THE EXPECTED L, NORM OF RANDOM POLYNOMIALS.
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ABSTRACT. The results of this paper concern the expected Lp norm of random
polynomials on the boundary of the unit disc (equivalently of random trigonometric
polynomials on the interval [0, 2x]). Specifically, for a random polynomial
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Assume the random variables X;k > 0 are independent and identically distributed,
have mean 0, variance equal to 1 and, if p > 2 a finite p*» moment E(|Xy|?). Then
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In particular if the polynomials in question have coefficients in the the set {+1, -1}
(a much studied class of polynomials) then we can compute the expected L, norms
of the polynomials and their derivatives
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This complements results of Fielding in the p := 0 case; Newman and Byrnes in the
p := 4 case; and Littlewood et al in the p = co case.
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1. INTRODUCTION

There are a number of difficult old conjectures that concern the possible rates of
growth of polynomials with all coefficients in the set {+1,—1}. Since many of these
were raised by Littlewood we denote the set of such polynomials by £,, and refer
to them as Littlewood polynomials. Specifically

n

Ly, :=<p:px)= Zajxj, a; € {-1,1}

j=0
In [Li-66] Littlewood conjectures that it is possible to find p,, € L, so that

Civn+1< |pp(2)| < Cavn+ 1

for all complex z of modulus 1. Such polynomials are often called “flat”. Because
the Ly norm of a polynomial from L£,, is exactly +/n + 1 the constants must satisfy
C1 <1 and Cs > 1. This is discussed in some detail in problem 19 of Littlewood’s
delightful monograph [Li-68]. A sequence of polynomials that satisfies just the
upper bound is given by the Rudin-Shapiro polynomials. No sequence is known
that satisfies the lower bound.

This conjecture is complemented by a conjecture of Erdés [Er-62] that the constant
C5 is bounded away from 1 (independently of n). This is also still open. Though a
remarkable result of Kahane’s [Kah-80, Kah-85] shows that if the polynomials are
allowed to have complex coefficients of modulus 1 then “flat” polynomials exist and
indeed that it is possible to make C; and C> asymptotically arbitrarily close to 1.
Equally remarkable is a result of Beck [Bec-91] who proves that “ flat” polynomials
exist from the class of polynomials of degree n whose coefficients are 400th roots of
unity.

The relationship between these problems and Barker polynomials is discussed in
[Sa-90]. The most famous problem concerning polynomials with coefficients in the
set {0,—1,+1} is the celebrated, now resolved, Littlewood conjecture (Ko-80). It
asserts that the L; norm of a polynomial Z?:o +zFi must grow at least like log(n).
Here and in what follows the L, norms are on the boundary of the unit disk in the
complex plane.

In [Sa-54] it is shown that for all but o(2") Littlewood polynomials the supremum
on the unit disc lies between c;v/nlogn and cav/nlogn. In fact, Haldsz [Ha-73]
shows that the lim ||¢,/v/nlogn||cc = 1 almost surely. See also [An-83].

The expected Ly to the fourth power of a Littlewood polynomial of degree n is
computed by Newman and Byrnes [Ne-90]. They show that

E(|lplly) = 2(n +1)* = (n + 1)
where p is a random element of £,,.

In the L case Fielding [Fi-70] computes the expected norm (which in this case is
the Mahler Measure) over the polynomials with complex coefficients of modulus 1.
He proves that

E(|[pllo) > exp(=7/2)vn(1 + O(n~+/2+?))
2



where « is Euler’s constant. See also [Ul-88].

Our principal aim in this paper is to to compute the expected L, norms of Random
Littlewood polynomials. The complete results are stated in the next sections. For
random Littlewood polynomials, ¢, € £,,, we have

E(7|7/|1q/ﬂ2||13) N (F(]. +p/2))1/p

and for their derivatives

E(|l¢%”],)

ez 2r + 1)~ V21 + p/2)V/7.

From this and the inequality [Bor-95, p406]

llgnllp
nllgnllp ~

we can deduce an expected Bernstein Inequality for Littlewood polynomials namely

e (o), L
n||gn|[p V3

This should be compared to interesting results of Nazarov and Queffélec and Saffari
[Qe-96] which says that

[PAT
2n€La 1|qn||p

for all p > 1 except p = 2 where the limsup is 1/v/3.

Of course, because of the monotonicity ot the L, norms it is relevant to rephrase
Littlewood’s conjecture in other norms. It has been conjectured that

lIplls > (7= 8)n*/6

for p € £,, and n sufficiently large. This would be best possible and would imply
Erdés’ conjecture above. See [Bor-98] for a discussion of this.

Random polynomials have been much looked at, particularly the location of their
roots. See for example [Bh-86], [Bri-95] and [Kac-48].

2. RESULTS

Consider a random polynomial

n—1
qn(o) — Z Xkeika
0
for 0 < 0 < 27. We study the p!* power of the L, norm of g,, that is:

2
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Theorem 1. Fiz 0 < p < oo. Assume that the random variables Xi;k > 0 are
independent and identically distributed, have mean 0, variance equal to 1 and, if
p > 2, a finite pt" moment E(|Xy|P). Then

E(llgnlI)

R ['(1+p/2)

as n — oo. If, in addition, E(|X|*?) < oo then

In
”nl/ll” - T(1+p/2)'/?

in probability and

For +1 coefficients randomly chosen the moment conditions are trivially satisfied for
all finite p. Numerical confirmation of the principle results based on computations
up to degree 24 is presented in the two figures accompanying this paper. The
calculations are courtesy of Lesley Robinson [Ro-97]. The first figure shows the
average L3 and L4 norms (normalized by division by v/n + 1) for the Littlewood
polynomials up to degree 24. The second figure is a similar graph for L} and L}
(normalized by division by (n + 1)?).

Proof. In what follows all unlabelled sums run from 0 through n — 1. Define

o7 .(0) = cos’(j6)

and
op5(0) =) sin®(j0)
and write
o= 2
and, for 8 not a multiple of =, ’
)= 25

Then

Lemma 2.1. There is a constant M, free of n, k and 0 such that

M
lak,n(0)] + [br.n(0)] < —=

NG

Postpone the proof of the lemma and consider an arbitrary sequence 6,. The
lemma permits application of the Lindeberg central limit theorem to show that for
an arbitrary sequence 4,

3—1 Xy, cos(kb, ey

e (6 ) = Zak,n(en)Xk
n,c\Un 0

4

Col0) = =




converges in distribution to standard normal and, provided no 6,, is an integer
multiple of 7,

_ Y0t Xy, sin(k6,,)

N Un,s(en)

converges in distribution to standard normal. Moreover, for any fixed § not an
integer multiple of 7, the elementary convergences o7 ./n — 1/2, o7 /n — 1/2
and Y cos(kf)sin(kf)/n — 0 show that the covariance matrix of (Cy(0), Sn(9))
converges to the 2 by 2 identity so that (C,(0),S,(8)) converges in distribution
to (Z1,Z2) where the Z; are independent standard normals. It follows for such
6 that |g,(0)|?/n converges in distribution to (Z7 + Z2)/2 which has a standard
exponential distribution.

Sn(6r)

For p > 2, a theorem of Bernstein ([Be-39], [Br-70]) asserts that, in the central
limit theorem, pth moments converge to the pth moment of the normal distribution
provided an analogue of the Lindeberg condition holds. In particular,

1 (e}
BCH @) = <= [ Jul exp(—u /2) du
provided
S Elaknl? 1 XePL(a, XF > 1) =0

for each positive n (and analogously for S, replacing ay,, by bi,). (For p < 2 we
could proceed straight from the central limit theorem.) The quantity in question
is bounded by

D lakaPE(Xo[PLXG > nn/M?)) < lak,q |PE(1Xo[P1(Xg > nn/M?)).

But ) |ag,n|? is, for p > 2, bounded by Y- aj ,, = 1 and X has a finite p" moment
so the bound converges to 0.

Now note

n

N p/2 2 p/2
< 9p/2-1 (M) IC ()P + (Un,;(6)> |Sn(6)P

n

g (9)|p/np/2 _ (0'121,0(0)02(0) + ai’s(a)gi(e))p/z

<2PH|Ch(O)I7 + [Sa(6)[7]

Putting ga(6) = E(ga(8)?/n?/2) and ha(6) = 22 1E(Ca(O) + [Sa(B)]) we
see that 0 < g, < h, almost everywhere and that h,, converges uniformly on
(0,7) U (m,27) to 2P/2E(|Z|P) where Z is standard normal. If we establish that
gn converges almost everywhere to I'(1 4+ p/2) then the theorem will follow by
dominated convergence.

To do so we can apply the following result. Suppose U,, and V,, are random variables
with U, converging in distribution to some U, V,, converging in distribution to some
5



Vand 0 < U, < V,. If E(V,,) = E(V) < oo then E(U,,) — E(U). (This is the
Dominated Convergence Theorem for convergence in distribution.)

Use the result with U,, = |¢,(8)|?/n?/2, which converges in distribution, for  not
an integer multiple of 7, to U = ((Z7 + Z3)/2)?/?, and

Vo = 22271 |G (6) 1P + |0 (6) 7]

which converges in distribution to V = 2P/2=1 (| Z; [P + | Z5|P). Since E(U) = T'(1 +
p/2) we are done.

To establish the convergence in probability we compute the variance of |[gn||5/ nP/?
and show that this converges to zero. It suffices to show that

E(|lgnl27)

npb

2 2
ﬁ // ) (81, 85) dér b .

where g (01,02) = E(|gn(61)gn(62)|P)/n?. For fixed 6; and 65, neither an in-
teger multiple of 7, it is easily checked that the variance covariance matrix of
(Cn(61), Sn(61),Cr(82),5,(02)) converges to the 4 by 4 identity matrix. In view
of the Lindeberg condition already checked the random vector converges in distri-
bution to the standard normal and |g,(01)gn(02)|?)/nP converges in distribution
to (Z} + Z2)P(Z2 + Z2)P/2°P where Z1,... ,Z4 are independent standard normal.
Since

—T2(1+p/2).

But

95 (61,62) < h{(61,605) = ( E(lgn(60)17) E(an(02)|2”)> /2

np npbP

we may apply the first part of the theorem and the dominated convergence theorem
to conclude that g,&*) converges almost everywhere to I'?(1 + p/2). Moreover we
have already checked that hg) converges almost everywhere to I'(1 + p) and that

27 2
/ h) (6y,65) déy b,/ (4n%) — T(1 + p).
0 0

Hence or o
/0 /0 07 (61,62) dby db/ (47%) — T>(1 + p/2)
by dominated convergence. This establishes the convergence in probability.
The final statement of the theorem is simply dominated convergence applied via
the elementary inequality ||gn/n/?|[, <1+ ||lgn/n/?|2. O

Proof of Lemma. : For 8 < m/(2n) and 1 < j < n—1 we have 2j6/7 < sin(j6) < j6

whence
Ibin| < _ Vérk < \/671'/2
’ 2\/23 L 262 2y/(n—1)n2n—-1) = V/n
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Moreover, on [0, 7/(2n)] the function cos(k€) is monotone decreasing for all k£ < n.
Hence

|akn(6)] <

On the other hand if > 7/(2n) then
Z{cosz(kO) —sin?(k)} = sin®(nd) + sin(nf) cos(#) cos(nd)/ sin(h)

Since
sin(f)
cos(f)

we see that for 7/(2n) < 6 < /2 we have

o+

an(d) > 6

‘2{0052(1430) _ sinz(kﬂ)}‘ <1+1/tan(8) < 1+ 2n/7 < don

for a g < 1 and all n > 3. It follows that

ZCOS2(1€0) > 1-%

2

n

and 1—s

> sin®(k6) > _2 0
from which the Lemma follows for 0 < 6 < 7/2. Use easy symmetries of the weights
ag,n and by , to get all values of §. O

n

Similar techniques permit the extension of our main result to the derivative qg) of
order r.

Theorem 2. Fiz 0 < p < oo. Assume that the random wvariables Xi;k > 0 are
independent and identically distributed, have mean 0, variance equal to 1 and, if
p > 2 a finite p'" moment E(|Xy|P). Then

() 1p
7592"1;)1,';3 S (2r +1)"P2T(1 + p/2)
as n — oo. If, in addition, E(|X;|??) < oo then

||q7(f)||p o (27‘+1)_1/2(F(1+ 1/p
@)/ p/2))
in probability and
B(||g 1)

W — (27‘ + 1)_1/2(F(1 +p/2))1/p .

7



An-83.

Bec-91.

Be-39.

Bh-86.

Bor-98.

Bor-95.

Boy-97.

Bri-75.

Br-70.

Ca-77.

Cl-59.

Ed-62.

Fi-70.

Ha-73.

Kac-48.

Kah-80.

Kah-85.

Ko-80.

Ko6-80.

Li-61.

Li-66.

REFERENCES
Hong-Zhi An, Zhao-Guo Chen and E.J. Hannan, The Mazimum of the Periodogram,
Jour. Mult. Anal. 13 (1983), 383-400.

J. Beck, Flat polynomials on the unit circle — note on a problem of Littlewood, Bull.
London Math. Soc. 23 (1991), 269-277.

S. Bernstein, Quelques remarques sur le théoréme limite Liapounoff, Dokad. Akad.
Nauk. SSSR 24 (1939), 3-8.

A.T. Bharucha-Reid and M. Sambandham, Random Polynomials, Academic Press, Or-
lando, 1986.

P. Borwein, Some Old Problems on Polynomials with Integer Coefficients, Proceedings
of the Ninth Conference on Approximation Theory, 1998.

P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer-Verlag,
New York, 1995.

D. Boyd, On a problem of Byrnes concerning polynomials with restricted coefficients,
Math. Comput. 66 (1997), 1697-1703.

D.R. Brillinger, Time Series Data Analysis and Theory, Holt, Rinehart and Winston,
New York, 1975.

B. M. Brown, Characteristic functions, moments and the central limit theorem, Ann.
Math. Statist. 41 (1970), 658—664.

F.W. Carrol, D. Eustice and T. Figiel, The minimum modulus of polynomials with
coefficients of modulus one, Jour. London Math. Soc. 16 (1977), 76-82.

J. Clunie, On the minimum modulus of a polynomial on the unit circle, Quart. J. Math.
10 (1959), 95-98.

P. Erdés, An inequality for the mazimum of trigonometric polynomials, Annales Polonica
Math. 12 (1962), 151-154.

G.T. Fielding, The ezpected value of the integral around the unit circle of a certain
class of polynomials, Bull. London Math. Soc. 2 (1970), 301-306.

G. Halasz, On a result of Salem and Zygmund concerning random polynomials, Studia
Sci. Math. Hungar 8 (1973), 369-377.

M. Kac, On the average number of real roots of a random algebraic equation, II, Proc.
London Math. Soc. 50 (1948), 390-408.

J-P. Kahane, Sur les polynémes d coefficients unimodulaires, Bull. London Math. Soc
12 (1980), 321-342.

J-P. Kahane, Some Random Series of Functions, vol. 5, Cambridge Studies in Advanced
Mathematics, Cambridge, 1985; Second Edition.

S. Konjagin, On a problem of Littlewood, Izv. A. N. SSSR, ser. mat. 45, 2 (1981),
243-265.

T.W. Korner, On a polynomial of J.S. Byrnes, Bull. London Math. Soc. 12 (1980),
219-224.

J.E. Littlewood, On the mean value of certain trigonometric polynomsials, Jour. London
Math. Soc. 36 (1961), 307-334.

J.E. Littlewood, On polynomials 3™ +2™ and 3" e®miz™ 2 = €% Jour. London

8



Li-68.

Ma-63.

Ne-90.

0d-93.

Qe-96.

Ro-97.

Saf-90.

Sa-54.

Ul-88.

Math. Soc. 41 (1966), 367-376.

J.E. Littlewood, Some Problems in Real and Complex Analysis, Heath Mathematical
Monographs, Lexington, Massachusetts, 1968.

K. Mahler, On two eztremal properties of polynomials, Illinois J. Math. 7 (1963), 681—
701.

D.J. Newman and J. S. Byrnes, The L* norm of a polynomial with coefficients +1,
MAA Monthly 97 (1990), 42-45.

A. Odlyzko and B. Poonen, Zeros of polynomials with 0,1 coefficients, Ens. Math. 39
(1993), 317-348.

H. Queffélec and B.Saffari, On Bernstein’s inequality and Kahane’s ultraflat polynomi-
als, J. Fourier Anal. Appl 2 (1996), 519-582.

L. Robinson, Polynomials With £1 Coefficients: Growth Properties on the Unit Circle,
Simon Fraser University, Masters Thesis (1997).

B. Saffari, Barker sequences and Littlewood’s “two sided conjectures” on polynomials
with +1 coefficients, Séminaire d’Analyse Harmonique, 1989/90, Univ. Paris XI, Orsay,
1990, 139-151.

R. Salem and A. Zygmund, Some properties of trigonometric series whose terms have
random signs, Acta Math 91 (1954), 254-301.

D. Ullrich, An extension of the Kahane-Khinchine inequality, Bull. Amer. Math. Soc
18 (1988), 52-54.

P.BORWEIN: DEPARTMENT OF MATHEMATICS AND STATISTICS, SIMON FRASER UNIVERSITY,
BuURNABY, B.C., CANADA V5A 1S6 pborwein@cecm.sfu.ca

R.LOCKHART: DEPARTMENT OF MATHEMATICS AND STATISTICS, SIMON FRASER UNIVERSITY,
BURNABY, B.C., CANADA V5A 1S6 lockhart@sfu.ca



