RATIONAL APPROXIMATIONS TO STIELTJES TRANSFORMS

PETER B. BORWEIN*

1.

Rational sums of the form $\sum a_i/(x+b_i)$ where a_i and b_i are positive can be expressed as Stieltjes transforms of discrete positive measures. The Stieltjes transforms of the measure $\alpha(t)$ is the function

$$f(x) = \int_0^\infty \frac{d\alpha(t)}{x+t}.$$

Rational approximations that interpolate such functions on positive intervals are particularly amenable to analysis because all of the poles of these approximations lie on the negative real axis [1]. Furthermore, if g(x) is the Stieltjes transform of $\beta(t)$, f(x) is the transform of $\alpha(t)$ and if α, β and $\alpha - \beta$ are all positive measures then g can be approximated more closely than f by rational functions on any positive interval (see Theorem 1). We will exploit these two observations to analyse the rate of rational approximation to certain functions of the form $\sum a_i/(x+b_i)$.

Let Π_n denote the real algebraic polynomials of degree at most n. Let $R_{n,m}$ denote the rational functions with numerators in Π_n and denominators in Π_m . Let

$$r_{n,m}(f:[a,b]) = \inf_{r \in R_{n,m}} ||f(x) - r(x)||_{[a,b]}$$

where $\|\cdot\|_{[a,b]}$ denotes the supremum norm on [a,b].

In a seminal paper ([6], see also [7]) Gončar shows that if f is the Stieltjes transform of a positive measure α with support in the interval [a, b], if $\alpha' > 0$ almost everywhere on [a, b] and if c > -a then

$$\lim_{n \to \infty} r_{n-1,n}(f; [c,d])^{1/n} = \frac{1}{\varrho^2} < 1$$

Research supported, in part, by the National Science and Engineering Research Council of Canada.

Received November 20, 1981; in revised form April 30, 1982.

where ϱ depends only on a, b, c, and d. These results have been extended by Ganelius [5] who shows that under slightly more restrictive conditions

$$k_1 \leq r_{n-1,n}(f:[c,d])\varrho^{2n} \leq k_2$$
.

Ganelius [4] also shows that for non-integral positive δ ,

$$|b_{\delta}|\sin \pi \delta| \leq r_{n-1,n}(x^{\delta}: [0,1])e^{2\pi \sqrt{\delta n}} \leq C_{\delta}e^{c_{\delta}n^{1/4}}$$

where b_{δ} , c_{δ} , and C_{δ} depend only on δ . This settles the conjecture of Gončar that

(1)
$$\lim n^{-1/2} \ln r_{n-1,n}(x^{\delta}: [0,1]) = -2\pi \sqrt{\delta}.$$

As a corollary to Theorem 1 we deduce that

$$\lim_{n\to\infty} n^{-1/2} \ln r_{n-1,n}(x \ln x) : [0,1]) = -2\pi.$$

This amounts in some sense to the $\delta = 1$ case of Gončar's conjecture.

In contrast to the above situation we will also consider functions which arise as transforms of discrete measures, that is, functions of the form $\sum_{i=1}^{\infty} a_i/(x+b_i)$, $a_i, b_i \ge 0$. We will, for example, obtain results of the following nature:

(a)
$$r_{n-1,n} \left(\sum_{i=1}^{n+1} \frac{1}{x+i} : [0,1] \right) = \frac{a_n}{16^n (n!)^2}$$
 where $\lim_{n \to \infty} a_n^{1/2n} = .278 \dots$

and

(b)
$$r_{n-1,n}\left(\sum_{i=1}^{n+1} \frac{1}{x+i^2}: [0,1]\right) = \frac{b_n}{16^n (n!)^4}$$
 where $\lim_{n \to \infty} b_n^{1/2n} = .439 \dots$

The convergence problem for Padé approximants to functions of the form $\sum a_i/(x+b_i)$ is treated by Franzen in [3].

2. A comparison theorem.

A particularly useful theorem in polynomial approximation theory due to Bernstein states that if $|g^{(n+1)}(x)| \le f^{(n+1)}(x)$ on [a,b], then the error in best uniform polynomial approximation of degree n to g is no greater than the corresponding error in approximating f. Our first result is a modest extension of this to the case of rational approximations to Stieltjes transforms.

THEOREM 1. Let

$$f(x) = \int_0^\infty \frac{d\alpha(t)}{x+t}$$
 and $g(x) = \int_0^\infty \frac{d\beta(t)}{x+t}$.

Suppose that α, β and $\alpha - \beta$ are all non-negative measures. Suppose that for $k \ge 0$

$$\frac{q_{n+k-1}(\zeta_i)}{p_n(\zeta_i)} - f(\zeta_i) = 0 = \frac{q_{n+k-1}^*(\zeta_i)}{p_n^*(\zeta_i)} - g(\zeta_i)$$

at 2n+k points $0 \le \zeta_1 \le \zeta_2 \ldots \le \zeta_{2n+k}$, where

$$q_{n+k-1}/p_n, q_{n+k-1}^*/p_n^* \in R_{n+k-1,n}$$
.

Then, for x > 0,

$$\left| g(x) - \frac{q_{n+k-1}^*(x)}{p_n^*(x)} \right| \le \left| f(x) - \frac{q_{n+k-1}(x)}{p_n(x)} \right|.$$

PROOF. If k of the ζ_i coincide, then we are assuming that $f - q_{n+k-1}/p_n$ and $g - q_{n+k-1}^*/p_n^*$ have zeros of multiplicity k at those ζ_i .

We may suppose that the ζ_i are distinct and that

$$f(x) = \sum_{i=1}^{\infty} \frac{\gamma_i}{x + \alpha_i}$$
 and $g(x) = \sum_{i=1}^{\infty} \frac{\delta_i}{x + \alpha_i}$

where for all i,

$$0 \le \alpha_i < \alpha_{i+1}$$
 and $0 \le \delta_i \le \gamma_i$.

(The general argument is completed by taking limits.) Let I_f be the index of the first non-zero γ_i , and let I_g be the index of the first non-zero δ_i . Then, if $\beta = \alpha_{I_f}$ and $\beta^* = \alpha_{I_f}$, it follows from results in [1] that

$$\frac{q_{n+k-1}}{p_n} = \bar{q}_{k-1} + \sum_{k=1}^n \frac{c_i}{x + d_i} \quad d_i > \beta, \ c_i > 0$$

and

$$\frac{q_{n+k-1}^*}{p_n^*} = \bar{q}_{k-1}^* + \sum_{i=1}^n \frac{e_i}{x+h_i} \quad h_i > \beta^*, \ e_i > 0$$

where \bar{q}_{k-1} , $\bar{q}_{k-1}^* \in \pi_{k-1}$. $(\pi_{-1} \equiv 0.)$

Furthermore,

$$F(x) := \frac{q_{n+k-1}}{p_n} - f$$
 and $G(x) := \frac{q_{n+k-1}^*}{q_n^*} - g$

have exactly 2n+k simple zeros on

$$[-\beta, \infty)$$
 and $[-\beta^*, \infty)$

respectively. Also,

$$\lim_{x\to -\beta^+} F(x) = \lim_{x\to (-\beta^*)^+} G(x) = -\infty.$$

It follows that

0

$$\operatorname{sgn} F(x) = \operatorname{sgn} G(x)$$
 for $x \in [0, \infty)$.

If there exists $x_0 > 0$, $x_0 \notin \{\zeta_1, \ldots, \zeta_{2n+k}\}$ so that

$$(2) |F(x_0)| \le |G(x_0)|$$

then there exists c > 1 so that on $[0, \infty)$

$$cF(x) - G(x)$$
 has $2n + k + 1$ zeros.

Thus,

$$\frac{cq_{n+k-1}}{p_n} = cf - g + \frac{q_{n+k-1}^*}{p_n^*}$$

has 2n+k+1 non-negative solutions.

If we differentiate the above k times we see that

$$c \sum_{i=1}^{n} \frac{c_i}{(x+d_i)^{k+1}} = \sum_{i=1}^{\infty} \frac{c\gamma_i - \delta_i}{(x+\alpha_i)^{k+1}} + \sum_{i=1}^{n} \frac{e_i}{(x+h_i)^{k+1}}$$

has 2n+1 negative solutions. Since $c\gamma_i - \delta_i \ge 0$, this violates Descartes rule of signs (see [1] for further details). Thus, assumption (2) is not possible and the proof is complete.

The interpolation condition in Theorem 1 is satisfiable for all choices of nonnegative ζ_i (see [1]). This observation yields the following corollaries.

COROLLARY 1. Let

$$f(x) = \int_0^\infty \frac{d\alpha(t)}{x+t}$$
 and $g(x) = \int_0^\infty \frac{d\beta(t)}{x+t}$.

Suppose that α , β and $\alpha - \beta$ are all non-negative measures. Then, for any $n, k, a, b \ge 0$,

$$r_{n+k-1,n}(g:[a,b]) \le r_{n+k-1,n}(f:[a,b])$$
.

COROLLARY 2. Let f and g be as above. Let $p_{n+k-1,n}(f; x)$ be the (n+k-1,n) Padé approximant to f concentrated at the point $a \ge 0$. Then, for $x \ge 0$

$$|g(x)-p_{n+k-1,n}(g;x)| \leq |f(x)-p_{n+k-1,n}(f;x)|$$
.

As an application of Theorem 1 we have

COROLLARY 3.

$$\lim_{n\to\infty} n^{-1/2} \ln r_{n,n}(x \ln x; [0,1]) = -2\pi.$$

PROOF. For $\delta \in (0,1)$, $x \ge 0$

$$x^{\delta-1} = \frac{\sin(\delta\pi)}{\pi} \int_0^\infty \frac{t^{\delta-1}dt}{t+x} .$$

Let $s_{n-1,n} \in R_{n-1,n}$ interpolate $x^{\delta-1}$ at any 2n points in (0,1] and let $t_{n-1,n} \in R_{n-1,n}$ interpolate

$$\frac{\sin(\delta\pi)}{\pi}\left(\ln(x+1)-\ln x\right) = \frac{\sin(\delta\pi)}{\pi}\int_0^1 \frac{dt}{t+x}$$

at the same points. By Theorem 1, for x>0,

$$\left| t_{n-1,n}(x) - \frac{\sin(\delta \pi)}{\pi} \left(\ln(x+1) - \ln x \right) \right| \le |s_{n-1,n}(x) - x^{\delta - 1}|$$

and for suitably chosen interpolation points,

$$\left| x t_{n-1,n}(x) - \frac{\sin(\delta \pi)}{\pi} \left(x \ln(x+1) - x \ln x \right) \right| \le |x s_{n-1,n}(x) - x^{\delta}|$$

$$\le 2 r_{n,n}(x^{\delta} : [0,1])$$

$$\le C_{\delta} e^{c_{\delta} n^{1/4}} / e^{2\pi \sqrt{\delta n}}$$

where the latter inequality, due to Ganelius, was mentioned in the introduction. Since $x \ln (x+1)$ is analytic in a region containing [0, 1] there exists $\varrho < 1$ so that

$$r_{n,n}(x \ln (x+1): [0,1]) < \varrho^n$$

and hence

$$r_{n,n}(x \ln x: [0,1]) \leq \left(\frac{C_{\theta} e^{c_{\theta}(n-n^{2/3})^{1/4}}}{e^{2\pi i \sqrt{\delta(n-n^{2/3})}}} + \varrho^{n^{2/3}}\right) \left(\frac{\pi}{\sin(\delta\pi)}\right).$$

Taking logarithms and letting δ tend to 1 yields

$$\overline{\lim} \, n^{-1/2} \ln r_{n,n}(x \ln x; [0,1]) \leq -2\pi \,.$$

The lower bound is achieved by observing that

$$\int_{0}^{1} \frac{t^{\delta} dt}{t+x} = k_{\delta} x^{\delta} + f_{\delta}(x) \qquad \delta \in (0,1)$$

where $f_{\delta}(x)$ is analytic in $\{|z-1/2|<1\}$. We observe that by Theorem 1 (applied to the above and $\ln(x+1) - \ln x$) we have

$$2r_{n,n}(x \ln(x+1) - x \ln(x)) \ge r_{n,n}(k_{\delta}x^{\delta+1} + xf_{\delta}(x)) \ge r_{\delta}(k_{\delta}x^{\delta+1} + xf_{\delta}(x))$$

and the lower bound is now completed in a similar fashion to the upper bound.

If f and g are Stieltjes transforms of non-negative measures then an immediate consequence of Corollary 1 is that for $a, b \ge 0$,

$$r_{n+k-1,n}(f+g:[a,b]) \ge \max(r_{n+k-1,n}(f:[a,b]), r_{n+k-1,n}(g:[a,b]))$$
.

Another application of Theorem 1 is

COROLLARY 4. Suppose that $0 < \gamma_1 < \gamma_2 < \ldots < \gamma_m < 1$ and suppose that $c_1, c_2, \ldots, c_m > 0$. Then

$$\lim_{n \to \infty} n^{-1/2} \ln \left(r_{n,n} \left(\sum_{i=1}^{m} c_i x^{\gamma_i} : [0,1] \right) \right) = -2\pi \sqrt{\gamma_1} .$$

PROOF. That the limit exceeds $-2\pi \sqrt{\gamma_1}$ is apparent from the comment preceding the Corollary and (1). To derive an upper bound on the limit we observe once again that

$$c_i x^{\gamma_i} = d_i \int_0^1 \frac{t^{\gamma_i}}{x+t} + h_{\gamma_i}(x)$$

where h_{γ_i} is analytic on $\{|z-1/2|<1\}$. Thus,

$$\sum_{i=1}^{m} c_{i} x^{\gamma_{i}} = \int_{0}^{1} \frac{\sum_{i=1}^{n} d_{i} t^{\gamma_{i}}}{x+t} + h^{*}(x)$$

where h^* is analytic on $\{|z-1/2|<1\}$. We note that for $t \in [0,1]$,

$$0 < \sum_{i=1}^n d_i t^{\gamma_i} \leq \left(\sum_{i=1}^n d_i\right) t^{\gamma_1}.$$

We may now compare, as in the proof of Corollary 3, the rational approximation to $\sum_{i=1}^{n} c_i x^{\gamma_i}$, and the known rational approximation to x^{γ_1} .

3. Approximating rational sums.

We begin by examining rational approximations with n poles to certain rational sums with n+1 poles.

THEOREM 2. Fix $k \ge 0$. Suppose that $\gamma_i > 0$ and $\beta_{i+1} > \beta_i \ge 0$. Let

the

d let

$$f(x) = \sum_{i=1}^{n+1} \frac{\gamma_i}{x + \beta_i}.$$

If $\zeta_1, \ldots, \zeta_{2n+k}$ are 2n+k (not necessarily distinct) non-negative points then there exists $p_{n+k-1}/q_n \in R_{n+k,n}$ that interpolates f at each of the ζ_i . Furthermore,

a)
$$\frac{p_{n+k-1}(x)}{q_n(x)} = p_{k-1}(x) + \sum_{k=1}^n \frac{\delta_i}{x + \alpha_i}$$

where $p_{k-1} \in \pi_{k-1}$, $\delta_i > 0$ and $\beta_i < \alpha_i < \beta_{i+1}$ for i = 1, ..., n.

Also,

b)
$$f(x) - \frac{p_{n+k-1}(x)}{q_n(x)} = \frac{a_n \prod_{i=1}^{2n+k} (x - \zeta_i)}{\prod_{i=1}^{n} (x + \alpha_i) \prod_{i=1}^{n+1} (x + \beta_i)}$$

where, for all j,

$$|a_n| = \frac{\left| \prod_{\substack{i=1\\i\neq j}}^{n+1} (\beta_i - \beta_j) \prod_{i=1}^{n} (a_i - \beta_j) \right| \gamma_j}{\left| \prod_{i=1}^{2n+k} (\beta_j + \zeta_i) \right|}.$$

Furthermore, if k = 0, then $|a_n| \le \gamma_{n+1}$.

PROOF. Part a) can be found in [1]. Part b) is straightforward since $f - p_{n+k-1}/q_n$ is an element of $R_{2n+k,2n+1}$ with 2n+k zeros at the ζ_i and 2n+1 poles at $-\alpha_i$ and $-\beta_i$. The bound on a_n is obtained by observing that

$$\lim_{x\to-\beta_j}(x+\beta_j)\left(f-\frac{p_{n+k-1}}{q_n}\right)=\gamma_j=\frac{a_n\prod(\beta_j+\zeta_i)(-1)^k}{\prod\limits_{i\neq j}(\beta_i-\beta_j)\prod(\alpha_i-\beta_j)}.$$

When k=0 the right hand side of the above equation has absolute value greater than a_n for j=n+1.

For certain choices of β_i we can be more precise.

EXAMPLE 1. Fix $c,k \ge 0$. Let $\sum_{i=1}^n \delta_i/(x+\alpha_i) + p_{k-1}(x)$, $p_{k-1} \in \Pi_{k-1}$, interpolate $\sum_{i=1}^{n+1} 1/(x+i)$ at 2n+k points $\zeta_1,\ldots,\zeta_{2n+k} \in [0,c]$. Then,

 $\left| \sum_{i=1}^{n+1} \frac{1}{x+i} - \left(\sum_{i=1}^{n} \frac{\delta_i}{x+\alpha_i} + p_{k-1}(x) \right) \right| = \frac{a_n \left| \sum_{i=1}^{2n+k} (x-\zeta_i) \right|}{\left| \prod_{i=1}^{n+1} (x+i) \prod_{i=1}^{n} (x+\alpha_i) \right|}$

and independent of the choice of the ξ_i ,

$$\lim_{n \to \infty} |a_n|^{1/2n} = .27846 \dots = v$$

where v is the solution of $ve^{1+v}=1$.

hen ore,

llue

EXAMPLE 2. Fix $c, k \ge 0$. Let $\zeta_1, \ldots, \zeta_{2n+k}$ be 2n+k points in [0, c]. Then there exists $\delta_i, \alpha_i > 0$, $p_{k-1}, i^2 < \alpha_i < (i+1)^2$ so that

$$\left| \sum_{i=1}^{n+1} \frac{1}{x+i^2} - \left(\sum_{i=1}^{n} \frac{\delta_i}{x+\alpha_i} + p_{k-1}(x) \right) \right| = \frac{a_n \left| \prod_{i=1}^{2n+k} (x-\zeta_k) \right|}{\left| \prod_{i=1}^{n+1} (x+i^2) \prod_{i=1}^{n} (x+\alpha_i) \right|}$$

where, independent of the choice of the ζ_i ,

$$\lim_{n\to\infty} |a_n|^{1/2n} = .439 \dots = 1/\eta^2 - 1$$

where $\eta = .8335...$ is the solution of $(1+\eta)/(1-\eta) = e^{2/\eta}$.

Both examples are consequences of Theorem 2. It is essentially just a calculus exercise to estimate the size of a_n . The two results (a) and (b) of the introduction follow from these examples by chosing the ζ_i to be the roots of the Čebyšev polynomial of degree 2n shifted to the interval [0,1].

COMMENT. For the circle $C = \{|z| = 1\}$ we observe the following. Suppose that

$$f(z) = \sum_{i=1}^{n+1} \frac{1}{z + \alpha_i}$$
 $\alpha_{i+1} \ge \alpha_i + 1 \ge 2$

and suppose that $p_{n+k-1}/q_n \in R_{n+k-1,n}$ interpolates f(z) at 2n+k points $\zeta_1, \ldots, \zeta_{2n+k} \in [-1, 1]$. Then, by Theorem 2,

$$\frac{\min_{z \in C} |f(z) - p_{n+k-1}(z)/q_n(z)|}{\max_{z \in C} |f(z) - p_{n+k-1}(z)/q_n(z)|} \ge \frac{\min_{z \in C} \left| \prod_{i=1}^{2n+k} (z - \zeta_i) \right|}{(\alpha_{n+1})^4 \max_{z \in C} \left| \prod_{i=1}^{2n+k} (z - \zeta_i) \right|}.$$

It follows from Rouche's theorem (see [2] for details) that if we choose

 p_{n+k-1}^*/q_n^* to be the (n+k-1,n) Padé approximant (i.e. $\zeta_i \equiv 0$) then p_{n+k-1}^*/q_n^* is, up to a multiple of $1/(\alpha_{n+1})^4$, as efficient as a best rational approximation of corresponding degree in the sense that

$$||f-p_{n+k-1}^*/q_n^*||_C \ge r_{n+k-1,n}(f;C) \ge \frac{1}{(\alpha_{n+1})^4} ||f-p_{n+k-1}^*/q_n^*||_C.$$

We can use the previous results to get upper estimates for approximations to $\sum_{i=1}^{\infty} \delta_i/(x+\alpha_i)$.

THEOREM 3. If

$$f(x) = \sum_{i=1}^{\infty} \frac{\delta_i}{x + \alpha_i} \quad 0 \le \delta_i \le 1, \quad 1 \le c \le \alpha_i < \alpha_{i+1}$$

then

$$r_{n-1,n}(f:[0,1]) \le \left(\frac{c^2}{c^2-1}\right) \frac{2f(0)}{4^{2n-1} \left(\prod_{i=1}^n \alpha_i\right)^2}.$$

PROOF. Let $s_m \in R_{n+m-1,n+m}$ interpolate f at the 2n-1 zeros of the (2n-1)th Čebyšev polynomial T_{2n-1} shifted to [0,1] and also 2m+1 times at zero. Note that, as in the proof of Theorem 1,

$$s_m = \sum_{i=1}^{n+m} \frac{\gamma_i^m}{x + \beta_i^m}$$

where $\beta_i^m > \alpha_i$ and

$$\sum_{i=1}^{n+m} \frac{\gamma_i^m}{\beta_i^m} = f(0) .$$

In particular, since each $\gamma_i^m, \beta_i^m \ge 0$, we have for each m

$$\frac{\gamma_{n+m}^m}{\beta_{n+m}^m} \le f(0) .$$

From Theorem 2 we deduce that for $x \in [0, 1]$

$$\begin{split} |s_{m+1}(x) - s_m(x)| & \leq \frac{\gamma_{n+m+1}^{m+1} |T_{2n-1}(x)|}{\left(\prod\limits_{i=1}^{n+m} (\beta_i^{m+1})\right)^2 \beta_{n+m+1}^{m+1}} \\ & \leq \frac{f(0)|T_{2n-1}(x)|}{\prod\limits_{i=1}^{n+m} \alpha_i^2} \end{split}$$

n of

Note

$$\leq \frac{2f(0)}{4^{2n-1} \prod_{i=1}^{n+m} \alpha_i^2}.$$

We finish by observing that

$$||f - s_0||_{[0,1]} \le \sum_{m=0}^{\infty} ||s_{i+1} - s_i||_{[0,1]}.$$

We note that

$$e^{z} = 1 + \frac{2z}{2 - z + 2z^{2} \sum_{n=1}^{\infty} \frac{1}{z^{2} + (2\pi n)^{2}}}$$

By Theorem 3, there exists C_1 so that

$$r_{2n-2, 2n} \left(\sum_{n=1}^{\infty} \frac{1}{z^2 + (2\pi n)^2} : [-1, 1] \right) \le \frac{C_1}{4^{2n} (2\pi)^{4n} (n!)^4}$$

and hence, there exists C_2 so that

$$r_{2n+1, 2n+1}(e^z: [-1, 1]) \le \frac{C_2}{4^{2n}(2\pi)^{4n}(n!)^4}$$

This implies that

$$\overline{\lim} (n! \, n! \, r_{n,n}(e^z; [-1,1]))^{1/n} \le \frac{1}{(2\pi)^2} \le \frac{1}{39.4}.$$

This should be compared to the "correct" result due to Németh [8]

$$\lim_{n\to\infty} (n! \, n! \, r_{n,n}(e^z; [-1,1])^{1/n} = \frac{1}{64}.$$

Thus, our method yields good but inexact upper bounds for $r_{n,n}$.

It is apparent from Theorem 1 that if $0 < c_1 \le \gamma_i \le c_2$ and $\alpha_i \ge 0$ then, on positive intervals,

$$c_1 r_{n+k,n} \left(\sum_{i=1}^{\infty} \frac{1}{x + \alpha_i} \right) \leq r_{n+k,n} \left(\sum_{i=1}^{\infty} \frac{\gamma_i}{x + \alpha_i} \right) \leq c_2 r_{n+k,n} \left(\sum_{i=1}^{\infty} \frac{1}{x + \alpha_i} \right)$$

and that

$$r_{n+k,n}\left(\sum_{i=1}^{n+1}\frac{1}{x+\alpha_i}\right) \leq r_{n+k,n}\left(\sum_{i=1}^{\infty}\frac{1}{x+\alpha_i}\right).$$

Lower bounds for rational approximation to $\sum_{i=1}^{n+1} 1/(x+\alpha_i)$ will depend

critically on the spacing of the α_i . However, the technique presented in this section can be extended to many more special cases.

ADDED IN PROOF. It has come to the author's attention that a version of Theorem 1 is derived by D. Braess in Numer. Math. 22 (1974), 219–232.

REFERENCES

- 1. P. Borwein, Approximations with negative roots and poles, J. Approx. Theory, 35 (1982), 132-141.
- 2. P. Borwein, On Padé and best rational approximation, Canad. Math. Bull., 26 (1983), 50-57
- 3. N. R. Franzen, Convergence of Padé approximants for a certain class of meramorphic functions, J. Approx. Theory 6 (1972), 264-271.
- 4. T. Ganelius, Rational approximation to x^a on [0,1], Anal. Math. 5 (1979), 19–33.
- 5. T. Ganelius, Orthogonal polynomials and rational approximation of holomorhic functions, to appear.
- 6. A. A. Gončar, On the speed of rational approximations of some analytic functions, Mat. Sb. 105 (147) (1978), 147-163; English transl. in Math. USSR-Sb. 34 (1978), 131-145.
- 7. A. A. Gončar and G. Lopez, On Markov's theorem for multipoint Padé approximants, Mat. Sb. 105 (147) (1978), 512-524; English transl. in Math. USSR-Sb. 34 (1978), 449-459.
- 8. G. Nêmeth, Relative rational approximation of the function e^x , Math. Notes 21 (1977), 325-328.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA CANADA B3H 4H8