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RATIONAL APPROXIMATIONS
TO STIELTJES TRANSFORMS

PETER B. BORWEIN*
1.

Rational sums of the form Y a,/(x +b;) where a; and b, are positive can be
expressed as Stieltjes transforms of discrete positive measures. The Stieltjes
transforms of the measure «(t) is the function

i) = jw da(t)

o X+~

Rational approximations that interpolate such functions on positive intervals
are particularly amenable to analysis because all of the poles of these
approximations lic on the negative real axis [1]. Furthermore, if g(x) is the
Stieltjes transform of B(t), f(x) is the transform of «(r) and if &, # and a—fi are
all positive measures then g can be approximated more closely than f by
rational functions on any positive interval (see Theorem 1). We will exploit
these two observations to analyse the rate of rational approximation to certain
functions of the form Y a;/(x+b)).

Let I1, denote the real algebraic polynomials of degree at most n. Let R, ,
denote the rational functions with numerators in I, and denominators in I7,,.
Let

Fam(f: [a,b]) = rEiI);f /() =7 ()l a, vy

where || [|,,5 denotes the supremum norm on [a, b].

In a seminal paper ([6], see also [7]) Gondar shows that if f is the Stieltjes
transform of a positive measure a with sﬁpport in the interval [a,b], if 2’ >0
almost everywhere on [a,b] and if ¢> —a then

1
lim rn—l.n(f: [Cad:l)l/n = ? <1

n—=oc
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where ¢ depends only on q, b, ¢, and d. These results have been extended by
Ganelius [5] who shows that under slightly more restrictive conditions

kl g rn*l,n(f: [C,d])an é k2 .
Ganelius [4] also shows that for non-integral positive J,
bylsinmd] < 7,y ,(x% [0,1])e " < e

where b, ¢;, and C; depend only on . This settles the conjecture of Gon&ar
that

(1) limn™"Inr, (x5 [0,1]) = —2n)/5 .

As a corollary to Theorem 1 we deduce that
limn~Ynr,_| (xlnx:[0,1]) = —=2=n.
n=+oo

This amounts in some sense to the §=1 case of Goné&ar’s conjecture.

In contrast to the above situation we will also consider functions which arise
as transforms of discrete measures, that is, functions of the form >Ria/(x
+b)), a;,b;20. We will, for example, obtain results of the following nature:

n+1 1 a
_ " 1] =—+-* h li 12n = 278 ...
(@ r, 1,n<i; il [0, ]) [y Where lima, 27

and

n+1 1 b
(b) r,,ﬂ,,,<_;1 x+i2: [0, 1]> = W(J;?'T where ”llrg blP" = 439 ... .

The convergence problem for Padé approximants to functions of the form
2 a/(x+b) is treated by Franzen in [3].

2. A comparison theorem.

A particularly useful theorem in polynomial approximation theory due to
Bernstein states that if |g"* P (x)|<f*"*!(x) on [a, b], then the error in best
uniform polynomial approximation of degree n to g is no greater than the
corresponding error in approximating f. Our first result is a modest extension
of this to the case of rational approximations to Stieltjes transforms.

THEOREM 1. Let

Sx) = JOQM and  g(x) = Jw 4plo)

o X+t
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Suppose that o, B and «— B are all non-negative measures. Suppose that for k=0

Anti-1() drvk-1(E)
—f() = 0 = 1B
Pa() F&) (&)

at 2n+k points 0,28, ... S{gp41 Where

g()

Gn+i—1/Pm Ansk-1/Pn € Rusi—1.n -

Then, for x>0,

gl — o1l iy doeies 0
P (%) palx)

Proor. If k of the {, coincide, then we are assuming that f—q, ., 1/Pa and
g—qX*,._./p¥ have zeros of multiplicity k at those L
We may suppose that the {; are distinct and that

o0 00 5

f=Y -1 and g =Y

=1 X+ i1 X+

where for all i,
0Lao, <o, and 0=4 =7

(The general argument is completed by taking limits.) Let I ; be the index of the
first noh-zero y;, and let I, be the index of the first non-zero d;. Then, if f=a;,
and ﬁ*=<x,x, it follows from results in [1] that

_ C;
Dokt _ g Y Y g > B6 >0

Pn TS x+d;
and
Gns - _ c €;
-Li—IZq:_l_{‘AZ‘I——F hi>ﬁ*’ ei>0

where §,_, ¥ ; € Ty (m_;=0)
Furthermore,

F(x):= Tn#k21 ¢ and G(x)::q"**%—
Py 4n
have exactly 2n+k simple zeros on
[-B.c0) and [—f* )
respectively. Also,

lim F(x) = lim G(x) = —oco.

x——j* x—(—p**



€

RATIONAL APPROXIMATIONS TO STIELTJES TRANSFORMS 117

It follows that
sgn F(x) = sgn G(x) for x € [0,00) .
If there exists x>0, xo & {{;,...,{sn4x sO that
) [F (xo)l = |G (xo)l
then there exists ¢>1 so that on [0, 00)
cF(x)—G(x) has 2n+k+1 zeros .
Thus,
Cnti-1 _ of g+qn+k 1
Py px

has 2n+k+1 non-negative solutions.
If we differentiate the above k times we see that

n

n e;
Z x+d)k+1 - Z (x_+_ k+1 Z (X+hi)k+l

i=1 i=1

has 2n+=1 negative solutions. Since cy;—3J;=0, this violates Descartes rule of
signs (see [1] for further details). Thus, assumption (2) is not possible and the
proof is complete.

The interpolation condition in Theorem 1 is satisfiable for all choices of non-
negative {; (see [1]). This observation yields the following corollaries.

COROLLARY 1. Let

Flsy = r i g(x)=r AU

o X+t

Suppose that o, f and o — B are all non-negative measures. Then, for any n, k,a, b
20,

rn+k—1,n(g3 [a,b]) = rn+k—1,n(f: [a,b]) .

COROLLARY 2. Let fand g be as above. Let p,,, 1,.a(f; x) be the (n+k—1,n)
Padé approximant to f concentrated at the point a=0. Then, for x=0

18(X) = Posk—1,2(8: ¥ Z 1f(X) = Prss_1.a(Sfs )| .

As an application of Theorem 1 we have
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COROLLARY 3.

lim n™2Inr, ,(xInx: [0,1]) = —2r.

Proor. For 8 € (0,1), x=0
R sin (67) r° £t

oo o I+x

Let s,_, , € R,_,, interpolatc x’~' at any 2n points in (0,1] and let

ty_1.n € R, -1 , interpolate

sin (o)

(In (x+ 1) —Inx) = 32097 r dr

T 0 t+x
at the same points. By Theorem 1, for x>0,

sin (d7)

n

tn—l,n(x)— (lﬂ (x+1)_lnx) é lsn—l,n(x)_xa_l

and for suitably chosen interpolation points,

Xtp_y a(x)— Smr(fn) (xIn (x+1)—xInx)| < |xs,_ 1,,,(x)—x"l

A

2, (x%: [0,17)

- &M
g Cae(‘,n /ean/bn

where the latter inequality, due to Ganelius, was mentioned in the
introduction. Since xIn (x+ 1) is analytic in a region containing [0, 1] there
exists ¢ <1 so that

ron(xIn(x+1): [0,1]) < o

and hence

Caec,(nfnzn)”‘ 2/3 T
Inx: < TN
roa(xInx: [0,1]) (ezn e +0 gl B
Taking logarithms and letting & tend to 1 yields
limn~"21nr, (xInx: [0,1]) S =27

The lower bound is achieved by observing that

PO ir) e 1)
0t+x— bx f;ix) € 'y



d let
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where f;(x) is analytic in {|z—1/2|<1}. We observe that by Theorem 1
(applied to the above and In (x+1)—Inx) we have
2r, J(xIn (x+ 1)—x1n (x): [0,1]) = r, (kex®* 1 +xf5(x): [0, 1])

and the lower bound is now completed in a similar fashion to the upper bound.

If f and g are Stieltjes transforms of non-negative measures then an
immediate consequence of Corollary 1 is that for a,b 20,

rn+k—l,n(f+g: [a’b]) g max (rn+k—1,n(f: [ay b])arn+k—1.n(g: [a’ b])) .
Another application of Theorem 1 is

CoROLLARY 4. Suppose that 0<y,<y,<...<y,<1 and suppose that
C1sCah v+, Cy>0. Then

lim n~Y21n (r,,,,,<z cix?: [0, 1]>> = —271‘/): .
i=1

=X

Proor. That the limit exceeds —211]@ is apparent from the comment
preceding the Corollary and (1). To derive an upper bound on the limit we
observe once again that

. b
cl'xy' = le\ % 4 +hvl(x)

0 t

where h,, is analytic on {|z—1/2|<1}. Thus,

130 gt
21T 4 h*(x)

m
Z XV o= =
i=1 o X+t

where h* is analytic on {|z—1/2|<1}. We note that for t € [0,1],

We may now compare, as in the proof of Corollary 3, the rational
approximation to > 7., ¢;x*, and the known rational approximation to x’!.

3. Approximating rational sums.

We begin by examining rational approximations with n poles to certain
rational sums with n+ 1 poles.

THEOREM 2. Fix k0. Suppose that y,>0 and B,,,>p,20. Let
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n+1

f =y 2

S x4

If {1y - Laner are 2n+k (not necessarily distinct) non-negative points then
there exists p,.x—1/d € Ry i o that interpolates f at each of the {;. Furthermore,

n 6
a) M = p 1 (Xt X :

qa(x) k=1 X+
where p,_1 € Ty_y, 0,20 and B, <a; <P, fori=1,...,n
Also,
2n+k
a, (x—=8)
b) f(x)_pn+k-1(x) - iI;II
q"(x) n+1

T (x+2) [T (x+B)
=1 ;i

i=1

where, for all j,

n+1 n
l:I (B:—B) l'_[l (a;—B)y;
la,] = = Intk
[T B+
i=1

Furthermore, if k=0, then |a,|<7V,+..

Proor. Part a) can be found in [1]. Part b) is straightforward since f
~DPn+x-1/9. 15 an element of R, ,,,; With 2n+k zeros at the {; and 2n+1
poles at —a; and — f§;. The bound on a, is obtained by observing that

f_pn+k—1> =y = an n (ﬁj+Ci)(_1)k ‘
! 1_[ (ﬂi_Bj) n (ai_Bj)

i*j

lim (x +ﬁj)<

x——fi;

When k=0 the right hand side of the above equation has absolute value
greater than q, for j=n+1.

For certain choices of §;, we can be more precise.
ExaMpLE 1. Fix ¢, k=0. Let ' ,6/(x+a)+pe_1(x), pp_y €Iy,

interpolate 31! 1/(x+1i) at 2n+k points {,,...,{5,4x € [0,c].
Then,
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a"

2n+k ‘

l—[ (x—={)
i=1

n+1 n i
i—(Z d +pk_,(x)) =

i= X +l i= X + O(i nbl . 4
hen el ' I1 G+ IT (eta)
ore, i=1 i=1
and independent of the choice of the ¢,
lim |g,/'?" = 27846 ... = v
where v is the solution of ve! *v=1,
ExampLE 2. Fix ¢, k20. Let {,,. . -»C2n+x b€ 2n+k points in [0, c]. Then there
exists 0,2,>0, p,_,, i*<a;<(i+1)? so that
2n+k
nt+1 1 n 5:’ dy il:ll (x_Ck)
> -2—<Z _——'H)k—l(x)) T Wt n
i=1 X+1 ,~=1x+0!l~ .2
IT x+) JT (x+a)
i=1 i=1
where, independent of the choice of the Lo
lim |q,|'?" = 439 ... = 1/p*—1
where n=.8335. .. is the solution of (1+#)/(1 —n)= e,
Both examples are consequences of Theorem 2. It is essentially just a
calculus exercise to estimate the size of a,. The two results (a) and (b) of the
e f introduction follow from these examples by chosing the {; to be the roots of the
+1 Cebysev polynomial of degree 2n shifted to the interval [0,1].
ComMENT. For the circle C = {|z| = 1} we observe the following. Suppose that
n+1 1
= i1 =+l =2
/@ ,-; z+a; %t 1S B S
lue . .
and suppose that p,,._,/q, € R,:+r-1,, interpolates f(z) at 2n+k points
Cts- - 5 8ansx € [—1,1]. Then, by Theorem 2,
2n+k
min | f(z) = p, 4 -1 (2)/4(2)] min H (Z_(:i)’
zeC > 2eCii=1
- 12 max 7)— _(z z — 2n+k ‘
2eC If( ) Pn+x 1( )/qn( )l (oz,,+1)4max ]—[ (Z_Ci)’

zeC | 1=t

It follows from Rouche’s theorem (see [2] for details) that if we choose
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p¥. - 1/qX to be the (n+k—1,n) Padé approximant (ie. {;=0) then p¥,,_,/qf
is, up to a multiple of 1/(x,+,)*, as efficient as a best rational approximation of
corresponding degree in the sense that

1
Hf“P;?H—l/%T“C Z rn+k—l,n(f: Oz —*—4“f_P:+k—1/q;fHC .
(%ty+1)

We can use the previous results to get upper estimates for approximations
to 372, 6/ (x + o).

THEOREM 3. If
00 6[’
f) =%

i=1 X+

04,1, 15c=0;<4q

then

2
a5 101D S (- yO
ct—1
4%‘1([] %>
i=1

PROOF. Let 5,, € R, m_1.n+m interpolate fat the 2n—1 zeros of the (2n—1)th
Cebysev polynomial T,, , shifted to [0,1] and also 2m+ 1 times at zero. Note
that, as in the proof of Theorem I,

nt+tm

5, = E: Yi

=1 x+p7

where f7>«; and

n+m ,.m

Yi
2 — 1(0).
L =lO

In particular, since each y7, ' 20, we have for each m

Tim < 1(0).

n+tm
From Theorem 2 we deduce that for x € [0,1]

YT:;+1|7}n—1(xM

‘Sm+1(xy_sm(xM g n+m P
(l:[l (I3§"H)>

m+ 1
n+m+1

< SO)T,, -4 (%)

nt+tm

I
i=1
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-

2n~1 2
4 n o
i=1

We finish by observing that
o
Hf_50||[0,11 = Z “Si+1_si”[0,1] .
m=0

We note that

2z

e =1+ = 1
2-2422 Y
Pk ,,; 22+ (2mn)?

By Theorem 3, there exists C, so that

[e'9) 1 Cl
— . T L
"2,,—2,2n<"§1 zz+(2nn)2' { 1, 1]) = 42"(2”)4"(11!)4

and hence, there exists C, so that

G,

Faner,zner(€ [—1L1]) = FW&W

This implies that

- 1 1

li In! LIPS — g

m (n h rn,n(e [ bl ])) == (277:)2 = 394

This should be compared to the “correct” result due to Németh [8]

lim (nlnlr, (e [-1,1])" = &

64 -
n—oo

Thus, our method yields good but inexact upper bounds for 7, ,,.

[t is apparent from Theorem 1 that if 0<c,£y;2¢, and ;20 then, on
positive intervals,

Cq T i ﬁ_l_ <r i 7:_))._1_ < C,t § 1 .
1 nfk,n = X+OC‘- = "n+k,n = x-Hxi = “*2"n+¥k,n o) x+ai

and that
nil 1 < io: 1
r =r - %
ntkn “ X+di = "n+k,n = x+ai

Lower bounds for rational approximation to i 1/{x+a;) will depend




124 PETER BORWEIN

critically on the spacing of the «;, However, the technique presented in this
section can be extended to many more special cases.

ADDED IN PROOF. It has come to the author’s attention that a version of
Theorem 1 is derived by D. Braess in Numer. Math. 22 (1974), 219-232.
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