.t) = ¢ S X(m)x*(m + 1) § {”T_t} {”mq— t}

m=1 n=1



11

where {x} is the fractional part of x.

Proof. We first observe that ¢ {%} is the least non-negative residue of n modulo ¢. It follows that

H(x,t) = qi nmx(n + t)x(m + t)x*(m +n + 2t)

n,m=1

= ¢ qi {Z} {%}y(n+t)x(m+t)x2(m+n+2t)

n,m=1

S {2 e n +n)

q

as claimed. O

Lemma 3.4. For any non-principal character x modulo q, we have

x(m) :%%; otherwise,

q e if x(n) = (2),
ZY(“))@ (n+m) =x(m)J(x,Xx) = { ( ) ( )
where the Jacobi sum (see Chapter 2 of [BEW-98]), J, is defined as
JO6¥) = Z x(n)y(1 —mn)

n=1

for characters x and ¥ modulo q.

Proof. Let
q—1
Gm =) X(n)x*(n+m).
n=1
If (m,q) =1 then
qg—1
G = 3 X(rm)x (s + m)
n=1
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Hence
- q%l X(m) Y- x(n — m)x*(n) = q—% 2 XM > X(m)x(n —m)
= ﬁ ngl x%(n) mZZI X(mn)x(n —nm) = qi—l 22 x(m)x(1 —m)
= > X(m)x(1 —m) = J(X,X)

Lemma 3.4 follows from this and Theorem 2.1.1 and 2.1.3 in [BEW-98]. O

Let ¢(z) be the well-known saw-tooth function of period 1 which is defined by

{z} — % if z is not an integer,

v(o) = {

0 otherwise.
For any coprime positive integers h and k, let
ul n hn
o= £ (%)

be the usual Dedekind sums. One of the most important properties of Dedekind sums is the reci-
procity law. For estimation of the shifted character sums, we need to consider the generalized
Dedekind sums which are defined by

s(h,k;z,y) := ilﬁ (n—,:y) (2 (h(n,: y) +:c>

for any coprime positive integers h,k and any real numbers z,y. The generalized Dedekind sums
also possess a reciprocity law (e.g. p. 64 in [GR72]):

s K5 2,) + (ki) = = 35()8(0) + Y(@)b()

1/h 1 k

where ¥a(x) = Ba({z}). Here Ba(z) is the second Bernoulli polynomial and

1 if z is an integer,
() := .
0 otherwise.

As a result of the reciprocity law, we have the following lemma.
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Lemma 3.5. For any positive integer d and any real numbers x and y, we have

d
Z s(n,d;z,y)| < dlog” d.

(=1
Here the implicit constant is independent of d,x and y.

Proof. When z =y = 0, Lemma 3.5 is just Lemma 6 in [CFKS-96]. For the general case, we may
assume 0 < z,y < 1 and on using (0.6) and (1.2) in [Kn-77], we have

d d
Yo lstndszy)| < Y Jo(n,diny + do)| + ¢(d)
(”:ld:)l:l (nnci:)1—1

< Z a(n,d; [ny + dz])| + ¢(d)

(n,d):l

where o(h, k;c) = 12 Zizl V(%)Y (%) and [z] is the integral part of . Then from Theorem 2
in [Kn-77],

d d
> Isndzy) < D N(n,d)+¢(d)
(m=1 (=1

where N(n,d) is the sum of all quotients of the continued fraction of n/d with 1 < n < d and
(n,d) = 1. Now using the results from Knuth and Yao in [KY-75], we have

d
> N(n,d) < dlog’d

n=1
(n,d):l
and this proves our lemma. [O
In view of Lemma 3.3, H(x,t) can be in terms of generalized Dedekind sums.

Lemma 3.6. For any non-principal and non-real character x modulo ¢ and 0 <t < q—1, we have

16t = S50 4 5 e+ s (m s "2 0) + 00,

m=1

Proof. Since
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it follows from Lemmas 3.3 and 3.4 that

Ht) = Z_ X3 (m + 1) Z (¢ (2=1)+3) (v (™=t) +5) +o@)

n=1
-5 +q2; ”:i‘b () v () +ou)
- f:((;); v mf né‘” (3)» (5 +ow
s z_j +0s (ms =2 0) 4 0l

where mm = 1 (mod q). This proves Lemma 3.5 O

Theorem 3.1 now follows from Lemmas 3.5 and 3.6.

4. EXPLICIT FORMULA FOR THE AVERAGE OF L4y NORM

We consider the average of the Ly norm of ff( (2) over all the characters modulo ¢ and prove the
following result.

Theorem 4.1. Let q be a prime number. We have

Y Al = ¢ -3)(a-1)?

x (mod q)
where the summation is over all characters modulo q.

Lemma 4.2. We have

q—1 2
1
Z an(n +t)| = Eq(q —4¢% —Tq — 2 + 12tq — 12¢* + 12t)
x#xo In=1
where Zx#xo is the summation over all non-principle characters modulo q.

Proof. Using the orthogonality of characters, the summation in Lemma 4.2 equals to

Z ann+t ZnXO (n+1t)

X (mod q) In=1
2
qg—1
- Z wmo Y x(HxmAH - | Y n
nym=1 x (mod gq) n&?h
q—1 2
9(q—1)
= -1 2 - - -
(¢=1) > n ( 7 t)>
n=1
n#q—t

1
—Eq(q —4¢® —Tq — 2 + 12tq — 12> + 12t)
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as claimed. O

Lemma 4.3. For1<t< qzil, we have

17, )l = 2

19
3q3 —2¢% + 54~ 5 — 4tq + 4t°.

Proof. Let

qg—1—1
= Z xo(n +t)xo(n +t+1)
n=0
for0<l<q—1.Ifqg—t+1<1<¢g—1, then xo(n+t)
and so ¢; = ¢ — . Similarly, we have ¢, = q¢—1—1if ¢
Hence we obtain

xo(n+t+l)=1foranyn =0,--- ,q—1—1
l

<l<g—tandg=q—-1-2if1<I<t—-1.

g—1
1f5. @i =g +2) lal
=1

t—1 q—t qg—1
=(@-1"+2 (> (¢=1-2"+) (¢-1-1)>+ > (¢-1)
=1 =t I=q—t+1

2 19
:§q3—2q2+?q—5—4tq+4t2. O

In view of Theorem 2.1, we need to consider the summation

S 0 H ).

x mod g
XX #xo0

From (2.1), we know that if x is non-principal, then

qg—1

(1) rOOPTEOHOG = 3 mmfy @™ f ™) fes (@),

n,m=1

Lemma 4.4. Let 1 <t < %. We have

qg—1
Soom 3 F W) f @) fra (W)
n,m=1 x (mod q)
2
~1
= %(3(13 —7q® +15¢ + 1 — 12qt — 12t + 12¢2).
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Proof. Let ) be the above double summation. By interchanging the order of the summation, we
have

Z Z nm Z w(b+a)(n+t)+(c+a)(m+t)zx

n,m=1 a,b,c=1
q—1 qg—1
=@-1 Y nm Y wlramoterotniy
n,m=1 a,b,c=1
a?=bc (mod q)
q—1 g—1
=(¢g-1) Z nm w(b+a)("+t)+(a25+a)(m+t)
n,m=1 a,b=1
g—1 q—1
=(g—-1) nm Z o (bFab) (n+6)+((ab) *b+ab) (m+t)
n,m=1 a,b=1
q—1 g—1
=(@-1) nm e (mAt)+a(mtnt20)+(ntb)}
n,m=1 a,b=1

where bb = 1 (mod q). Consider the congruence equation (m +t) X2+ (m+n+2)X + (n+t) =0
(mod ¢q). Then it is easy to show that the number of solutions of the above congruence equation in
X=12---,9q—1is

2 f(m+t,q) =n+tq) =1and m#n,
1 if (m+t,q)=(Mn+t,q) =1and m=n,
N(m,n,t) =
1 f(m+t,q) #1land (n+t,q)=1or (n+t,q)#1and (m+1t,q) =1,
g—1 if(m+tq),(n+tq #1
Hence
qg—1 qg—1 /q—1
Y= Y my (zwbw<m+t>+a<m+n+2t>+<n+t>} - 1>
n,m=1 a=1 \b=0
g1 2 4
(g — _ele-1)7”
=q(q 1)n%;1nm x N(m,n,t) 1
- - - ¢*(¢ — 1)*
=q(g—1)|2 Z nm + 2n2+22n(q—t) (g—=D(g—-1t)°| - 1
RN AN
(g —1)

= "5 (3¢® = 7¢> + 15¢ + 1 - 12gt — 12¢ +12%). O

Finally, we need to evaluate the right hand side of (4.1) when x(n) = (%) and x(n) = xo(n). If
x(n) = (%), then (see Theorem 1.5.2 in [BEW-98])



17

and 1 ifk=0 (mod q)
q— if k=0 (mod q),
o ={ 7",
-1 ifk#0 (mod q).
Thus,
q—1
Z nmfx (wn+t)fx (wm+t)f72 (wm+n+2t)
n,m=1
qg—1
= Z nm fy (wn+t)fx (wm+t)f)co (Wm+n+2t)
n,m=1
g—1 2 q—1
= Z nfx(wn+t) +q Z nmlfx(wn+t)|2
n=1 n,m=1
n+m+2t=0 (mod q)
2
1\ (22 /n+t iy
=—q(—) Zn(—) +q° Z nm — (q—1t)?
q n=1 q n,m=1
n+m+2t=0 (mod q)
q? -1 ! n+t ’
(4.2) :E(q3 —12¢° — q + 24qt + 6¢%*t — 12qt> — 6t%) — ¢q (7) Z n (T)
n=1
from Lemma 2.3. Similarly, we have
(4.3)
q—1

2
D nmfy (W) i (W) frgr (W) = (11—2(12q3—25q2—18q—5+72qt+36t—60t2—24q2t+12t2q).

n,m=1
Therefore, Theorem 4.1 follows from (2.2), (2.3), Lemmas 4.2-4.4, (4.2) and (4.3).
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