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ABSTRACT. We give explicit formulas for the L4 norm (or equivalently for the merit factors) of various
sequences of polynomials related to the Fekete polynomials

= F(8)

k=1

where (E) is the Legendre symbol. For example for q an odd prime,

5¢° 4
1£alld 1= 25 = 8¢+ 5 — 12(h(~q))?

where h(—gq) is the class number of Q(y/—¢). Similar explicit formula are given for various polynomials
including an example of Turyn’s that is constructed by cyclically permuting the first quarter of the
coefficients of f;. This is the sequence that has the largest known asymptotic merit factor. Explicitly,

where [-] denotes the nearest integer, satisfies

792 1
RylP="% —q— = —
N
where
h(—q)(h(—q) —4) if ¢=1,5 (mod 8),
Vg =4 12(h(—q))? if ¢=3 (mod 8),
0 if ¢=7 (mod 8).

Indeed we derive a closed form for the L4 norm of all shifted Fekete polynomials

-1
o= 5 ()

Namely

1 8 1/-1\\ | /n+t
15411 = 560 + 30+ )+ —agr—si— 5 (1= (TH)) [0 ("))
1

— 1 .
and ||f¢TUIE = IFI§ if 1 <t < (g +1)/2.

1. INTRODUCTION

The main purpose of this paper is to give explicit formulas for the Ly norms (on the boundary of
the unit disc) and hence, also the merit factors of various polynomials that are closely related to the
Fekete polynomials. These allow us to explicitly recover various asymptotic results and to derive
various new ones. These are all related to the old problem of constructing sequences of polynomials
with coeflicients in the set {+1,—1} and with small Ly norm [Bo-98].
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As usual the L, norm on the boundary of the unit disc is defined by

1 2w "
ol = (5 [ ey ao)

The Ly norm of a polynomial is particularly easy to work with because it can be computed as the
square root of the Lo norm of p(z)p(z) and hence, computes exactly as the fourth root of the sum
of the squares of the coefficients of p(z)p(z). In contrast, the supremum norm or other L, norms,

where p is not an even integer, are computationally difficult.

1/a

Let ¢ be a prime number and let (E) be the Legendre symbol. We now define the particular
polynomials we consider. The Fekete polynomials are defined by

=51

k=1

and the closely related polynomials

k=1

If we cyclically permute the coefficients of f, by about ¢/4 places we get an example of Turyn’s

which we denote by
g—1
k+[q/4
R,(2) := Z <7[ / ]) P
k=0 q

where [-] denotes the nearest integer, and we denote the general shifted Fekete polynomials by

fo=3 (E)

k=0 1

Note that R has one coefficient that is zero (from the permutation of the constant term in f). For

example

fiu=—20+2° -2 —2" -2+ 2t + 2P -2+

and

4

Riyi=—2C 42— 2"+~ -2+ 22+ 2+ 1.

The explicit formulas involve the class number of the imaginary quadratic field of Q(v/—d) which is
denoted by h(—d). For any odd prime d it can be computed as

(d-1)/2
(1) m-d=x Y (5) -0F =2Ga-y
k=1



where
1 if d=1,7 (mod 8),

Aa:=< —1/3 if d=3 (mod 8),
-1 if d=5 (mod 8).

For primes d = 3 (mod 4) it can also be computed as

, a1
(1.2) h(—d) = _fdc(ll) - _% (E) k

(this sum is 0 for d = 1 (mod 4)).

We call a polynomial with coefficients {+1, —1} of degree n a Littlewood polynomial of degree n and
denote this class by £,,. The above polynomials are either Littlewood polynomials or differ from
Littlewood polynomials in a single coefficient.

There are two natural measures of smallness for the Ly norm of a polynomial p. One is the ratio of
the Ly norm to the Ly norm, ||p||4/||p||2. The other (equivalent) measure is the merit factor, defined
by

ol
MF = <
®) = 1 =

The Ly norm of any element of £, is v/n and this is, of course, a lower bound for the L, norm.
The expected L4 norm of an element of £,, is computed in [BL-01] (see also [Ne-90]). Tt is 2'/4y/n.
(This corresponds to a merit factor of 1.) The L4 norms of the Rudin-Shapiro polynomials are
explicitly computed by Littlewood [Li-68] (see also [Ne-90] and [BM-00]); their merit factors tend
to 3.

The {R,} above are a sequence with asymptotic merit factor 6. Golay [Go-83] gives a heuristic
argument for this observation of Turyn’s and this is proved rigorously in [Hg-88] (see also [Je-91]).
The Fekete polynomials themselves have asymptotic merit factor 3/2 and different amounts of cyclic
permutations can give rise to any asymptotic merit factor between 3/2 and 6. This result is recovered,
in more generality, in Theorem 6. We also show that the half Fekete polynomials have an asymptotic
merit factor of 3. Much material on the Fekete polynomials may be accessed in [CGPS-98].

Golay [Go-83] speculates that 6 may be the largest possible asymptotic merit factor. He writes “the
eventuality must be considered that no systematic synthesis will ever be found which will yield higher
merit factors.” Newman and Byrnes [Ne-90], apparently independently, make a similar conjecture.
As do Hgholdt and Jensen [Hg-88]. Computations by a number of people (including the authors) on
polynomials up to degree 200 lead us to believe that higher merit factors are likely possible. See [Go-
77], [Me-96], [Re-93], and the web page of A. Reinholz at http://borneo.gmd.de/~andy/ACR.html.

The Fekete polynomial f, has modulus /g at each gth root of unity (as does f(f) and one might hope
that they also satisfy the upper bound in Littlewood’s conjecture but Montgomery [Mo-80] shows
that this is not the case. Littlewood’s conjecture is that it is possible to find p,, € £,,_1 so that

C1vn < Ipn(2)] < Cov/n

for all z of modulus 1 and for two constants C;, Cs independent of n. Much further material on this
conjecture is to be found in [Li-68], [Be-91], [Ka-80], [Sa-90] and [Bo-98].

Further research in this area has been done in [BC-00] and [BC-01].
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2. RESULTS

The main result of this paper is Theorem 5 below. Theorem 1 and Theorem 4 follow immediately
from Theorem 5. While Theorem 2 and Theorem 3 are sufficiently close in methodology that we
skip their proofs.

Theorem 1. For q an odd prime, the Fekete polynomial,

o5 (5

k=1
satisfies

5q2 4
||fq||i =3 - 3q + 3 —Yq

where
_J0 if g=1 (mod 4),
Yo { 12(h(—q))* if ¢=3 (mod 4).

Theorem 2. For q an odd prime, the modified Fekete polynomial,

=1 4
satisfies
5¢> 5
||Fq||i=?+ —3 "M
where
__{0 if ¢=1 (mod 4),
YTV 12h(—q)(h(—) + 1) if ¢=3 (mod 4).

Theorem 3. For g an odd prime the half-Fekete polynomials

G- 3 ()

k=1
satisfy ,
q q
IGqllz = 373"

where
0 if g=1 (mod4),
Yg:=14 2 i g=T7 (mod8),
6 if ¢=3 (mod8).

The exact same formulae above hold for the polynomials (fy(2) + fq(—2))/2 and (f4(2) — fe(—2))/2.
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Theorem 4. For q an odd prime, the Turyn type polynomials

qz(k‘"[CI/‘l) k

where [] denotes the nearest integer, satisfy

7 2
1B =T =2 =,
and
h(=q)(h(—q) —4) if ¢=1,5 (mod 8),
¥y := < 12(h(—q))? if ¢=3 (mod 8),
0 if ¢=T7 (mod 8).

Theorem 5. For q an odd prime, the shifted Fekete polynomials
qg—1
k+t
- ()
k=0 q

satisfy

_ 2
n\—- ’
q

n=1

8 1/-1
||fq||4— (5q +3q+4)+8t2—4qt—8t—q—(1—5(7)>

and ||fI~ T =1/l if 1<t < (g+1)/2.

The distribution of the values of the Fekete polynomials f,(z) at the 2gth roots of unity is of
particular interest. In [Mo-86], Montgomery shows that the maximum modulus of f;(2) at the 2¢qth

root of unity is at least %\/ﬁlog logq. More recently, Conrey, Granville and Poonen examine the
e ). The following result concerning the average of

distribution function of the values of f,(—
fq(—ey) is a step in the proof of Theorem 5.

Corollary 6. For q an odd prime, we have

-
~
|
®
]
z
Wl@

(7 —8)(g —1) — 2q7,

where 7y, 1s the same as in Theorem 1.
Theorem 7. For q an odd prime, the shifted Fekete polynomials

k=0



satisfy
_ 5q2
L7l = 172+ = 2L + 8 gt + O(a(log 0)?)

if1<t<(g+1)/2.
Theorem 7 follows from Theorem 5 on observing that

(M) - (2) 150 (1),

n=1 n=1

This is coupled with the known estimate [Hu-82, p 172]

k-1
> (%)
n=1 q
20 (5)
_z nlZ
2="\G
equals the class number, h(—q), for primes ¢ = 3 (mod 4) and is zero for primes ¢ = 1 (mod 4).

The asymptotics of Turyn et al mentioned previously are the above theorem in the case where t is
a constant multiple of q.

<q*logq

and the observation that

3. PROOF OF THEOREM 5

Let ¢ be a prime number and, as before, let

=5 (3)

n=1
be the Fekete polynomial. Define

__{1 if ¢g=1 (mod4),
Tt g =3 (mod 4).

Then we have the following well-known result of Gauss’ [Hu-82]
i k
(3.1) fow®) =eva{ )

for k = 0,1,' s ,q— 17 where w := e27ri/‘Z_
Lemma 1. For any 1 <t < q, we have

(i (b) wbt €q (i <n+t>
| ——==—F%)>) n{—).
b _
q)w=1 g7 q

b=1
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Proof. First we note that since Y9_} 2" = z=1  we have
1 _
s _ =D =2
2 o1
Thus, we obtain
-1
1 1% ;
_ - in
(3.2) wj_l—anw )
n=1

for j=1,---,¢g— 1. Using (3.2), it follows that

q—1 q—1 q—1
B -EQHE
p—1 N1/ W =1 4 ot
g—1 gq-—1
= 1 Z n (9 wb(n+t)
175 =1 N
1 = n—+t
=-) nfy(w")
q n=1
Lemma 1 now follows from (3.1). O
Lemma 2. If 1<k <gq, then
qg—1
(3.3) 3 nm = L(¢? — 6q — 1 + 6k + 3¢k — 3k?).
n,m=1 6
k+n+m’EO (mod q)
Proof. Suppose 2 < k < ¢q—2. Then
g—1 qg—k—1 g—1
Z nm = Zn(q—k—n)—l— Z n(2q —k —n)
n,m=1 n=1 n=q—k+1
k+n+m=0 (mod q)
qg—1 qg—1
~Ynlg—k-m+g ¥
n=1 n=q—k+1

- %(q2 — 6 — 1+ 6k + 3qk — 3k?).
The cases k = 1,q — 1 and ¢ can be verified directly. O

Lemma 3. If 1<k <gq, then

g—1 a—b)k

w( 1
(34) z m:—E(q—Q)(q2+6q+5—12k—6qk+6k2)
a,b=1

a#b



Proof. The summation in (3.4) is equal to

g1 g1 (a—b)k
9%
-S{E 5 }—()
a=1 \b=1 b=a+l
q—1a—-1 qg—1g—a—1
=22 _12+Z > oo
a=1 n:l a=1 n=1
a=1n=1 (wn - 1)
n#a
g1 wak
(35) -2Y
a=1
We now apply (3.2) and Lemma 2 to obtain
q—1 q—1
ank Z abwn(a+b)
a:l a,b=1

1 = q—1
— _2 Z ab Z wn(atb+k)
=1 n=1

q—1

1 (g—1)°
T4 Z ab— =
a,b=1
k+a+b=0 (mod q)
1
(3.6) = —E(q2 + 6q + 5 — 12k — 6gk + 6k?).

Lemma 3 follows from this and (3.5). O

As before let f;(z) be the shifted Fekete polynomial obtained by shifting the coefficients to the left
by t where 1 <t <g. So f#(z) = fy(2). Then we have

(3.7) fowh) = w ™ fe(wh)

for any 0 < k < ¢ — 1. We are going to evaluate the following summation

| fa(=wP)|".



For1<t<qand 0 <k <gq-—1, we have

gt (k) = § (” +g—-t+ 1) (—wk)n
q

n=0

(3.8) =wk <_—1> FH(=wk).

In particular, we have |fI(—w*)| = |f7~**(—w*)| for 0 < k < ¢ —1 and hence from now on we may
assume 1 <t < (¢ +1)/2.

We use the basic approach of [Hg-88] which is by interpolation at the 2gth roots of unity. Using the
Lagrange interpolation formula at the gth roots of unity, we have

11

Z w’f (W)
i
It follows that
g—1 1 4
16 -
t 4 _ 10 t
Do > Jzowkwgf( )
16 = _
> W) Fiwh) fiw) filwhw e
abcd 0
ol wk 1 wk

1
xE .
k_owk+w“wk+wbwk+wcwk+wd

We then group the terms in the above summation over a, b, ¢ and d by the following cases:
(1) a=cand a#b#d,
(2) a=b=c#d,
3) a=b#c=d
(4) a=b=c=d,
(5) a#b#c#d,

and we obtain the following formula from [Hg-88]

(3.9) Z|ff —wP 6(A+B+C+D)



where

11

qg—1
A= 5@+ D LA
— i g—1 t w? t t wb t w? £t wb w? M
5= X IS + 1 (o)

b
c--T 5y ft(w“)|2< §W (@) + fi(w )f;<wb)wa+c>

(WP =) (wr = wr)

AT 9 Y (O Py AT D HCD VAT M
4

(@ = W) wr = wr)

a,b,c=0
aFb#c
O = o e #1011 #1001
g (wa_wb)2 .
a,b=0
aF#b

Here A, B, C and D are the sum of terms according to the above cases (1), (2), (3) and (4) respectively
and the sum of terms corresponding to the case (5) is zero.

We now evaluate A, B, C and D separately. Using (3.1) and (3.7), we have

(3.10)

and

A= Ta-1@+2)
48

5o f § 2 a_b (Wat—bt+b 4 y—at+bta) (e 4 ,b)
4 a,b=0 q (W —we)?
a#b
B e S (ab) watfbt+b(wa+wb)
2 it q (wb _wa)Q
ab
gt ! 1 la—b)t 4 9-1 b (a—b)t
—__Z< )7+q_z(“_)w7
S \a) =1 T g ) oy
a,;éb a#b

— % {=Bi(w) + B2(w)}.
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It is clear that B;(w’) = B;(w) and Ba(w?) = By(w) for 1 < j < g— 1. Thus
q4 ! . a1 .
B = — Bq (! Bo (W
|- S g
-1 -1
_ q* q (a_b) g wila—b)t { ( :) _ ( :) }
— i(a—b) _ 1)2 j(a—b) _ 1|2
2¢-1) 5 \a/) (wite 12 jwile 1
a#b
__4 S ab q_let 11
-1 2 \a) & -2 1P

. q—1 it
_q wit wd
T2 z; (Wi —1)2 ; lwi — 12

gt )X wit 4 wiltHD)
Y Z (wi—1)2
7j=1
q* @
12
by (3.6). Here we have used the fact that

5 (2)--0on

a,b=1
a#b

(3.11) = +3q +2 — 6t — 6qt + 6t2)

For D, we have

a _ ,,,b)2
a,b=1 (w w )
a#b
g1 Latb 7 =1 2(a—b)t
(3.12) =—q' Py Rk b 12
a,b=1 (we = w?) 2 ab=1 (we=? —1)
a#b a#b
from (3.1) and (3.7). The first sum in (3.12) can be evaluated as follows:
g—1q—1 qg—1¢—1
== o=_iF
a=1 b=1 a=1 b=1 b=
b#a #a
q—1q—
B GZI Z |wk —1)2
ke
qg—1
R
-1
(3.13) = ( )2( )
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To compute the second sum in (3.12), we apply Lemma 3 with k£ = 2¢. Hence using (3.4) in Lemma
3, (3.12) and (3.13), we have

-2
(> +2q + 1 — 8t — 4qt + 82).

(3.14) D=

Finally, we consider the term C. Using (3.1) and (3.7) again, we obtain

q4 9—1 be 2w—bt+ct+a+b + 2wbt—ct+a+c + w—2at+bt+ct+2a +w2at—bt—ct+b+c
c=-L xx
4\ (W — w)(we = w?)
a#b#c
g-1 —bt+ct+atb 4 g-1 —2at+bt+ct+2
4 (bc) w ct+a+ q 5 be w—2at+bi+ct+2a
- 5 (% -gel 5 (%
2 ) wrmaner—en T2 2 V) @ wmer — o)
aFbF#c aF#b#c

Both ¢; and ¢z can be evaluated in the similar way. From (3.13) and Lemma 1, we have

e g—1 Latb

wb — we

o
&
|
|
5
= =
_
|
-
/N
| o
S~~~
|
Q
™
Il
—-
—~
€
o
|
€
=]
S—r
V)

S
Yl
Q=
)
*
>

LY (@ =1 =2)

Il
|
T
M1
_
L
S
Ko
~

wb — we + 12 +
a=0 |b=1 b=1
b#a
2 2
g—1|q—1 b(1—t) 2 g—1
b\ w @ -1(@g-2) 1 t+n
(3.16) —-Y X () | s (2
a=0 n=1

Sy
Yl
Q-
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To evaluate ¢;, it remains to consider the first summation in (3.16). Using (3.1) and (3.2)

2 2
P b al| - L a—
a=0 | =1 1/ w w a=0 |b=1 q 1 w ’
b#a b#a
2
1 qg—1 |g—1 q—1 b
— 52 L Y (2w
q a=0 |n=1 =1 q
b#a
g a ?
== nw® {fp(w—(n—i-t)) _ (_) wa(n+t)}
q a=0 |n=1 q
2
142 (—1) i an (n+t> q(g—1) (a) —at
== gl — )€ nw - —|w
qz a=0 \/_ q qngl q 2 q
2
180 t —1)3
_1 nwan(nJr) +(CI4)
q a=0 |n=1 q
(3.17) € ¢—1 <_1) q_ln(n+t)f(w"+t)
- - q — - q -
\/a q n=1 q

The first term in (3.17) is equal to

n,m= a=0
q—1 2
t
-3 (")
n=1 q
qlg—1)(2¢ - 1)

2

(g (b) WD (g1

oo T @ —2a+3) - (-1t -q)
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and hence from (3.16), we have

(3.18) cFWHt—I)(t—qH%

Similarly, we can prove that

1
c2 = E(—5q2 — 6q — 13 + 24tq + 48t — 48t*) — (t — 1)(t — ( )

Q| =

5]

and therefore from (3.15) and (3.18), we have

(3.19) C= %(q +20+1+122 — 4qt—12t)—q3(1 %( ))

qzl <n+t>

n

As a result, from (3.9), (3.10), (3.11), (3.14) and (3.19) we have

. 16
(3:20) Yo |ff(-w)l* = %(7(12+9q+8+48t2—24qt—48t) -

_
Il |
o =
/N
—
|
N =
/N
|
= | L
N—
—

.

Finally, since
1 g—1 q—1
£l = % {Z THCRIEDY Ifﬁ(—wk)|4}
q k=0 k=0
1 =
=% {qz(q RS |f§(—wk)|4} ;
k=0

by (3.1), so from (3.7), (3.8) and (3.20), we conclude that

_ 2
= (n+t>‘
2~
n=1 q

8 1/-1
I1felld = = (5q + 3¢ + 4) + 8t —4qt—8t—q—2(1—§<7>>

and || £ |3 = [|fEl3 for 1 <t < (g +1)/2. This completes the proof of our Theorem 5.

To prove Corollary 6, we put ¢ = 1 into (3.20) and use the fact that

2o () -5 ()

n=1 n=1

We now come to the proof of Theorem 4. We first have the following lemma.
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Lemma 4. Let q be a prime and ¢ > 3. Then we have

[4]-1 sh(—¢)—1 if ¢=1 (mod 4),
(ﬁ) =0 if ¢=3 (mod 8),
nm1 N4 h(—q) if ¢=7 (mod 8).

Proof. We write ¢ =4k + a if ¢ = a (mod 4) where a is either 1 or 3. Consider

When ¢ =1 (mod 4), then [{] = k¥ and G(1) = 0 and hence from (1.1)

[4]-1 ‘
> () =3 (0 enn- ()
“ v (3) 0

= %h(—q) -1

(5)-()-(4)-(59- ()

When ¢ = 3 (mod 4), then [{] = k + 1 and we have

DN =

because

£ (1) -3 mren
-3 3) {2 (3)) r-a+ -n-0
5 {(- (o o)
=2 (U0 ()) 5 fre
and our result follows from this and (1.1). O

Using (2.1) we have

L () 3 (1)1 (2),

Then Theorem 4 follows from this, (1.2), Lemma 4 and Theorem 5.
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