Some Old Problems on Polynomials
with Integer Cocfhicients

Peter Borwein

Abstract. We survey a number of old and difficult problems all of which
involve finding polynomials with integer coefficients with small norm.
These problems include: the Integer Chebyshev Problem of Hilbert and
Fekete; the Prouhet-Tarry-Escott problem; various conjectures of Little-
wood and various conjectures of Erdos. These problems are unsolved and
most are at least 35 years old. They do however lend themselves to partial
solution and one suspects that they are not, in fact, totally intractable.
They are also all amenable to being computed on and offer some interesting
computational challenges.

§0. Introduction

We break the paper into three main sections as follows:
e Section 1: Integer Chebyshev Problems

e Section 2: Prouhet-Tarry-Escott Problems.

e Section 3: Littlewood Type Problems.

Each section is largely self-contained and there is a substantial bibliogra-
phy that more than covers the material in the paper.

§1. Integer Chebyshev Problems

The basic problem is very fundamental. It is to find a polynomial with integer
coefficients of minimum supnorm on an interval.

Problem 1.1. For any interval [«, 3] find

Qfa, 5] = Jim Qo 4]

where
1
N N
Qnla, [] = min  |jag + a1z + -+ anz ||[a,ﬂ]
a; EZ,an#0
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From

(Qumla, )" < (Qnla, B)" (Qla. b)™ (%)

one can show that

Q[aa ﬂ] = ]\}I—I{loo QN[av ﬁ]

exists. This quantity is called the integer Chebyshev constant for the interval
or the integer transfinite diameter.

On [—2, 2] (or any interval with integer endpoints of length 4) this problem
is solvable because the usual Chebyshev polynomials normalized to have lead
coefficient 1 have integer coeflicients and supnorm 2. So Q[—2,2] = 1. There
are no other intervals were the explicit value is known.

For b — a < 4, Hilbert [49] showed that there exists an absolute constant

¢ so that 1o
b—a
oA 1P| £afa,) < cn 2 :

and Fekete [44] showed that

(Qla,0)" <227 (n - 1) (b v “)m .

Here Z, denotes the polynomials of degree n with integer coefficients. See
also Kashin [60].

One sees from (%) above that
Qla,b] < Q,[a, b]

for any particular n. So upper bounds can be derived computationally from
the computation of any specific ,[a, b]. For example, if we let

po(z) ==

pi(z):=1—z,

pa(z) := 2z — 1,

p3(z) := 5z? — 5z 4+ 1,

pa(z) := 132> — 192 + 8z — 1,

ps(z) := 132 — 202% + 9z — 1,

pe(x) :=29z* — 582% 4 402* — 11z + 1,
pr(z) = 3la* — 612° + 412 — 11z + 1,
pg(a:) = 31z* — 6323 + 4422 — 122 + 1,
po(x) := 9412® — 376427 4 63492° — 58732°

+ 32432* — 108923 + 21622 — 232 + 1,

then we have
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Proposition 1.2. Let

Pyyg :=pS" - pST - p3t - p3 - pa - ps Py prps - Do

Then )
(1P2roll) " = 2.3543...
and hence
Q1)< -t
2.3543 ...
Here || - ||[q,n) denotes the supremum norm on [a, b].

Refinements on the method in [21] give

1
Q0,1]< ———.
0-11'= 55605

This has been further improved in [53] to

Q0,1 < ———.
0,1 = 2.3612...

Of course when the coefficients of the polynomials above are not required
to be integers, this reduces to the usual problem of constructing Chebyshev
polynomials, and the limit (provided any = 1) gives the usual transfinite di-
ameter. From the unrestricted case we have the obvious inequality

b —
Qnla,b] > 2'/m ( - “) .

However, inspection of the above example shows that the integer Cheby-
shev polynomial doesn’t look anything like a usual Chebyshev polynomial. In
particular, it has many multiple roots and, indeed, this must be the case since

we have the following lemma.

Lemma 1.3. Suppose p, € Z, (the polynomials of degree n with integer
coefficients) and suppose qi(2) := arz* + -+ 4+ ay € Z¢ has all its roots in
[a,b]. If p, and qi do not have common factors, then

1/n _
(Ilnllja,e)) ™ > Jag| 1k

From this lemma and the above mentioned bound we see that all of p,
through pg must occur as high order factors of integer Chebyshev polynomials
on [0, 1] for sufficiently large n.

There is a sequence of polynomials that Montgomery [72] calls the Gorshkov—
Wirsing polynomials that arise from iterating the rational function

(1 —x)
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These are defined inductively by
qo(z):=2x -1, q(z):=5z* -5z +1

and

Gnt1 = G5 + qndo_1 — qo_1-

It transpires that

() _ n-1 —dn
u —_ 27.
2¢n—1 — 4n

Each ¢ is a polynomial of degree 2% with all simple zeros in (0, 1), and if b
is the lead coefficient of ¢, then

limb/?" = 2.3768417062.. ...

Wirsing has proved that these polynomials are all irreducible [72]. It follows
now from Lemma 1.3 that

1
Q[0,1] > .
2.3768417062 ...

It is conjectured by Montogomery [72, p. 201] that if s is the least limit
point of |az|~'/* (as in in Lemma 1.3) over polynomials with all their roots in
[0,1], then Q[0,1] = s. This was also conjectured by Chudnovsky in [34], and
Chudnovsky further conjectured that the minimal s arises from the Gorshkov—
Wirsing polynomials in which case s would equal (2.3768417062...)~!. In [21]
we show that

1
Q[0,1] > .
0.1 2 5 5765417000 . €

This shows that either Montogomery’s conjecture is false or the Gorshkov—
Wirsing polynomials do not give rise to the minimal s. This leads us to

Conjecture 1.4. The minimal s arising in Lemma 1.3 does not give the right
value for Q[0, 1].

In [21] we asked whether integer Chebyshev polynomials on [0, 1] have
all their roots in [0,1]. In [53] Habsieger and Salvy show that this can fail,
with the first non-totally-real-factor occurring for n = 70. This same paper
computes extrema up to degree 75. This is a nontrivial computation and
is quite likely NP hard. None-the-less, one suspects that there is a close
relationship between Q[0, 1] and polynomials with integer coefficients and all
roots in [0, 1]. Sorting out this relationship would be of interest.

There is a somewhat related problem that we have called the Schur-Siegel-
Smyth trace problem.
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Problem 1.5. Fix e > 0. Suppose
pn(2) = anz" + - +ag,a; € Z

has all real, positive roots and is irreducible. Then except for finitely many
explicit exceptions,
lan—1] > (2 — €)n.

There are some partial results. In the notation of Problem 1.5 except for
finitely many (explicit) exceptions, a,—; > (1.771..)n. This is due to Smyth
[89]. Previously, in 1918, Schur had shown a,_; > ¢'/?n, and in 1943 Siegel

had shown that a,—; > (1.733..)n .
The relationship this has to integer Chebyshev problems is the following.

Lemma 1.6. If

1
< -
C[0,1/m] < o

then for totally positive polynomials (polynomials as in Problem 1.5),
An—1 Z 6”7

with finitely many explicit exceptions.

This reduces finding better bounds in the Schur-Siegel-Smyth trace prob-
lem to computations on short intervals. From an example on [0,1/100] we
derive

Corollary 1.7. 6 > 1.744.

Smyth has shown that this method can never give the full result of Prob-
lem 1.5, but it would be interesting to see how far it can be taken.

The papers by Aparicio and Montgomery’s monograph provide a good
additional entry point to this subject matter.

§2. Ideal Solutions of the Prouhet-Tarry-Escott Problem

This old conjecture states concisely as

Conjecture 2.1. For any N there exists p € Z[z| (the polynomials with
integer coefficients) so that

plz) =(x — l)Nq(J;) = Spapa’

and

li(p) := Zglak| = 2N.

Note that the degree of the solution is not the issue. The problem is in
terms of the size of the zero at 1. It is a reasonably simple exercise to see that
2N is a lower bound so this would be the best possible result for any N. It is
probably equivalent (though not provably so) to restrict to polynomials with
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coefficients {0, —1, +1}, and in this case we are looking for a p € Z[z] with a
zero of order n at one and with

1Pl Lsg)21=1) = V2N,

What is actually provable is that any solution of Problem 2.1 must have all
coefficients in the set {0, —1,+1, —2,+2}.

An entirely equivalent form of Problem 2.1 asks to find two distint sets
of integers [aq, -+, an]| and [fy, -, On] so that

ar+--+an =05/ +-+ BN
af +--+ak =814+ + 8%

a¥Tl g gl Z gVt L N
This equivalence is an easy exercise in Newton’s equations. The later form is
the usual form in which the problem arises and is stated.

Sets of integers (as above) are called ideal solutions of the Prouhet-Tarry-
Escott problem. Non-ideal solutions are ones where the size of the sets is
allowed to be greater than the number of equations plus one.

This conjecture explicitly goes back at least to Wright in 1935 [99]. It is
not clear why the conjecture is made. There is not a convincing heuristic for
it. Solutions exist for N up to and including 10, and no solutions are known
for any N > 10. For the cases up to 10, except for 9, there are known to be
infinitely many solutions. For N = 9 two solutions are known. (We do not
count as distinct solutions that arise by linear transformation.)

The following gives solutions up to 10. Suppose

O oz PPy — (2 — 1Y),
We write the solutions, as is traditional, in the form

[Oll,...,OZN] = [ﬁlv"'aﬁN]'

Solutions for N = 2.3,4...,10 are given by

[0,3] = [1,2]

[1,2,6] = [0,4,5]

0,4,7,11] = [1,2,9, 10]

[1,2,10,14,18] = [0,4,8, 16, 17]

[0,4,9,17,22,26] = [1,2,12, 14, 24, 25]

[0,18,27,58,64,89,101] = [1,13,38,44, 75,84, 102]
[0,4,9,23,27,41,46,50] = [1,2,11, 20,30, 39, 48, 49]

[0,24, 30,83, 86,133, 157, 181,197] = [1,17,41, 65,112,115, 168, 174, 198]
[0, 3083, 3301, 11893, 23314, 24186, 35607, 44199, 44417, 47500]

= [12,2865,3519, 11869, 23738, 23762, 35631, 43981, 44635, 47488].
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The size 10 example above illustrates the problems inherent with search-
ing for a solution. While it is not known whether this is the smallest size 10
solution, it is the smallest one known, and is far beyond a size findable by
exhaustive searching.

The smaller solutions were found by Escott and Tarry in the early part
of this century. The size 9 and 10 solutions are due to Letac and were found
in the early forties (without the aid of computers). Indeed very little new
on this problem has been found computationally. (See [25] for further survey
material.) The following seems a reasonable but as yet unattainable goal.

Problem 2.2. Design an algorithm to establish whether or not solutions exist
of modest size (say N < 15) and modest height (say 1000).

The following is Smyth’s [91] elegant decoding of Letac’s size 10 solution.
Let

Fio == (" = R*) (t* — R.*) (#* — R3?) (* — Rs*) (* — R5°)
—(#* = R¢®) (t* — R7*) (t* — Rs?) (t* — Ro”) (* — Rio?).
A solution of size 10 will be given as
[£R1,+£Ry, £ R3, Ry, £R5] = [£ R, £ Ry, £ Rs, £ Ry, £ R10]

provided Fyg expands to equal a constant (i.e. all the powers of t expand out).
This is another equivalent form of the problem also deduced via Newton’s
equations. Now we choose

R, ::(4n—|—4m)2 Ry = (mn—l—n—l—m—ll)2
Rg::(mn—n—m—11)2 R4::(mn—l—?)n—?)m—l—11)2
Rs:=(mn—3n+3m+11)>  Re:=(4n—4m)’
R~ ::(—mn—l—n—m—ll)2 Rg ::(—mn—n—l—m—ll)2
Ry :=(—mn+3n+3m+11)>  Ry:=(—mn—3n—3m+11)>.
On expansion of Fg, the constant coefficient is
— 64mn (m*n* —10n*m? + 9n* — 1210 n® + 14641
—524m’n® 4+ 726 m* + 6 m*n* + 185m*?)
x (m*n* +6n*m? + 185n* + 726 n* + 14641
—524m?n* — 1210m* — 10m*n* + 9m*).

The rest of the expansion is given as
+ 64mn (5m*n* + 62n*m* + 125n* + 62m*n® + 1268 m*n’
+7502n* + 125 m" + 7502 m” + 73205)
x (m*n® —13n® + 121 — 13m?) ¢?
— 64mn (Tm*n® 4+ 53n” 4+ 847 4+ 53m*) (m*n® — 13n® + 121 — 13 m?) ¢*
+192mn (m*n® — 13n” + 121 — 13m?) t°,
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and each coefficient of the above polynomial of ¢ has a factor
m’n® —13n® + 121 — 13 m?.

So any solution of the above biquadratic gives a size 10 solution. One such
solution is given by n := 153/61 and m = 191/79. A second solution is given
by n := —296313/249661 and m = —1264969/424999. It is an exercise in
elliptic curves to see that the above biquadratic has infinitely many solutions,
and hence so does the problem of size N = 10.

For sizes 1 through 8, parametric families of solutions exist. The following
is a (homogenous) size 8 solution due to Chernick [33]

[+Rq,+Ry,+Rs, +R4] = [+ R5, +Rs, + Ry, £ Rg],
where
Ry :=5m? +9mn + 10n? Ry :=m? — 13mn — 6n?
Ry :=Tm? —5mn — 8n? R, :=9m? + 7Tmn —4n®
Ry :=9m? +5mn + 4n? Re :=m? + 15mn + 8n?
R; :=5m? — Tmn — 10n? Rg := Tm? +5mn — 6n>.
One sees this by noting that if
Fy:= (£* = R:?) (* — Ry?) (* — R5?) (t* — Rs?)

(2~ B (12~ B?) (12— B?) (= RYY)

then on expansion
Fg=-10752mn(2n+m)(n+m)2n+3m)(n+2m)(dn—m)(5bn+4m)j

x(n—2m)(B3n+m)(n—m)(n+5m) (3n2—|—2mn—2m2) (n2+mn+m2) I

Now any integers n and m (provided the expression doesn’t collapse) give
rise to a solution of size 8.

There are only two non-equivalent solutions of size N = 9 known. They
are given in symmetric form as

[98,82,58,34, —13,—16, —69, — 75, —99]
= [-98,—82,—-58, —34,13,16,69, 75, 99]
and
[174,148,132,50,8, —63, —119, —161, —169]
= [—174,—-148,—132, -50, —8,63,119, 161, 169].

It would be of value to know whether there are infinitely many solutions of
size 9, and it might be of interest to search for a parametric solution.
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2.1. Variations on the Theme

The obvious question arises: If we can’t make the [y norm of a polynomial
with a zero of order N at 1 be 2N, how small can we make it?

Problem 2.3. Find 0 # py € Z[z] where py(z) = (z — 1)V g(z) = Saxz* so
that

li(pn) = Dlai] = o(N?)

or

Plpn) = (Slail)'/* = o(N?).

A fairly easy combinatorial argument shows that

Li(pn) < N?/2

is possible for all N. (See [25]) However, this is where the problem is stuck
(at least in terms of the principal term of the asymptotic), and even getting
a bound like N? /(2 + €) would be major progress.

This problem arises in the context of a problem Wright called the “easier
Waring problem.” The Waring problem asks how many positive Nth powers
are required to write every sufficiently large integer as a sum of Nth powers.
The “easier Waring problem” allows for differences as well as sums. The
“easier” has proved to be a misnomer since currently the best approaches to
the “easier Waring problem” all go through the Waring problem.

Fuchs and Wright [48] observed that if (as in Problem 2.3)

Li(pn) = O(AnN),

then the Easier Waring problem is also O( Ay ). (Here N is the power under in-
vestigation in Waring’s problem.) At the moment Waring’s problem is known

to be O(N log N) (though it is suspected to be O(N)). So showing that
li(pn) = O(Nlog N)

would be a very major result.

If we demand that p has a zero of order N but not of order N + 1 at 1,
then

h(p) = O((log N)N*)

is possible, but this is all that is known [55]. And this argument is considerably
harder than the one that gives O(N?) without the additional requirement that
the multiplicity of the zero be ezactly N. Any improvement on this would also
be interesting.
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2.2. Problem of Erdos and Szekeres (1958)

One approach to the Prouhet-Tarry-Escott problem is to construct products

of the form N
p(z) = (H(l - xa’)) .

k=1

Obviously, such a product has a zero of order N at 1, and the trick is to
minimize the /; norm.

Problem 2.4. Minimize over {aq,...,an}
N
I (Hu - xai)) :
k=1

Call this minimum EY;.

The following table shows what is known for N up to 13.

ol {ors- . an}
2 {1}

4 {1,2}

6 {1,2,3}

8 {1727 ‘374}

10 {1,2,3,5,7}
12 {1,1,2,3,4,5}
16 {1,2,3,4,5,7,11}
16 {1,2,3,5,7,8,11,13}
20  {1,2,3,4,5,7,9,11,13}
10 24 {1,2,3,4,5,7,9,11,13,17}
11 28  {1,2,3,5,7,8,9,11,13,17,19}
12 36 {1,...,9,11,13,17}
13 48  {1,...,9,11,13,17,19}

@OO\I@OTH}-COMHZ

7,
8,

Note that for N :=1,2,3,4,5.6,8, this provides an ideal solution of the
Prouhet-Tarry-Escott problem. And indeed the first known solutions were
mostly of this form. Maltby [70] shows that for N = 7,9,10, 11, these kind of
products cannot solve the Prouhet-Tarry-Escott problem. For N = 7,9, 10,
the above examples are provably optimal. This leads to the following conjec-
ture.

Conjecture 2.5. Except for N =1,2,3,4,5,6 and 8,
EyN > 2N +2.

Actually much more is likely to be true. Erdos and Szekeres [42] conjec-
ture that E3, grows fairly rapidly. Specifically,
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Conjecture 2.6. For any K,
E]*\[ Z NI(,

for N sufficiently large.

Currently the only lower bounds known (except for Maltby’s results for
N =17,9,10 and 11) are the trivial lower bounds E} > 2N of the Prouhet-
Tarry-Escott problem.

Sub-exponential upper bounds in this problem of the form

E% < exp(O(log* N))

due to Belov and Konyagin are known [13]. See also [76], [62].

§3. Littlewood Type Problems

Here we are primarily concerned with polynomials with coeflicients in the set
{+1,—1}. Since many of these problems were raised by Littlewood, we denote
the set of such polynomials by £,,, and refer to them as Littlewood polynomials.
Specifically

Ly,:=¢p:plz)= Zajxj, a; € {—1,1}
=0

The following conjecture is due to Littlewood, probably from some time in
the fifties. It has been much studied, and has associated with it a considerable
signal processing literature (see for example [31].)

Conjecture 3.1. It is possible to find p, € L, so that

Civn+ 1< |pa(2)] < Covn+1

for all complex z of modulus 1. Here the constants Cy and Cy are independent
of n.

Such polynomials are often called “locally flat.” Because the Ly norm of
a polynomial from £, is exactly v/n 4 1, the constants must satisfy C7; < 1
and Cy > 1. This is discussed in some detail in problem 19 of Littlewood’s
charming monograph [67]. Littlewood, in part, based his conjecture on com-
putations of all such polynomials up to degree twenty. Odlyzko has now done
extensive computations that tend to confirm the conjecture. However, it is
still the case that no sequence is known that satisfies the lower bound.

A sequence of Littlewood polynomials that satisfies just the upper bound
is given by the Rudin-Shapiro polynomials. These are defined by

and
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Gn+1(2) = pn(2) — Z2n‘]ﬂ(z)'
These have all coefficients +1 and are of degree 2" — 1. If |z| = 1, then

Pt |” + lans1l? = 2(|pal* + gnl?)

and it is easy to deduce that

Pa(2)] < 2v2" = V/2¢/deg(pn)
Ign(2)] < 2v2" = V21/deg(qn)

for all z of modulus 1.

and

This conjecture is complemented by a conjecture of Erdés [41].

Conjecture 3.2. The constant C5 in conjecture 3.1 is bounded away from 1
(independently of n).

This is also still open. Though a remarkable result of Kahane’s [59] shows
that if the polynomials are allowed to have complex coefficients of modulus
1, then “locally flat” polynomials exist, and indeed it is possible to make C4
and Cy asymptotically arbitrarily close to 1. (Polynomials of this form are
sometimes called “ultra-flat.”) Another striking result due to Beck [10] proves
that “locally flat” polynomials exist from the class of polynomials of degree n
whose coefficients are 1200th roots of unity.

Of course, because of the monotonicity of the L, norms, it is relevant to
rephrase Erdos’ conjecture in other norms. Newman and Byrnes speculate,
too optimistically, in [74] that

Iplls = (6 — 8)n*/5

for p € £, and n sufficiently large. This, of course, would imply Erdos’
conjecture above. Here and throughout this section

lall = ([ a0y deyiam) )

is the normalized p norm on the boundary of the unit disc.
It is possible to find a sequence of p, € L, so that

[1palli = (7/6)n°.

This sequence is constructed out of the Fekete polynomials

fo =S (3)

k=0

1/p

where (;) is the Legendre symbol. One now takes the Fekete polynomials

and cyclically permutes the coefficients by about p/4 to get the above ex-
ample due to Turyn [54]. Actually, computations suggest that even the 7/6
constant above may also be overly optimistic. Nonetheless, a variety of people
conjecture the following.
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Problem 3.3. Show for some absolute constant 6 > 0 and for all p,, € L,

Iplls > (1 + é)v/n

or even the much weaker

Iplla > /n + 6.

This problem of finding Littlewood polynomials of minimal L4 norm has
a considerable literature. See [52, 51, 54, 56]. The engineering literature calls
this the “merit factor” problem.

A Barker polynomial

7

p(z) = Z agz®

k=0

with each aj € {—1,+1} is a polynomial where

satisfies
le;] <1, 7=1,2,3....

Here
n—j
C]‘ = Zakak—i—j and C_j = cj'
k=0
Note that if p(z) is a Barker polynomial of degree n then
lplls < ((n+ 1% 4 20)4 < (4 DY2 4 (0 4 1) 7122,

The nonexistence of Barker polynomials of degree n is now shown by
showing

plla > (n+ )2 4 (n 4+ 1)712 )2,

This is even weaker than the weak form of Problem 3.3.

It is conjectured that no Barker polynomials exist for n > 12. See [81] for
more on Barker polynomials and a proof of the nonexistence of self-inversive
Barker polynomials. In [96] it is shown that no even degree Barker polynomials
exist for n > 12 (and indeed none exist for any degree between 12 and 10'2.

The expected L, norms of Littlewood polynomials and their derivatives
are computed in [27]. For random ¢, € £,

E([lgn|lp)
TQP — (D(1 4 p/2))"/"
and -
E(|lgn"115)

Gz 2rt D)7VAT( + p/2) 7
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3.1. Lehmer’s Conjecture

Mahler’s Measure is defined as follows: if

then

M(p) = [ mas{L, la]},
=1

or equivalently
1
M(p) :=exp {/ log |p(e*™)| dt} .
0

The problem commonly known as Lehmer’'s Conjecture is

Conjecture 3.4. Suppose p is a monic polynomial with integer coefficients.

Then either M(p) =1 or M(p) > 1.1762808....

See [30] for an exposition of this problem. This can be thought of as
a generalization of Kronecker’s theorem which can be stated as: M(p) =1
implies that p is cyclotomic (that is, it has all its roots of modulus 1). Note
that M(p) is really the Ly norm, so this too is a growth problem, and in fact
for this conjecture it is sufficient to consider only polynomials with coefficients
in the set {0, —1,+1}.

The minimal Mahler measure for a non-cylotomic p is speculated to be
given by p := 2'% + 2% — 27 — 25 — 25 — 2* — 23 + 2 + 1 for which M(p) =
1.17628081825991750 . ... This is also speculated to be the smallest Salem

number.

Problem 3.5. Do there exist polynomials with coefficients {0, —1,+1} with
roots of arbitrarily high multiplicity inside the unit disk?

A negative answer to the above would solve Lehmer’s conjecture. It seems
likely, however, that the answer to the above question is positive. See [7].

Mabhler [69] raised the problem of finding the maximum Mahler measure
over the polynomials of degree n with coefficients {0,41,—1}.

Problem 3.6. Does there exist a sequence of Littlewood polynomials p, € L,
so that

M(p,
tim 2Pn) _

VD

This is a weak form of the Erdos conjecture. The non-existence of a
sequence, as in Problem 3.6, implies Conjecture 3.2.
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3.2. Zeros of Littlewood and Related Polynomials
The following result concerning polynomials of height one is proved in [20].
Theorem 3.7. Every polynomial p, of the form

7

po() =Y aja’,  a|=1, |aj| <1, a;€C (%)

J=0

has at most L%\/HJ + 4 zeros at 1.
It 1s easy to prove the following:

Theorem 3.8. There is an absolute constant ¢ > 0 such that for every n,
there is a polynomial p of degree n with coefficients in the set {0,—1,+1}

having at least ¢y/n/log(n + 1) zeros at 1.

Theorems 3.7 and 3.8 show that the right upper bound for the number
of zeros a polynomial p, with coefficients in the set {0, —1,+1} can have at

1 is somewhere between c¢14/n/log(n + 1) and ¢24/n with absolute constants
c1 > 0 and cp > 0.

Problem 3.9. What is the maximum multiplicity of the zero at 1 for a

polynomial of degree n with coefficients in {0,—1,+1}. In particular, is it
O(n'/?)?

This problem has substantial application to effective bounds in Roth’s
Theorem, particularly if the answer to the above conjecture is affirmative.

Boyd [29] shows that there is an absolute constant ¢ such that every
p € L, can have at most clog® n/loglogn zeros at 1. Since it is easy to give
polynomials p € £,, with clogn zeros at 1, the following question is suggested.

Problem 3.10. Prove or disprove that there is an absolute constant ¢ such
that every polynomial p € B, can have at most clogn zeros at 1.
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