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Abstract

We are interested in how small a root of multiplicity k£ can be for a power
series of the form f(z):=1+ > "7 a;z' with coefficients a; in [-1,1]. Let
r(k) denote the size of the smallest root of multiplicity k& possible for such
a power series. We show that
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We describe the form that the extremal power series must take and develop
an algorithm that lets us compute the optimal root (which proves to be an
algebraic number). The computations, for & < 27, suggest that the upper
bound is close to optimal and that r(k) ~ 1—c¢/(k+1) where ¢ = 1.230....
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1 Introduction

Let F be the set of [-1,1] power series

}':{f(z):1+§:aizi : aiE[—l,l]}.

The set F is uniformly bounded on compact subsets of the open unit disc and
so the maximum number of roots of an element of F on such a subset is also
uniformly bounded.

For positive integers k > 1 let P(k) denote the set of real numbers o > 0 that
are kth order roots of some series f, in F, and define r(k) to be the infimum
of P(k) . The question we examine is how small (k) can be. We solve this

problem exactly for £ < 27, give general bounds for 'arbitrary k, and offer a
speculation on what the exact bound should be.

Notice that the problem is equivalent to asking for the kth order root of smallest
absolute value amongst the power series with complex coefficients satisfying
la;| < 1 (since if ap = re'? is a kth order root then making the substitution
f(zew) and taking the real part of the resulting power series we obtain an
element of F with kth order real root r). Polynomials with similarly restricted
coefficients can be found, with applications, in the work of Byrnes & Newman

[7. 8.

It is easy to see that r(k) > r(1) = 1/2 — if a is a root of a power series in F
and |a| < 1, then plainly

||

1—|of’

<

with 1/2 achieved for the series f(z)=1— Y ;0 2.

It is not a priori obvious that F contains any elements with multiple roots
strictly inside the unit disc. We first show (by explicit construction) that r(k)
is indeed always strictly less than 1.

Theorem 1 For all positive integers k > 1

. 1
r(k) < 1—m.

As we elaborate later we believe that the correct bound is of the form

1.230...

r(k)~1- Gt 1)
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and so the above result is likely giving the correct rate of growth.

It is interesting to note that as £ — oo the power series that give us this bound
tend coefficient-wise to 64(z)/(1 — &) where [2, p.64]

Oy(z):=1+ 22(—1)iwi2 = H(l — 2?1 - &)

is the Jacobi theta function (a function with no zeros inside the unit circle but
a “zero of infinite order” at # = 1 in the sense that 64(x) ~ exp (—7?/4(z — 1))
as ¢ — 1). The proof also emphasizes the relationship between our problem
and an old question of E. Schmidt and Schur [11] concerning bounds on the
maximum order zero at 1 possible for a polynomial (with bounded coefficients)
in terms of its degree (see [4] for the best current bounds).

A straightforward application of Jensen’s Theorem yields a lower bound for

r(k):
Theorem 2 For all k> 1

1 —3(1+1/k) log(e\/z)
>1
- kE+1

r(k) > k~1/2%k (1+ -

We should remark that this lower bound is really a bound on the radius of a
disc containing k roots of a [-1,1] power series (not specifically multiple roots).

Notice that the infimum r(k) is actually achieved on F. Indeed, the set F is
bounded (and closed) and thus compact for the topology of uniform convergence
on every compact set of the open unit disc. So there exists a sequence r,, — (k)
and a convergent sequence f, in F such that each series f, has a kth root at
rn. Calling f the limit of f,, in F, we know that the derivatives f,..., y(lkfl)
converge to f’,... , f*=1) uniformly on every compact set of the open unit disc,

which ensures that f has a root of order k at r(k).

We next observe that the power series for which the infimum r(k) is achieved
must take a very particular form. This is critical in allowing us to construct an
algorithm to solve our problem for fixed k.

Theorem 3 For cach k there ezists a unique 3 in P(k) for which there is a
set of (k— 1) exponents 1 < my < -+ < myp_1 such that the coefficients of the
corresponding power series

falz) =14+ bix', b €[-1,1]

i=1
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satisfy

b_{ -1 ifjE(O,mrl)U"'U(in,TIlzi+1)U"'
i =

+1  ifje€(my,ma)U-- U (maiy1, maita)U---

Moreover
6= T(k),

and the series fg 1s unique.

Consequently we can, by multiplying the extremal power series by (1 — z),
equivalently study the kth order roots of polynomials of the form

k-1
¢(z;m) = 1—230—2:(—l)i((1—|—ozz~)+(1—Oq)ac):pmi7 o = (—l)i_lami €[-1,1].

i=1 .
(1)
The proofs of the Theorem’s are given in §5. In §2 we discuss the computations.

A natural analagous question concerns the location of kth order zeros of power
series with coefficients from the set {0,—1,1}. Obviously this class is in F so
our lower bounds apply but the upper bounds are probably different. This is
briefly discussed in §3 where it shown that the nonexistence of arbitrarily high
multiplicity repeat roots inside the unit disc would answer an old and well known
problem of Lehmer.

2 Computations

Theorem 3 in the form of (1) allows us to construct an algorithm for computing
values of r(k). This we now describe:

For a trial set of exponents m = (my,...,mp_;) one can use the first (k — 1)
derivatives (linear equations in the «;) to eliminate the a; from ¢(z; m);

For example, if we set
Qo(z):=1-22— (1+2) Z(—l)ixmi,
i=1
iteratively generate polynomials

Qi(z) = 2(Qi_(v)(1—2)+iQ;1(x)), i=1,....k—-1,
Gi(z) = —(1—a)""'Qi(x), i=1,...,k—1,
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and define polynomials A;(z) by

-1

Ay(z) mp e mpoy G1(x)

Ap_q1(z) mito. mﬁj Gr—1(x)
then the real root 0 < 3 < 1 of the polynomial

k—1

F(z;m):=(1- x)k71Q0($) + Z Ai(x) (2)

i=1

produces a candidate for r(k); whether this is the correct set of exponents m
(and hence r(k) = ) is then determined by checking if the value § yields all

Ai(B)

Q= (_1)17 ﬂmi(l —,3)’“'

in [-1,1].

We computed r(k) for all k£ < 27; The values r(k) are listed at the end together
with their successful m.

The calculations were done in Maple. For k = 27 the polynomial (2) had degree
in excess of 1000. It is presumably the minimum polynomial though we did
not check it for irreducibility. We implemented our own Newton’s method for
finding the roots in (2) because we had to. We used 50 digit precision in order to
compute the o; accurately. The 27 case took several hours on a Silicon Graphics
R3000 Indigo workstation.

It is noticeable that the exponents in m seem to settle down to the squares (the
exponents that appear in the polynomials giving the upper bound of Theorem
1), the a; appearing to converge very slowly to 1. Plotting 1/(1 — r(k)) against
k also suggests a linear growth rate resembling the upper rather than the lower
bound; least squares analysis giving the approximation

1
 1.23909318 + 81255949k

r(k)=1

for small k (see Figure 1), with .99999808 as a coefficient of correlation.

Notice that the (k) (and hence the coefficients in the corresponding power
series) are necessarily roots of polynomials with integer coefficients. For example
the corresponding polynomials for £ = 2,3 and 4 are;

k=2 22° — 822 + 11a — 4
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k=3 102'% — 142" + 142° — 102° — 802 + 18522 — 147z + 40
k=4 126272 — 29622 + 1762%° + 442'? — 1042 + 54210 + 9627
—14625 + 562° — 684z* + 22362% — 279722 + 1584z — 342

3 Integer polynomials, an open question

It is not surprising that, although all but (k—1) of the coefficients of the optimal
kth power series must be £1, the remaining coefficients seem to be non-integer.
It is interesting to ask whether there do exist power series (or polynomials)
with all {0,%1} coefficients and a kth order root strictly inside the unit circle.
This question also seems to be intriguingly related to the long-standing Lehmer
Problem of Diophantine approximation; defining the Mahler measure M (p) of
an integer polynomial

p(z) = aH(x - i)

M(p) == |a| [ [ max{1, 1},
i=1

Lehmer [9] asked whether there is an absolute constant ¢ > 1 such that any non-
cyclotomic integer polynomial p (that is an integer polynomial with at least one
root off the unit circle) has Mahler measure M(p) > c.

Double roots are readily found;
(42?12 -+ )= +2" -+ -2 -2+ 1

4+ 1)@+ D" =2+ 1) 2 =2 =20 2" 2 =2 a4 1,

these being the only examples with degree < 12 (up to the substitutions x
+x,+271).

It can be shown from the Bombieri-Vaaler version of Siegel’s Lemma [1, Theorem
1] that any polynomial p(z) whose Mahler measure M (p) < 2'/% must be a k’th
order factor of some {0,+1} polynomial. In particular there must certainly be
{0,£1} polynomials with a fourth order factor pi(z) or p2(x)

7 4

piz)=a2"+2" — 2" -2 -2 -2 -2+ +1,

pa(z) = P18 1T 16 1512 11 Q1000 o8 T 06 03402 a1,

where (see Boyd [6]) p1(2) and py(z) are (apart from the trivial substitutions
x — ™) the only known polynomials with integer coefficients and 1 < M(p) <
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21/4. Bach has a single root, 1/M(p1) = .850137... or 1/M(p») = .841490...
respectively, in |z| < 1. Similarly, as the smallest known “limit point” of Mahler
measures (see Boyd [5])

lim M(2®" — 2?7t — 2™ o — 2" — 24 1) = 1.25542...

n—oo

is less than 2'/3, there must be infinitely many genuinely distinct polynomials
that appear as triple factors of {0,£1} polynomials.

However the situation for &k > 5 remains unresolved. Clearly if the conjectured
lower bound of the Lehmer Problem were to prove to be false then we would
certainly have roots with arbitrarily high multiplicity. There is no good reason
to believe that the converse should be true but it does make the question of
existence or nonexistence of arbitrary multiplicity roots of {0, £1} polynomials
an interesting one.

Notice, since (as is clear from our bounds) r(k) — 1 as k — oo, the maximum
multiplicity of a given polynomial factor is certainly bounded; so for example
(from the exact values of our table) there can be no {0,+1} polynomials with
factor py(z)7 or pa(z)7.

Related questions about zeros of {0,1} polynomials can be found in Odlyzko &
Poonen [10].

4 A slight generalization

Although we have stated Theorem 3 for power series with coefficients in the
interval [—1, 1], a similar result holds if we vary the interval, or if we consider
polynomials constructed from a finite set of monomials, (for example zeros of
[0,1] power series have been extensively studied by Solomyak [12] in connection
with beta-numbers). Hence we actually prove a slightly more general form of
the result:

Given a set S of exponents &5 = {n; < ny < ---} and non-trivial bounded
intervals I; = [u;, v;] each containing 0, we set

Fs = {1+ D> aiz™ i ai € [uuvi]}7

n;€€s

and let Ps(k) denote the set of kth order real roots a > 0 of a series f, in
Fs. We similarly define rg(k) to be the infimum Pg(k) (whenever this set is
non-empty).
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Theorem 4 If Ps(k) # 0 then there exists a unique 3 in Ps(k) for which there
is a set of (k—1) exponents 1 <my < -+ < mg_y in S such that the coefficients
of the corresponding power series

fa(z) =14 bix™,  bi € [ui,vi]

n;es
satisfy
b = { u; zfn] € (0,my) U+ U (maj,maip1) U+
v;i ifnj € (my,ma) U+ U (moip1,Majp2)U---.
Moreover

B =rs(k),

and the series fg is unique.

Of course in general we cannot ensure that Pg(k) is non-empty. However if we
fix the intervals I; := [—g, g] for some g > 0 then in the polynomial case, (i.e.
|€s] < oo, we have Ps(k) # 0 iff |Es| > k (see for example Lemma 1) and in
the power series case (i.e. &5 = N) we have rg(k) < 1 for all k. Indeed in this
latter case,

Fs, ={1+ Zaimi D ai €[—g,9]}
j=1
we show the following analogues of the upper bound of Theorem 1

1 min{g/9,1}
sy (k) < (1 - m)

and the lower bound of Theorem 3

—1/2 -
rs, (k) > (1 + z) (g2 +1) " (4)

— where again this latter bound is a bound on the radius of a disc containing &
roots rather than specifically multiple roots.

5 The Proofs

At several points in the proofs we shall need to construct polynomials with a
given kth order root:
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Lemma 1 For any set of (k + 1) distinct integers my < my < -+ < mpyq and
non-zero £ there is a polynomaial

pleim, &) = o™ — cpa™ + 3™ — - + (—1)kck+1;vm’“+1,
given by
sy (m; —my)
ci=ci(m €)= [ J] —L—=|em™™, i=23,.. ,k+1
Imi — m;]
1=2
J#

with a kth order zero at &.

Proof: The proof may be regarded as a straightforward exercise in Vander-
monde determinants with the ¢;’s the solution of

1 1 ¢ e 1
(mz—ml) (mrk+1 —ml) 2 0

. - L Nkl pmiar—mm :
(my —m)E "t oo (mpgy —my)E? (=1 er4a€ 0

or as an exercise on the Residue Theorem on observing that

k+1 1 J;t
€)™ aterim ) = TTm = m) 5 / TRTE—

where I' is a simple closed contour surrounding the zeros of the denominator
(the kth order zero of this integral at # = 1 becomes apparent by repeated
differentiation and evaluation by expanding the contour to infinity).

Notice that we cannot construct a polynomial with a kth root at £ # 0 and
fewer than (k + 1) terms (since

1 1
01§m1 0
m‘1 e mk
k—1 k—1 crg™* 0
ml « e nlk

implies that ¢;¢™: = 0 for all e = 1,...,k, by the non-vanishing of the Vander-
monde determinant). ll

Proof of Theorem 1: The proofresembles the construction of [-1,1]-polynomials
with a high multiplicity root at 1 recently considered by Borwein-Erdélyi-Kos
[4] (see [3, §3.4, Ex.9] for details).
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For positive integers k > 1 we obtain from Lemma 1 a polynomial

k

Pi(z) =1+ (-1)'d;pa”,

i=1

(k2 AN

with a k-fold root at k/(k + 1) whose coefficients alternate in sign, satisfy
dir =2, and for £ > 1 > 1 decrease in magnitude;

diy  (k+1\"T (k—it1 -
di—l,k_ k k41 ’

( E+IN" ' k211
7 = | —— -
wi() % k+x

and observe that for x > 1 and k > 2

wy(x) 1y (2k+1)
o) = 210g(1+k> Kkt 1) —z(z - 1)

11 1\ (2k+1)  (2-k)
< 2(E_ﬁ+3?)_k(k+1)‘3k3(_k+1)SO)'

(To see this set

Finally we observe that

N 71C))

k-1
= 1+ > bip(a” 2t T 4 2D gy e ),
i=1

is a power series with a root of multiplicity k at k/(k + 1) and coefficients
)
big=1+Y (—1)djx
i=1

satisfying |b; x| < 1. Note that, for fixed ¢, the d; , — 2 and hence the b; , —

(-1 ask — co. B

Proof of the related bound (3): When 0 < g < 1 setting M := [9/g] a
similar appeal to Lemma 1 yields a polynomial

k
Pk,g(x) =1- cio,km - Z(_l)idi,kw‘wﬁ,
i=1
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with a (k + 1)th order root at z = (1 + l/k)_l/M and (in the notation of the
above proof)

. 1 2
0<djpi=——dip <
FE o1t —1 S
fors > 1 and
N 1\ /M K 1\"!
1<dop:=(14+~— 1-
< G0k <+k) H< Mz'?)
Jj=1
so that

do j < exp <—10g2+22 15 2) <exp(4/M) < exp(g/2) <1l+g.

Dividing by (1 — z) we similarly obtain a power series

—1 , -9 2
(‘z _ Z\l) N (.I’Ml _ ’\I(z+1) ) ’\Ik
-~ b; b

1- w>+.1 e N (s

1=

" Py y(x
frg) = l’“’j(x)—1+b0k

where (since the d}yk decrease in magnitude for ¢ > 1) the coefficients
~ ~ i . ~
bi,k =1 dO,k + Z(—l)J—Hd]“k

satisfy R ) ) : ~
—g<1l—dop<bip<l—dop+d;r<dip<g. [ |

Proof of Theorem 2 and bound (4): We prove the more general bound (4).
Suppose that f(z) =1+ Y.;° a;2" has its coefficients a; in [—g, g] and k roots

inside or on the disc
& 1/2
zl = R=|—— .
ol =< (k+1)

1/2

IF (B=)]l2 < 1+ZngZ’ = (L+g°K)'"%.

Then

Hence by Jensen’s Theorem, the concavity of the logarithm and Parseval’s For-
mula we have

1 L
Rlog(R/r) < 30 loglRjul=5- [ loglf(Ra)ld:
z|=1

Fo) =0 o

il <R
) 1/2

< log / |f(Rz)|*d~ < log(g?k + 1)/2,

21 Ji1m '
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and (4) and the first inequality in Theorem 2 are plain.

The second inequality in Theorem 2 follows from the rough bounds

: - —3(141/k)
E/2E = exp _IOg\/Z 21_M7 1+£ ZL. |
k k k kE+1

For Theorems 3 and 4 we shall need the following Lemma:

Lemma 2 If v is the smallest element of Ps(k) then any corresponding series
fy(z)=1+ > onies an; " in Fs must have at least one mon-zero cocfficient at
an end point an, = uy or v;.

Proof: If f,(z) is a polynomial then this is almost trivial:
If
M _
f’Y(‘Z) =1 + Z ai'rla
i=1
with

B := max ({(ai/vi)l/i Doa; > 0} U {(ai/ui)rl/i a; < 0}) <1

then we could construct a polynomial f7(w) := fy(z/B) still in Fg with a root
of multiplicity k at vB; contradicting the minimality of .

If f,(2) is not a polynomial but has all its non-zero coeflicients strictly inside the
appropriate interval then we show that we can replace fy(z) by a polynomial
with a kth order root at v and this same property:

Let nq,...,n denote the first k elements of S with a,, # 0. For any w =

(wi,...,wg) in R¥ there is certainly an a(w) = (ay,...,ax) in R* such that
1 e 1 alf\’/nl wy
nl PRy nk
k—1 k—1
n1 nk O[k"/nk Wy,
and moreover for a sufficiently small constant § = 8(, @n,,...,an, ) we have

max |w;| < 6 = max |a;| <
i<k 1<i<k

1S Iililélk{’l}i — G,y (n; — U4}

1<

Now for a sufficiently large N we must be able to set

o i—1_n; <
w; = E an;my ", 1=1,...,k,
Jj>N
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with all the |w;| < 6. Hence we can truncate f,(xz) at the Nth term and
replace the remaining series by a polynomial with exponents ny,...,n; whose
0,1,...,(k — 1)th derivatives take the same values at v and whose coefficients
are small enough that the resulting polynomial

k N
fv(:) =14 Z(ani +a;)z™ + Z ap, 2™
i=1 i=k+1

still has all its non-zero coefficients a,, strictly inside the given interval and a
root of multiplicity k at . l

Proof of Theorems 3 and 4: Suppose that « is a k-fold root of a power series

falz) =1+ ana™,

n; €S
then, setting
d o
Fi(e) =2~ Fi(2),  Folz) = fy(2),

observe that

Fi(a)=0, i=0,1,....,k—1. (5)

For a subset of (k—1) exponents S1 = {my,...,mp_1} C S we define the matrix

0  my e Mp_q

ASl = - . .
k—1 k—1
0 mj ceeomy

and use D;; to denote the various minors (that is the determinant of the sub-
matrix obtained by deleting the ith row and jth column from Ag, ).

Using the equations (5) for ¢ = 1,...,k — 1 to eliminate @y, ,.-.,am,_, from
the ¢ = 0 equation we obtain

14 Z an,Ps, (ni)a™ =0 (6)

N ES\Sl

where Pg, (¢) is the polynomial

AN kot ’iDi+1v1 i
Ps,(z):=1+Y (-1) 5
i=1
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(consider for example the relation

1 - Z n; 37

tn, Q™ n; €S\S;
_ — Al :
: E k—1 on.
j— . J
ank_la"’“—l anj n] /B
n; GS\Sl

and expand the expression on the right-hand side for 1).

One readily sees that

0 ifz e
Pg (z)=< >0 ifze(0,m)U---U (Tr;Qi,TrL2i+1) U...=Ty
<0 ifz e (ml,mz)U---U(m24+1,m2i+2)u--- =:T15.

(the vanishing of Ps, (z) at x = m; is easily seen by replacing the first column
of A by the (i + 1)th and expanding the zero determinant).

Hence any such « certainly cannot be smaller than the (one) positive real root

of
1— Y uil|Ps, (ni)|2™ — Y |vil|Ps, (ni)|z™ = 0. (7)
n; €Ty n; €Ty
Clearly if § is an element of Ps (k) whose power series fg(x)’s coefficients satisfy

P uj ifnjE(O,ml)U---
T vy ifng € (my,mo)U -

then we attain (7) and § must indeed be the minimal element of Ps(k). Notice
that this 3 cannot be a root of any other series in Fg; since any difference in
the a,, for an n; in S\ S; and we could not recover a root as small as 3 from
the resulting (7), and the remaining ay,, n; in S; are fully determined by the

an;, niin S\ S; (given § and m);
= D anmpm

A, B mp e ME—q n; €5\S;
mMp— k—1 k—1 E—1 .
Ay, P41 my oMy — E tnyni " B
njES\Sl

(8)
Thus there remains to show that if v := rg(k) then f,(2) must be of this form.

From Lemma 1, for any vector m of (k + 1) distinct integers my < mg < -+- <
mpy there is a polynomial

. . ..m .m m k+1 my
plzim,y) = 2™ — ™ + c3a™ — -+ (= 1) g™,
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with a kth order root at 7, where the ¢; = ¢;(m,) are explicit and more
importantly positive. We set C' = C(m, v) := max; ¢;.

We first observe that f(x) can have at most (k — 1) of its a,, not at the
endpoints; since if L have a,, in (up;,vr,) we could take m =
(0,mp,,...,ny, ) and, for a suitably small §,

0<o6< 11%12.1;1]6{/07‘1' - ann’? anri - uri}/c(7

form a new f,y(.L)

fy(z) == (1=6)f(z)+ bp(z;m,~)
k
= 1+ Z (1—6)an,z"™ + Z(ah - bay, + (—1)i60i+1)x”
niFEr; Jj=1

with a root of multiplicity k at v and all its non-zero coefficients @y, in (u;,v;)
(in contradiction to the above lemma).

Further we cannot have a sequence of (k + 1) exponents
ny, <np <--- < Ny
with
a”ll 7é Uiy, anz2 7é Uy, , an13 ;é Vigy---
(or similarly
a”ll ;é ul17 anlg ;é ’012, an13 ;é ulsa .- ) -
If such a sequence existed we could take m = (ng,,...,ns,,, ) and for any small
positive 6
0 <& <minf{vy, —an, , an, — U, Vi; = any - }/C
the series ~
Fo(@) 1= fy(x) + 8p(rsm, )
would be in Fg, have a kth order root at v, and coefficients a,,, , 2 =1,...,k+1

in (uy;,vy,); contradicting our above assertion that all but (kl— 1) coefficients
take the value of an end-point.

Hence we can have at most k blocks of u; or v; (with at most (k - 1) remaining
values not equal to u; or v;). But by Descartes Rule of Signs we must have at
least k sign changes. Hence, for some set of (k— 1) exponents my < -+ < mg_y,

0 = Qv i€ (mi,ma) U=« U (maip1, maipa) U -
i U; if n; € (O,ml)U"'U(in,m2i+1)U"'

as desired. H



16

BeEAucour, BOoRWEIN, BoyD AND PINNER

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]
[11]

[12]

E. BomBIERI & J. D. VAALER, Polynomials with low height and pre-
scribed vanishing, #n Analytic Number Theory & Diophantine Problems,
Progress in Mathematics, Vol 70, Birkhauser 1987, 53-73.

J. M. BOrRwWEIN & P. B. BORWEIN, Piand the AGM — A Study in Analytic
Number Theory and Computational Complexity, Wiley, New York, 1987.

P. BorwriN & T. ErpELYI, Polynomials and Polynomial Inequalities,
Springer 1995.

P. BorwriN & T. Erpéryi & G. KOs, Polynomials with coefficients
{-1,0,1}, to appear.

D. W. BoyD, Variations on a theme of Kronecker, Canad. Math. Bull. 21
(1978), 129-133.

D. W. BoyD, Reciprocal polynomials having small measure, Math. Comp.
53 (1980), 1361-1377 & 53 (1989), 355-357.

J. S. ByrnEs & D. NEwMAN, Null steering employing polynomials with
restricted coefficients, IEEE Transactions on Antennas and Propagation

36 (1988), 301-303.

J. S. BYRNES, Problems on polynomials with restricted coefficients arising
from questions in antenna array theory, in Recent Advances in Fourier
Analysis and Its Applications, (eds. J. S Byrnes & J. F. Byrnes), NATO
AST series, Vol. 315, Kluwer 1990, 677-678.

D. H. LEHMER, Factorization of certain cyclotomic functions, Ann. Math.
(2) 34 (1933), 461-479.

A. ObpLyzKko & B. POONEN, Zeros of polynomials with 0,1 coefficients,
Enseign. Math. (2) 39 (1993), 317-348.

I. Scuur, Untersuchungen iber algebraische gleichungen, Preuss. Akad.
Wiss. Sitzungsber. (1933), 403-428.

B. Soromyak, Conjugates of beta-numbers and the zero-free domain for
a class of analytic functions, Proc. London Math. Soc. (3) 68 (1994), 477
498.



k r(k) m

1 5 {}

2 | 64913786 | {4}

3 | 72788323 | {4,10}

4 | 77732954 | {4,9,19}

5 | 81159422 | {4,9,17.30}

6 | .83672063 | {4,9,17,28,45}

7 | 85581352 | {4,9,16.27,42,62)

8 | .87095801 | {4,9,16,26,40,58,83}

9 | 88322694 | {4,9,16.26,39,55.77,106}

10 | .89334152 | {4,9.16,26,38,54,73,98,132}

11 | .90182864 | {4,9.16,26,38,53,71,94,123,161}

12 | 90908099 | {4,9,16,25,37,52,70,91,117,150,194}

13 | .91533200 | {4,9.16,25,37,51,69,89,114,143,180,229}

14 | .92077995 | {4,9,16,25,37,51,68,88,111,139,172,213,267}

15 | 92556147 | {4,9.16,25,37,51,67,87,110,136,167,204,249,308}

16 | .92979823 | {4,9,16,25,37,50,67,86,108,134,163,198,239,288,353 }

17 | .93358190 | {4,9,16,25,36,50,66,85,107,132,161,193,231,276,330,400}

18 | .93698047 | {4,9,16.25,36,50,66,85,106,131,158,190,226,268,316,375,451 }

19 | .94004491 | {4,9.16,25,36,50.66.,84,105,129,157,187,222,261,306,359,422,504}

20 | .94282535 | {4.9.16,25,36,50,66,84,105,129,155,185,219,257,209,348,405,473,561 }

21 | 94535801 | {4,9,16,25,36,50,65,84,104,128,154,183,216,253,294,340,393,454,527,620}

22 | 94767713 | {4,9.16,25,36,50,65,83,104,127,153,182,214,250,289,334,384,440,505,583,683}

23 | 94980718 | {4,9,16,25,36,49,65,83,103,126,152,181,212,247,286,329,376,430,490,560,643,749 }

24 | 95177133 | {4,9,16,25,36,49,65,83,103,126,151,179,211,245,283,324,371,422,479,543,617,706,818 }

25 | .95358636 | {4,9,16,25,36,49,65,83,103,125,151,179,209,243,280,321,366,415,470,531,599,678,771,890 }
26 | 95526965 | {4,9,16,25,36,49,65,83,103,125,150,178,208,241,278,318,362,410,462,521,585,658,741,840,965
27 | 95683539 | {4,9,16,25,36,49,65,82,102,125,150,177,207,240,276,315,358,405,456,512,574,643,720,808,911.
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Figure 1: (1—7(k))~! against k with least squares line 1.23909318+-.81255949k.
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Figure 2: r(k) against k with the upper and lower bounds.



