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1 Introduction

Philosophers have frequently distinguished mathematics from the physical sci-
ences. While the sciences were constrained to fit themselves via experimentation
to the ‘real’ world, mathematicians were allowed more or less free reign within
the abstract world of the mind. This picture has served mathematicians well
for the past few millennia but the computer has begun to change this. The
computer has given us the ability to look at new and unimaginably vast worlds.
It has created mathematical worlds that would have remained inaccessible to
the unaided human mind, but this access has come at a price. Many of these
worlds, at present, can only be known experimentally. The computer has al-
lowed us to fly through the rarefied domains of hyperbolic spaces and examine
more than a billion digits of 7 but experiencing a world and understanding it are
two very different phenomena. Like it or not, the world of the mathematician
is becoming experimentalized.

The computers of tomorrow promise even stranger worlds to explore. Today,
however, most of these explorations into the mathematical wilderness remain
isolated illustrations. Heuristic conventions, pictures and diagrams developing
in one sub-field often have little content for another. In each sub-field unproven
results proliferate but remain conjectures, strongly held beliefs or perhaps mere
curiosities passed like folk tales across the Internet. The computer has provided
extremely powerful computational and conceptual resources but it is only re-
cently that mathematicians have begun to systematically exploit these abilities.
It is our hope that by focusing on experimental mathematics today, we can
develop a unifying methodology tomorrow.

1.1 Owur Goals

The genesis of this article was a simple question: “How can one use the com-
puter in dealing with computationally approachable but otherwise intractable
problems in mathematics?” We began our current exploration of ezperimen-
tal mathematics by examining a number of very long—standing conjectures and
strongly held beliefs regarding decimal and continued fraction expansions of



certain elementary constants. These questions are uniformly considered to be
hopelessly intractable given present mathematical technology. Unified field the-
ory or cancer’s “magic bullet” seem accessible by comparison. But like many
of the most tantalizing problems in mathematics their statements are beguil-
ingly simple. Since our experimental approach was unlikely to result in any new
discoveries!, we focused on two aspects of experimentation: systematization and
communication.

For our attempted systematization of experimental mathematics we were
concerned with producing data that were ‘completely’ reliable and insights that
could be quantified and effectively communicated. We initially took as our
model experimental physics. We were particularly interested in how physicists
verified their results and the efforts they took to guarantee the reliability of their
data. The question of reliability is undoubtedly central to mathematicians and
here we believe we can draw a useful distinction between experimental physics
and mathematics. While it is clearly impossible to extract perfect experimental
data from nature such is not the case with mathematics. Indeed, reliability of
raw mathematical data is far from the most vexing issue.

Let us turn to our second and primary concern: insight. All experimental
sciences turn on the intuitions and insights uncovered through modeling and
the use of probabilistic, statistical and visual analysis. There is really no other
way to proceed, but this process even when applied to mathematics inevitably
leads to some considerable loss of exactness.

The communication of insight, whether derived from mathematical experi-
ment or not, is a complex issue. Unlike most experimentalized fields, Mathemat-
ics does not have a ‘vocabulary’ tailored to the transmission of condensed data
and insight. As in most physics experiments the amount of raw data obtained
from mathematical experiments is, in general, too large for anyone to grasp.
The collected data needs to be compressed and compartmentalized. To make
up for this lack of unifying vocabulary we have borrowed heavily from statistics
and data analysis to interpret our results. For now we have used restraint in
the presentation of our results in what we hope is an intuitive, friendly and con-
vincing manner. Eventually what will probably be required is a multi-leveled
hyper-textual presentation of mathematics, allowing mathematicians from di-
verse fields to quickly examine and interpret the results of others without
demanding the present level of specialist knowledge. [Not only do mathemati-
cians have trouble communicating with lay audiences, but they have significant
difficulty talking to each other. There are hundreds of distinct mathematical
languages. The myth of a universal language of mathematics is just that. Many
subdisciplines simply can not comprehend each other.]

'We will not discuss the computational difficulties here but there are many non-trivial
mathematical and computer—related issues involved in this project.

(8]



1.2 Unifying Themes

We feel that many of these problems can be addressed through the development
of a rigorous notion of experimental mathematics. In keeping with the positivist
tradition, mathematics is viewed as the most exact of sciences and mathemati-
cians have long taken pride in this. But as mathematics has expanded, many
mathematicians have begun to feel constrained by the bonds placed upon us
by our collective notion of proof. Mathematics has grown explosively during
our century with many of the seminal developments in highly abstract seem-
ingly non-computational areas. This was partly from taste and the power of
abstraction but, we would argue, equally much from the lack of an alterna-
tive. Many intrinsically more concrete areas were, by 1900, explored to the
limits of pre-computer mathematics. Highly computational, even “brute—force”
methods were of necessity limited but the computer has changed all that. A re-
concretization is now underway. The computer—assisted proofs of the four color
theorem are a prime example of computer—dependent methodology and have
been highly controversial despite the fact that such proofs are much more likely
to be error free than, say, even the revised proof of Fermat’s Last Theorem.

Still, these computerized proofs need offer no insight. The Wilf/Zeilberger
algorithms for ‘hypergeometric’ summation and integration, if properly imple-
mented, can rigorously prove very large classes of identities. In effect, the al-
gorithms encapsulate parts of mathematics. The question raised is: “ How
can one make full use of these very powerful ideas?” Doron Zeilberger has ex-
pressed his ideas on experimental mathematics in a paper dealing with what he
called ‘semi-rigorous’ mathematics. While his ideas as presented are somewhat
controversial, many of his ideas have a great deal of merit.

The last problem is perhaps the most surprising. As mathematics has con-
tinued to grow there has been a recognition that the age of the mathematical
generalist is long over. What has not been so readily acknowledged is just
how specialized mathematics has become. As we have already observed, sub-
fields of mathematics have become more and more isolated from each other. At
some level, this isolation is inherent but it is imperative that communications
between fields should be left as wide open as possible. As fields mature, specia-
tion occurs. The communication of sophisticated proofs will never transcend all
boundaries since many boundaries mark true conceptual difficulties. But exper-
imental mathematics, centering on the use of computers in mathematics, would
seem to provide a common ground for the transmission of many insights. And
this requires a common meta-language?. While such a language may develop
largely independent of any conscious direction on the part of the mathematical
community, some focused effort on the problems of today will result in fewer
growing pains tomorrow.

2This may not be a fanciful dream as the Computer Algebra Systems (CAS) of today are
beginning to provide just that.



2 Experimental Mathematics

2.1 Journal of

A professor of psychology was exploring the creative process and as one of his
subjects chose a mathematician who was world famous for his ability to solve
problems. They gave him a problem to work on. He wrote something down
and immediately scribbled it out. He wrote something else down and scribbled
it out. The professor asked him to leave everything on the page. He explained
that he was interested in the process, the wrong answers and the right answers.
The mathematician sat down. Wrote something. The psychology professor
waited in anticipation but the mathematician announced he could not proceed
without erasing his mistakes. While the mathematician in this situation is
undoubtedly fairly idiosyncratic in how he attacks problems there is a strongly
felt separation between the creative process of mathematics and the published
or finished product.

A current focal point for experimental mathematics is the journal called Ez-
pervmental Mathematics. But does it really seek to change the way we do math-
ematics, or to change the way we write mathematics? We begin by attempting
to extract a definition of ‘experimental’ from the Journal’s introductory article
([?]) “About this Journal” by David Epstein, Silvio Levy and Rafael de la Llave.

The word “experimental” is conceived broadly: many mathematical
experiments these days are carried out on computers, but others
are still the result of pencil-and-paper work, and there are other
experimental techniques, like building physical models. ([?] p. 1)

It seems that almost anything can be conceived of as being experimental.
Let us try again.

Experiment has always been, and increasingly is, an important method
of mathematical discovery. (Guass declared that his way of arriving
at mathematical truths was ‘through systematic experimentation’.)
Yet this tends to be concealed by the tradition of presenting only
elegant, well-rounded and rigorous results. ([?] p. 1)

Now we begin to get closer to the truth. Experimentation is still ill defined
but is clearly an important part of the mathematical process. It is clearly not
new but by implication must be inelegant, lopsided and lax. We, of course,
dispute all three of these points and while we do not reply directly to these
charges, we hope the reader will be convinced that there need be no compromises
made with respect to the quality of the work.

But what is the journal interested in publishing? Their goal seems to be
two-fold.



While we value the theorem-proof method of exposition, and while
we do not depart from the established view that a result can only
become part of mathematical knowledge once it is supported by a
logical proof, we consider it anomalous that an important component
of the process of mathematical creation is hidden from public dis-
cussion. It is to our loss that most of the mathematical community
are almost always unaware of how new results have been discovered.

(71 p- 1)

and

The early sharing of insights increases the possibility that they will
lead to theorems: an interesting conjecture is often formulated by
a researcher who lacks the techniques to formalize a proof, while
those who have the techniques at their fingertips have been looking
elsewhere.

It appears that through the journal Experimental Mathematics the editors
advocate a not undramatic change in writing style. So what does a paper pub-
lished in that journal look like? A recent example is “Experimental Evaluation
of Euler sums” by D.H. Bailey, J. Borwein and R. Girgensohn ([?]). The authors
describe how their interest in Euler sums was roused by a surprising discovery:

In April 1993, Enrico Au-Yeung, an undergraduate at the Uni-
versity of Waterloo, brought to the attention of one of us the curious

fact that
o 1 nZ
Z 1+;+...+E k = 4.59987---
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based on a computation to 500,000 terms. This author’s reaction was
to compute the value of this constant to a higher level of precision
in order to dispel this conjecture. Surprisingly, a computation to 30
and later to 100 decimal digits still affirmed it. ([?] p. 17)

This type of serendipitous discovery must go on all the time, but it needs the
flash of insight that will place it in a broader context. It is like a gold nugget
waiting to be refined — without a context it would remain a curiosity. The
authors now proceeded to provide a context by mounting a full-fledged assault
on the problem. They systematically applied an integer relation detection al-
gorithm to large classes of sums of the above type, trying to find evaluations
of these sums in terms of zeta functions (see box for details). Some of the ex-
perimentally discovered evaluations were then proven rigorously, others remain



conjectures. While Au-Yeung’s insight may fill us with a sense of amazement,
the experimenters’ approach appears quite natural and systematic.

Serendipity and Experimentation

After Enrico Au-Yeung’s serendipitous discovery, D. Bailey, J. Borwein and R.
Girgensohn launched a full fledged assault on the problem. This is documented

in Ezperimental Detection of Euler Sums (the material below was taken from
David Bailey’s slides).

Experimental Approach

1. Employ an advanced scheme to compute high-precision (100+ digit) nu-
merical values for various constants in a class.

o

Conjecture the form of terms involved in possible closed-form evalua-
tions.

3. Employ an integer relation finding algorithm to determine if an Euler
sum value is given by a rational linear combination of the conjectured

terms.

4. Attempt to find rigorous proofs of experimental results.

SUINsS.

5. Attempt to generalize proofs for specific cases to general classes of Euler

The editors of Ezperimental Mathematics are advocating a change in the way
mathematics is written, placing more emphasis on the mathematical process.
Imre Lakatos in his influential though controversial book Proofs and Refutations
[?] advocated a similar change from what he called the deductivist style of
proof to the heuristic style of proof. In the deductivist style, the definitions are
carefully tailored to the proofs. The proofs are frequently elegant and short. But
it is difficult to see what process led to the discovery of the theorem and its proof.
The heuristic style maintains the mathematical rigor but again the emphasis is
more on process. One does not merely give the definition but perhaps includes
a comment on why this definition was chosen and not another. This is clearly
an important shift if the editors wish to meet their second objective, the sharing
of insights.



Some Experimental Results

Definitions

k
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Some experimentally derived conjectures
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We are given the raw data with which to work, carefully organized to give
us a glimpse into the investigators’ insights on the problem. Note in the first
formula for s,(3,2), 3+ 2 =5, on the right hand side of the equation we have

¢(5) and ¢(3)¢(2)-

Some Proven Euler Sums
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The proven evaluation for s, (2,2) above implies the truth of Au-Yeung’s dis-
covery.

2.2 The Deductivist Style

The major focus of this section is Imre Lakatos’s description of the deductivist
style in Proofs and Refutations. An extreme example of this style is given in
the form of a computer generated proof of (1 +1)™ = 2" in the box.



Euclidean Methodology has developed a certain obligatory style of
presentation. I shall refer to this as ‘deductivist style’. This style
starts with a painstakingly stated list of azioms, lemmas and/or
definitions. The axioms and definitions frequently look artificial and
mystifyingly complicated. One is never told how these complications
arose. The list of axioms and definitions is followed by the carefully
worded theorems. These are loaded with heavy-going conditions; it
seems impossible that anyone should ever have guessed them. The
theorem is followed by the proof. ([?] p. 142)

This is the essence of what we have called formal understanding. We know
that the results are true because we have gone through the crucible of the
mathematical process and what remains is the essence of truth. But the insight
and thought processes that led to the result are hidden.

In deductivist style, all propositions are true and all inferences valid.
Mathematics is presented as an ever-increasing set of eternal, im-
mutable truths. ([?] p. 142)

Deductivist style hides the struggle, hides the adventure. The whole
story vanishes, the successive tentative formulations of the theorem
in the course of the proof-procedure are doomed to oblivion while
the end result is exalted into sacred infallibility. ([?] p. 142)

Perhaps the most extreme examples of the deductivist style come out of
the computer generated proofs guaranteed by Wilf and Zeilberger’s algorithmic
proof theory. It is important to note here that Wilf and Zeilberger transform the
problem of proving identities to the more computer oriented problem of solving
a system of linear equations with symbolic coefficients.



Shrinking or Encapsulating Mathematics

series

. 1
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when [p| < 1. Next one learns to sum telescoping series. For example if
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and in particular that

When one first learns to sum infinite series one is taught to sum geometric

The Wilf-Zeilberger algorithms employ “creative telescoping’ to show that
a sum or integral is zero. The algorithms really provide a meta-insight into
a broad range of problems involving identities. Unfortunately the proofs pro-
duced by the computer, while understandable by most mathematicians are at
the same time uninteresting. On the other hand, the existence of WZ proofs

for large classes of objects gives us a global insight into these areas.

These WZ proofs (see next page) are perhaps the ultimate in the deductivist
tradition. At present, knowing the WZ proof of an identity amounts to little
more (We will discuss the importance of certificates later.) than knowing that
the identity is true. In fact, Doron Zeilbergerin [?] has advocated leaving only a
QED at the end of the statement, the author’s seal that he has had the computer
perform the calculations needed to prove the identity. The advantage of this
approach is that the result is completely encapsulated. Just as one would not
worry about how the computer multiplied two huge integers together or inverted
a matrix, one now has results whose proofs are uninteresting.



An Uninteresting(?) Proof

Below is a sample WZ proof of (1+ 1)" = 2" (this proof is a modified version
of the output of Doron Zeilberger’s original Maple program, influenced by the
proof in [?]).

Let F(n, k) = Z 27", We have to show that I(n) := 3, F(n,k) = 1. To
do this we will show that {(n+ 1) —I(n) = 0 for every n > 0 and that [(0) = 1.
The second half is trivial since for n = 0, F(0,0) is equal to 1 and 0 otherwise.

The first half is proved by the WZ algorithm.

‘We construct

soon = g (1) (= s 9):

with the motive that
WZ:=F(n+1,k)— F(n,k) = G(n,k+ 1) — G(n,k) (check!).

Summing WZ with respect to k gives

S Fn+1,k)=> F(nk)=
k k

> (G(n,k+1) = G(n, k) =0
k
(by telescoping). We have now established that {(n+ 1) —I(n) = 0 and we are
done.
The proof gives little insight into this binomial coefficient identity. However,
the algorithms give researchersin other fields direct access to the field of special
function identities.

3 Zeilberger and the Encapsulation of Identity

3.1 Putting a price on reliability

In the last two sections we talked about the importance of communicating in-
sights within the mathematical community. There we focused on the process of
mathematical thought but now we want to talk about communicating insights
that have not been made rigorous.

We have already briefly talked about Wilf and Zeilberger’s algorithmic proof
theory and its denial of insight. In this section we will discuss the implications
of this theory and D. Zeilberger’s philosophy of mathematics as contained in
Theorems for a Price: Tomorrow’s Semi-Rigorous Mathematical Culture ([?]).

10



It is probably unfortunate but perhaps necessary that the two voices most
strongly advocating truly experimental math are also at times the most hy-
perbolic in their language. We will concentrate mostly on the ideas of Doron
Zeilberger but G. J. Chaitin should not and will not be ignored.

We will begin with D. Zeilberger’s “Abstract of the future”

We show in a certain precise sense that the Goldbach conjecture is
true with probability larger than 0.99999 and that its complete truth
could be determined with a budget of 10 billion. ([?] p. 980)

Once people get over the shock of seeing probabilities assigned to truth in math-
ematics the usual complaint is that the 10 billion is ridiculous. Computers have
been getting better and cheaper for years. What can it mean that “the com-
plete truth could be determined with a budget of 10 billion?” What is clear
from the article is that this is an additive measure of the difficulty of completely
solving this problem. If we know that the Reimann hypothesis will be proven if
we prove lemmas costing 10 billion, 2 billion and 2 trillion dollars respectively,
we can tell at a glance not merely what it would ‘cost’ to prove the hypothesis
but also where new ideas will be essential in any proof. ( This assumes that 2
trillion is a lot of ‘money’.)

The introduction of ‘cost’ leads immediately to consideration of a trend that
has over taken the business world and is now intruding rapidly on academia: a
focus on productivity and efficiency.

It is a waste of money to get absolute certainty, unless the conjec-
tured identity in question is known to imply the Riemann Hypothesis

([?] p. 980)

We have taken this quote out of its context (Wilf and Zeilberger’s algorithmic
proof theory of identities) [?] but even so We think it is indicative of a small
but growing group of mathematicians who are asking us to to look at not just
the benefits of reliability in mathematics but also the associated costs. See for
example A. Jaffe and F. Quinn in [?] and G. Chaitin in [?]. Still, we have
not dealt with the central question. Why does D. Zeilberger need to introduce
probabilistic ‘truths’? and how might we from a ‘formalist’ perspective not feel
this to be a great sacrifice?

3.2 [1It’s all about insight

Why is Zeilberger so willing to give up on absolute truths? The most reasonable
answer is that he is pursuing deeper truths. In Identities in Search of Idents-
ties, Zeilberger advocates an examination of identities for the sake of studying
identities. Still as Herb Wilf and others have pointed out it is possible to pro-
duce an unlimited number of identities. It is the context, the ability to use and
manipulate these identities, that make them interesting. Why then might we

11



think that studying identities for their own sake may lead us down the golden
path rather than the garden path?

We are now looking for what might be called meta-mathematical structures.
We remove the math from its original context and isolate it, trying to detect
new structures. When doing this it is impossible to collect only the relevant
information that will lead to the new discovery. One collects objects (theorems,
statistics, conjectures, etc.) that have a reasonable degree of similarity and
familiarity and then attempts to eliminate the irrelevant or the untrue (counter
examples). We are preparing for some form of eliminative induction. There is
a built in stage, where objects are subject to censorship. In this context, it is
not unreasonable to introduce objects where one is not sure of their truth, since
all the objects, whether proved or not, will be subject to the same degree of
scrutiny. Moreover, if these probably true objects fall into the class of reliable
(i.e., they fit the new conjecture) objects, it may be possible to find a legitimate
proof in the new context. Recall that the fast WZ algorithms transform the
problem of proving an identity to one of solving a system of linear equations
with symbolic coefficients.

It is very time consuming to solve a system of linear equations with
symbolic coefficients. By plugging in specific values for » and other
parameters if present, one gets a system with numerical coefficients,
which is much faster to handle. Since it is unlikely that a random
system of inhomogeneous linear equations with more equations than
unknowns can be solved, the solvability of the system for a number of
special values of n and the other parametersis a very good indication
that the identity is indeed true. ([?] p. 980)

Suppose we can solve the system above for ten different assignments for
n and the other parameters but cannot solve the general system. What do
we do if we really need this identity? We are in a peculiar position. We have
reduced the problem of proving identities involving sums and integrals of proper-
hypergeometric terms to the problem of solving a possibly gigantic system of
inhomogeneous linear equations with more equations than unknowns. We have
an appropriately strong belief that this system has a solution but do not have
the resources to uncover this solution.

What can we do with our result? If we agree with G. J. Chaitin, we may
want to introduce it as an ‘axiom‘.

I believe that elementary number theory and the rest of mathematics
should be pursued more in the spirit of experimental science, and
that you should be willing to adopt new principles. I believe that
Euclid’s statement that an axiom is a self-evident truth is a big
mistake®. The Schrédinger equation certainly isn’t a self-evident

3There is no evidence that Euclid ever made such a statement. However, the statement
does have an undeniable emotional appeal.
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truth! And the Riemann hypothesis isn’t self-evident either, but it’s
very useful. A physicist would say that there is ample experimental
evidence for the Riemann hypothesis and would go ahead and take
it as a working assumption. ([?] p. 24)

In this case, we have ample experimental evidence for the truth of our identity
and we may want to take it as something more than just a working assumption.
We may want to introduce it formally into our mathematical system.

4 Experiment and ‘Theory’

We have now examined two views of experimental mathematics but we appear
to be no closer to a definition than when we began. However, we are now ready
to begin in full our exploration of experiment. In Adwvice to a Young Scientist,
P.B. Medawar defines four different kinds of experiment: the Kantian, Baconian,
Aristotelian, and the Galilean. Mathematics has always participated deeply in
the first three categories but has somehow managed to avoid employing the
Galilean model. In developing our notion of experimental mathematics we will
try to adhere to this Galilean mode as much as possible.

We will begin with the Kantian experiments. Medawar gives as his example:

generating ‘the classical non-Euclidean geometries (hyperbolic, ellip-
tic) by replacing Euclid’s axiom of parallels (or something equivalent
to it) with alternative forms.” ([?] pp. 73-74)

It seems clear that mathematicians will have difficulty escaping from the Kantian
fold. Even a Platonist must concede that mathematicsis only accessible through
the human mind and thus at a basic level all mathematics might be considered
a Kantian experiment. We can debate whether Euclidean geometry is but an
idealization of the geometry of nature (where a point has no length or breadth
and a line has length but no breadth?) or nature an imperfect reflection of
‘pure’ geometrical objects, but in either case the objects of interest lie within
the minds eye.

Similarly, we cannot escape the Baconian experiment. We Medawar’s words
this

is a contrived as opposed to a natural happening, it “is the conse-
quence of ‘trying things out’ or even of merely messing about.” ([?]

p- 69)

Most of the research described as experimental is Baconian in nature and in
fact one can argue that all of mathematics proceeds out of Baconian experi-
ments. One tries out a transformation here, an identity there, examines what
happens when one weakens this condition or strengthens that one. Even the
application of probabilistic arguments in number theory can be seen as a Ba-
conian experiment. The experiments may be well thought out and very likely

13



to succeed but the ultimate criteria of inclusion of the result in the literature
is success or failure. If the ‘messing about’ works (e.g., the theorem is proved,
the counterexample found) the material is kept; otherwise, it is relegated to the
scrap heap.

The Aristotelian experiments are described as demonstrations:

apply electrodes to a frog’s sciatic nerve, and lo, the leg kicks; always
precede the presentation of the dog’s dinner with the ringing of a
bell, and lo, the bell alone will soon make the dog dribble. ([?] p.
71)

The results are tailored to demonstrate the theorems, as opposed to the exper-
iments being used to devise and revise the theorems. This may seem to have
little to do with mathematics but it has everything to do with pedagogy. The
Aristotelian experiment is equivalent to the concrete examples we employ to
help explain our definitions, theorems, or the problems assigned to students so
they can see how their newly learned tools will work.

The last and most important is the Galilean experiment:

(the) Galilean Experiment is a critical experiment — one that dis-
criminates between possibilities and, in doing so, either gives us
confidence in the view we are taking or makes us think it in need of
correction. ([?] p. )

Ideally one devises an experiment to distinguish between two or more competing
hypotheses. In subjects like medicine the questions are in principal more clear
cut (the Will Roger’s phenomenon or Simpson’s paradox complicates matters).
Does this medicine work (longevity, quality of life, cost effectiveness,etc.)? Is this
treatment better than that one? Unfortunately, these questions are extremely
difficult to answer and the model Medawar presents here does not correspond
with the current view of experimentation. Since the spectacular ‘failure’ (i.e., it
worked beautifully but ultimately was supplanted see [?]) of Newtonian physics
it has been widely held that no amount of experimental evidence can prove or
disprove a theorem about the world around us and it is widely known that in
the real world the models one tests are not true. Medawar acknowledges the
difficulty of proving a result but has more confidence than modern philosophers
in disproving hypotheses. If experiment cannot distinguish between hypothe-
ses or prove theorems, what can it do? What advantages does it have? Is it
necessary?

5 ‘Theoretical’ Experimentation
While there is an ongoing crisis in mathematics, it is not as severe as the crisis

in physics. The untestability of parts of theoretical physics (e.g., string theory)
has led to a greater reliance on mathematics for ‘experimental verification’. This

14



may be in part what led Arthur Jaffe and Frank Quinn to advocate what they
have named ‘Theoretical Mathematics’ (note that many mathematicians think
they have been doing theoretical mathematics for years) but which we like to
think of as ‘theoretical experimentation’. There are certainly some differences
between our ideas and theirs but we believe they are more of emphasis than
substance.

Unlike our initial experiment where we are working with and manipulating
floating point numbers, ‘theoretical experimentation’ would deal directly with
theorems, conjectures, the consequences of introducing new axioms.... Note
that by placing it in the realm of experimentation, we shift the focus from the
more general realm of mathematics, which concerns itself with the transmission
of both truth and insight, to the realm of experimentation, which primarily deals
with the establishment of and transmission of insight. Although it was originally
conceived outside the experimental framework, the central problems Jaffe and
Quinn need to deal with are the same. They must attempt to preserve the
rigorous core of mathematics, while contributing to an increased understanding
of mathematics both formally and intuitively.

As described in Arthur Jaffe and Frank Quinn’s “Theoretical Mathematics”:
Toward a Cultural Synthesis of Mathematics and Theoretical Physics it appears
to be mainly a call for a loosening of the bonds of rigor. They suggest the
creation of a branch of theoretical (experimental) mathematics akin to theo-
retical physics, where one produces speculative and intuitive works that will
later be made reliable through proof. They are concerned about the slow pace
of mathematical developments when all the work must be rigorously developed
prior to publication. They argue convincingly that a haphazard introduction of
conjectorial mathematics will almost undoubtedly result in chaos.

Their solution to the problems involved in the creation of theoretical (ex-
perimental) mathematics comes in two parts. They suggest that

theoretical work should be explicitly acknowledged as theoretical
and incomplete; in particular, a major share of credit for the final
result must be reserved for the rigorous work that validates it. ([?]
p.107)

This is meant to ensure that there are incentives for following up and proving
the conjectured results.

To guarantee that work in this theoretical mode does not affect the reliability
of mathematics in general, they propose a linguistic shift.

Within a paper, standard nomenclature should prevail: in theoret-
ical material, a word like “conjecture” should replace “theorem”;
a word like “predict” should replace “show” or “construct”; and
expressions such as “motivation” or “supporting argument” should
replace “proof.” Ideally the title and abstract should contain a word
like “theoretical”, “speculative”, or “conjectural”. ([?] p.10)
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Still, none of the newly suggested nomenclature would be entirely out of place
in a current research paper. Speculative comments have always had and will
always have a place in mathematics.

This is clearly an exploratory form of mathematics. But is it truly exper-
imental in any but the Baconian sense? The answer will of course lie in its
application. If we accept the description at face value, all we have is a lessening
of rigor, covered by the introduction of a new linguistic structure. More ‘math-
ematics’ will be produced but it is not clear that this math will be worth more,
or even as much as, the math that would have been done without it.

It is not enough to say that mathematical rigor is strangling mathematical
productivity. One needs to argue that by relaxing the strictures temporar-
ily one can achieve more. If we view theoretical (experimental) mathematics
as a form of Galilean experimentation then in its idealized form ‘theoretical’
(experimental) mathematics should choose between directions (hypotheses) in
mathematics. Like any experimental result the answers will not be conclusive,
but they will need to be strong enough to be worth acting on.

Writing in this mode, a good theoretical paper should do more than just
sketch arguments and motivations. Such a paper should be an extension of the
survey paper, defining not what has been done in the field but what the author
feels can be done, should be done and might be done, as well as documenting
what is known, where the bottlenecks are, etc. In general, we sympathize with
the desire to create a ‘theoretical’ mathematics but without a formal structure
and methodology it seems unlikely to have the focus required to succeed as a
separate field.

One final comment seems in order here. ‘Theoretical’ mathematics, as prac-
ticed today, seems a vital and growing instititution. Mathematicians now rou-
tinely include conjectures and insights with their work (a trend that seems to be
growing). This has expanded in haphazard fashion to include algorithms, sug-
gested algorithms and even pseudo algorithms. We would distinguish our vision
of ‘experimental’ mathematics from ‘theoretical’ mathematics by an emphasis
on the constructive/algorithmic side of mathematics. There are well established
ways of dealing with conjectures but the rules for algorithms are less well de-
fined. Unlike most conjectures, algorithms if sufficiently efficacious soon find
their way into general use.

While there has been much discussion of setting up standardized data bases
to run algorithms on, this has proceeded even more haphazardly. Addressing
these issues of reliability would be part of the purview of experimental mathe-
matics. Not only would one get a critical evaluation of these algorithms but by
reducing the problems to their algorithmic core, one may facilitate the sharing of
insights both within and between disciplines. At its most extreme, a researcher
from one discipline may not need to understand anything more than the outline
of the algorithm to make important connections between fields.
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6 A mathematical experiment

6.1 Experimentation

We now turn to a more concrete example of a mathematical experiment. Our
meta-goal in devising this experiment was to investigate the similarities and
differences between experiments in mathematics and in the natural sciences,
particularly in physics. We therefore resolved to examine a conjecture which
could be approached by collecting and investigating a huge amount of data:
the conjecture that every non-rational algebraic number is normal in every base
(see box). It is important to understand that we did not aim to prove or
disprove this conjecture; our aim was to find evidence pointing in one or the
other direction. We were hoping to gain insight into the nature of the problem
from an experimental perspective.

Background

Definition. A real number is normal to the base 10 if every block of digits of
length k£ occurs with frequency 1/10"’.

Example: the Champernowne number
.01234567891011121314...99100101. ..

is known to be normal base 10.

Except for artificially created examples no numbers have been proven normal
in any particular base. If we allow artificial numbers there are no explicit
numbers known to be normal in every base®

Questions

e Are all non-rational algebraic numbers normal base 107

e Do all non-rational algebraic numbers have uniformly distributed digits?

*J. G. Chaitin in Randomness and Complezity in Pure Mathematics has a number he
calls  := Ep halts 2-17l_ the halting probability, which he notes is “sort of a mathematical
pun”, but is normal to all bases. He does this by identifying integers with binary strings

representing Turing machines and summing over the programs that stopped (non-trivially,
see [?] p.12).

The actual experiment consisted of computing to 10,000 decimal digits the
square roots and cube roots of the positive integers smaller than 1000 and
then subjecting these data to certain statistical tests (again, see box). Under
the hypothesis that the digits of these numbers are uniformly distributed (a
much weaker hypothesis than normality of these numbers), we expected the
probability values of the statistics to be distributed uniformly between 0 and
1. Our first run showed fairly conclusively that the digits were distributed
uniformly. In fact, the Anderson-Darling test, which we used to measure how
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uniformly distributed our probabilities were suggested that the probabilities
might have been ‘too uniform’ to be random. We therefore ran the same tests
again, only this time for the first 20,000 decimal digits, hoping to detect some
non-randomuess in the data. The data were not as interesting on the second
run.

6.2 Verification

It is even more important in mathematics than in the physical sciences that the
data under investigation are completely reliable. At first glance it may seem
that the increasing reliance of mathematicians on programs such as Maple and
Mathematica has decreased the need for verification. Computers very rarely
make arbitrary mistakes in arithmetic and algebra. But all the systems have
known and unknown bug in there programming. It is therefore imperative that
we that we check our results. So what efforts did we take to verify our findings?

First of all, we had to make sure that the roots we computed were accurate
to at least 10,000 (resp. 20,000) digits. We computed these roots using Maple
as well as Mathematica, having them compute the roots to an accuracy of
10,010 digits. We then did two checks on the computed approximation s, to
V/n. First, we tested that \/n € [s, — 10719005 5, 4+ 10710095] by checking that
(s — 10710005)2 < p < (s, + 1071009%)2 Second, we tested that the 10,000th
through 10,005th digits were not all zeros or nines. This ensures that we actually
computed the first 10,000 digits of the decimal expansion of \/n. (We note that
Maple initially did not give us an accuracy of 10,000 digits for all of the cube
roots, so that we had to increase the precision here.)

We then had to make sure that we computed the statistics and probability
values accurately orat least to a reasonable precision, since we used asymptotic
formulas anyway. We did this by implementing them both in Maple and in
Mathematica and comparing the results. We detected no significant discrepancy.

We claim that these measures reasonably ensure the reliability of our exper-
imental results.
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6.3 Interpretation

Data and Statistics

We looked at the first 10,000 digits after the decimal point of the \/n where
n < 1000 is not a perfect square and of &/n where n < 1000 is not a perfect
cube.

Tests used

e x? — to check that each digit occurs 1/10 of the time (discrete uniform
distribution base 10).

¢ Discrete Cramér-von Mises — to check that all groups of 4 consecutive
digits occurs 1/10,000 of the time (discrete uniform distribution base

10,000).

¢ Anderson-Stephens — to check that the power spectrum of the sequence
matches that of white noise (periodicity).

e Anderson-Darling — continuous uniform distribution.

Important point. In order for us to claim we have generated any evidence
at all either for or against we have made two fairly strong assumptions.

e The first 10,000 digits are representative of the remaining digits.

e These digits behave as far as our statistical tests go like independent
random variables.

In fact, for the first and second 10,000 digits our final conclusions are identical.
The second assumption is problematic. Since we have beautiful algorithms to
calculate these numbers. By most reasonable definitions of independent and
random, these digits are neither.

Our experimental results support the conjecture that every non-rational al-
gebraic number is normal; more precisely, we have found no evidence against
this conjecture. In this section we will describe how we looked at and inter-
preted the experimental data to arrive at this conclusion. We include only a
few examples of how we looked at the data here. In fact, we have only looked
at certain aspects of normality and randomness in decimal expansions. Thus
our results may be interpreted more narrowly to support the hypothesis that
algebraic numbers our normal base 10. A full description will be found in [?].

Our main goal here is to give a quick visual summary that is at once con-
vincing and data rich. These employ some of the most basic tools of visual data
analysis and should probably become form part of the basic vocabulary of an
experimental mathematician. Note that traditionally one would run a test such
as the Anderson-Darling test (which we have done) for the continuous uniform
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distribution and associate a particular probability with each of our sets of prob-
ability, but unless the probability values are extremely high or low it is difficult
to interpret these statistics.

Experimentally, we want to test graphically the hypothesis of normality
and randomness (or non-periodicity) for our numbers. Because the statistics
themselves do not fall into the nicest of distributions, we have chosen to plot
only the associated probabilities. We include two different types of graphs here.
A quantile-quantile plot is used to examine the distribution of our data and
scatter plots are used to check for correlations between statistics.

The first is a quantile-quantile plot of the chi square base 10 probability
values versus a a discrete uniform distribution. For this graph we have placed
the probabilities obtained from our square roots and plotted them against a
perfectly uniform distribution. Finding nothing here is equivalent to seeing
that the graph is a straight line with slope 1. This is a crude but effective way
of seeing the data. The disadvantage is that the data are really plotted along
a one dimensional curve and as such it may be impossible to see more subtle
patterns.

The other graphs are examples of scatter plots. The first scatter plot shows
that nothing interesting is occurring. We are again looking at probability values
this time derived from the discrete Cramer-von Mises (CVM) test base 10,000.
For each cube root we have plotted the point (f;, s;), where f; is the CVM base
10,000 probability associated with the first 2500 digits of the cube root of i and
s; is the probability associated with the next 2500 digits. A look at the graph
reveals that we have now plotted our data on a two dimensional surface and
there is a lot more ‘structure’ to be seen. Still, it is not hard to convince oneself
that there is little or no relationship between the probabilities of the first 2500
digits and the second 2500 digits.

The last graph is similar to the second. Here we have plotted the probabilities
associated with the Anderson-Stepheuns statistic of the first 10,000 digits versus
the first 20,000 digits. We expect to find a correlation between these tests since
there is a 10,000 digit overlap. In fact, although the effect is slight, one can
definitely see the thinning out of points from the upper left hand corner and
lower right hand corner.
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7 Conclusion

All the versions of experimental mathematics that we have dealt with so far
have two characteristics: their main interest is in expanding our mathematical
knowledge as rapidly as possible and none of them stray too far from the main-
stream. In many cases this urgency leads to a temporary relaxation of rigor, a
relaxation that is well documented and hopefully can be cleaned up afterwords.
In other cases it may be intrinsic to the mathematics they wish to explore.
When a field has been as wildly successful as mathematics has been in the past
few centuries there is a reluctance to change. We have hoped to convince some
of the readers that these changes are revolutionary only in the same sense that
the earth revolves around the sun.
We conclude with a definition of experimental mathematics.

Experimental Mathematics s that branch of mathematics that concerns it-
self ultimately with codification and transmission of insights within the math-
ematical communaty through the use of experimental exploration of conjectures
and more wnformal beliefs and a careful analysis of the data acquired wn this
pursuil.

Results discovered experimentally will, in general, lack some of the rigor as-
sociated with mathematics but will provide general insights into mathematical
problems to guide further exploration, either experimental or traditional. We
have restricted our definition of experimental mathematics to methodological
pursuits that in some way mimic Medawar’s views of Gallilean experimentation.
However, our emphasis on insight also calls for the judicious use of examples
(Aristotelian experimentation).

If the mathematical community as a whole, was less splintered, we would
probably remove the word ‘codification’ from the definition. Since there are real
communications problems between fields and since the questions to be explored
will be difficult, it seems imperative that experimental investigators make every
effort to organize their insights and present there data in a manner that will be
as widely accessible as possible?.

With respect to reliability and rigor, the main tools here are already in place.
We need to stress systematization of our exploration. As in our experimental
project on normality, it is important to clearly define what has been looked
at, how things have been examined, and what confidence the reader should
have in the data. Although mathematicians may not like to admit it, ease of
use will have to be a primary consideration if experimental results are to be of
widescale use. As such, visualization and hypertextual presentations of material
will become increasingly important in the future. We began by stealing some of
the basic tools of scientific analysis and laying claim to them. As the needs of

4It is clear that mechanisms are developing for transmitting insights within fields, even if
this is only through personal communications.
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the community become more apparent one would expect these tools and others
to evolve into a form better suited to the particular needs of the mathematical
community. Someday, who knows, first year graduate students may be signing
up for Experimental Methods in Mathematics I.
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