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Rational Approximation with
Varying Weights 1

P. Borwein*, E. A. Rakhmanov' and E. B. Saff

Abstract

We investigate two problems concerning uniform approximation
by weighted rationals {w"r,}>2;, where r, = p,/¢, is a rational

€T

function of order n. Namely, for w(z) := €” we prove that uni-

form convergence to 1 of w"r, is not possible on any interval [0, a]

with @ > 27. For w(z) = ¥,

6 > 1, we show that uniform con-
vergence to 1 of w"r, is not possible on any interval [b, 1] with b <
tan*(7(6 — 1)/46). (The latter result can be interpreted as a rational
analogue of results concerning “incomplete polynomials”.) More gen-
erally, for « > 0, 8 > 0, a + 3 > 0, we investigate for w(z) = €” and

w(z) = z°, the possibility of approximation by {w"p, /g, 5%, where

degp, < an,degq, < fPn. The analysis utilizes potential theoretic
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methods. These are essentially sharp results though this will not be

established in this paper.

1 Introduction and Main Results

1.1 . For a positive, continuous function f(z) on R, = [0,4+00) we define

0,(f; R) == inf - — , (1.1)
TERR f(l') [0,R] ) ’
where R, is the set of all real rational functions of order < n and || - |4

denotes the sup norm over the interval [a,b]. That is, we consider the best
relative rational approximations to f on [0, R]. It is clear that é,(f; R) — 0
as n — oo for any fixed R € (0,+00) and, moreover, it is always possible to

find an increasing sequence R, — oo satisfying the condition

on(f,Ry) — 0 asn — 0. (1.2)

On the other hand if f(x), say, decreases as © — oo, then R, satisfying
(??) cannot increase arbitrarily fast, which raises the question about the
maximum possible rate of increase of R,,.

Here we consider this question for the “model” function f(z) = e *.
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Theorem 1.1 If (?7) is true for f(x) =e %, then
R, <(1+€)2mn

for any € > 0 and n > n(e).

Remark A. We do not know whether the inequality R, < 27n is true
for large enough n. However, Theorem 77 is sharp in the sense that the
constant 27 cannot be replaced by any smaller constant. The proof of the
last assertion, which is substantial, will appear in a future paper (it is based

on constructing rational approximations following the method developed in

[GR]).

Remark B. A weaker version of Theorem 1.1 with a constant of 8 replacing
27 follows easily from a result in [B] which says that, for a non-zero rational

function of order < n,

()

m{xGR: 2n,}§8.

Here m denotes Lebesgue measure. It is reasonable to hypothesize from the

results of this paper and its sequel that the constant in the above inequality

should be 27.
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In Sec. 1.3 below we present a generalization of Theorem 7?7 concerning
approximation by ray sequences of rational functions.

We note that the corresponding question about relative polynomial ap-
proximation is important for the investigation of strong asymptotics for or-
thogonal polynomials on R and R. Such results dealing with relative poly-

nomial approximation were obtained in [LS], [LR], [ST], [To].

1.2 . Another problem considered in this paper is the approximation of the

0

sequence "% on subintervals of [0,1]. For § > 0, we set

An(6,b) == inf |2"r(z) — 1|y, b€ (0,1). (1.3)
Theorem 1.2 If A,(0,b) — 0 asn — oo and 0§ > 1, then

0—1
b > tan’ (%T) . (1.4)

Remark C. It is clear that for # < 1 approximation is possible over [0, 1].
Furthermore, if # > 1, the right-hand side of (?7) cannot be replaced by any
larger constant (again this fact will appear in a future paper).

In Sec. 1.4 we present a more general result dealing with approximation

by ray sequences of rationals.
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We note that Theorem 77 is closely related to the completeness of the

system of “incomplete rational functions”

{x"aw . deg p,, degg, < n}
Gn(T)

in C[b,1]. If nd is an integer, then 2"p,(x)/q,(x) may be interpreted as a
rational function of order n(1+6) with n6 poles fixed at co and né zeros fixed
at 0. Corresponding questions for incomplete polynomials are considered in
[Lol, [SV]. Related questions for incomplete rationals in the complex plane

are treated in [BC].

1.3 . For fixed a,3 > 0, o+ 3 > 0, set

p(2)

Rl (15

onla;a, B) = 1pan ||e

where the infimum is taken over all polynomials p, ¢ with degp < an, degq <

On. We also define

a = a(a,f) :=sup{a: é,(a;a,3) — 0asn — oo}. (1.6)
Theorem 1.3 We have the inequality a* < a, where a := 2w« for a = 3
and
Mo —

1-2j
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where § = y(a, B) is the root of the equation

_—l’ / —sinfl\/»Zg : (1.8)

for a # 3.

Remark D. It can be shown that a(«, 3) — 27a as f — a (for fixed «), so

the function a(«, 3) is continuous.

Remark E. Both functions a*(«, #) and a(«, 3) are symmetric and therefore
we need only consider the case a > § (the symmetry of a* can be seen on
making the change of variables * — a—x; the symmetry of a follows from the
identity g(1—y)+g(y) = —n/2). The case @ > 3 is equivalent to g € [0,1/2].

In this interval we have

/ vii=1, (1.9)

(1-— 2t)2
and therefore g(y) is increasing from 0 to oo on [0,1/2]. Hence the equation

9(y) = (7/2) B/(a = () has a unique root for any a > 3> 0 (a + § > 0).

Remark F. For a + 3 = 1 (i.e., for a fixed number of free parameters
in p,/q,) the function a(a, f) = a(l — 3, 3) takes its maximum value over

# € [0,1] at f = 1/2. This means that diagonal approximations (o = f3)
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are the most effective among all ray sequences with the same number of free
parameters.

1.4 . For fixed 8 >0, «,3>0, a+ (>0, we define

o P(T)

d@)

A, (b,0;,3) :=1inf |z

P4

, (1.10)
b.]

where the infimum is taken over all polynomials p, ¢ satisfying degp < an,

deg g < (n, and we set

b* =b"(0;, 8) :=inf{b: A,(b,0;a,3) — 0 as n — oo}. (1.11)

Theorem 1.4 We have the estimate b > b, where b = b(b; o, 3) is the

unique root of the equation

1-—
/\/5 VO - &V T I D)
t3/4(1 —t) 0 6 0
when 3/ <1 and b:= 0 when 3/ > 1.
We note that for 3/ > 1 the fact that b* = 0 is easily seen.
We shall also obtain the following representation for f:

2 1- b1—¢&Vb ‘
f(0)=1——sin” Vb + 6— Vb é‘[, (1.13)

T 1—b & 1-b
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when v/b < € < 1/v/b. (We shall see that b satisfies these inequalities.) The
two important particular cases a = 0 and 3 = 0 have already been considered
in [SV], [G], [BS] and the following results obtained:

If 3 =0, then b* = (14 a/6)™".

If « =0, then b* = (1 —3/0)? for 5/6 <1 and b* =0 if 3/6 > 1.

Note that the corresponding lower estimates are included in Theorem 77.

2 Proofs of Theorems 1.1 and 1.3

We denote by V(x, i) the logarithmic potential for the measure dyu :

Viz,p) = /log ﬁdu(t).

We fix a > 0 and define the two distributions:

1 Ja—t1
01(t> = ; + te [07(1’]7 (21)

oo(t) := L1 te€(0,a). (2.1a)

T Jla—1t)

The following properties of the corresponding logarithmic potentials are eas-

ily verified (see Appendix):

V(z,01dt) = —x + const, x € [0,a], (2.2)
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V(z,00dt) =log(4/a), =z €0,a]. (2.3)

For z € R we define the function
o(t,z) == o01(t) — zoe(t), 0<t<a. (2.4)

For each fixed z, let o(t,z) = oF(t,2)— 0 (t,2) be the Jordan decomposition

of the measure o(t,z)dt in [0, a] and set
p(z) = plz,a) = /a+(t,x)dt (2.5)
n(z) :=n(x,a) = /0_(t,:v)dt. (2.6)

Lemma 2.1 With the notation of Theorem 77 we have the following im-
plication: if a = a(a, f) < a* = a*(a,3), then there exists an x € R such
that

plx,a) < and n(z,a) < a.

Proof. The condition a < a* means that («, 3)-approximation to e"* on

[0, a] is possible. In other words, there exist two sequences of polynomials

DPn € P[an}y An € 7)[/677,]7 (27)
with
O, = emp—"(x‘) -1 — 0 as n — oo. (2.8)
qn(x) [0,a] .
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Set

1 ; 1
Xn,a = — Z 6(’:>7 Xn,8 ‘= E Z 6(2)7

" pu(2)=0 an(2)=0

where 6(z) denotes the unit point measure at z, and define p,, , and p, 5 to
be the balayage (cf. [La]) of X, , and x, s into [0, a], respectively. Then we

have (cf. [Lal)

1 1

- log =V xuun,a) + Wna, x € 10,al, 29)
n 8 ()] ( . [0, a] (2.9
L og — V(@ ) + € [0,4] (2.10)
—lo =V(z, pnpg) +wnp, =« ,al, )

no 7 |ga(2)]

where w, , and w, 4 are constants depending on n. It follows from these two

representations and (2.2) that

na Pn(T)
In(x

e = V(2 ftng = ftna — 01dt) +w,, 2z €[0,q], (2.11)

1
—log
n

—

where w,, is a constant.

iFrom (77), we deduce that

n qn(2)

1 .
< —|log (1 =6,)| — 0
n

uniformly on [0, a] as n — co. Therefore, with

Hn = Hn,g — Hn,a — odt
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we have, uniformly on [0, a],
V(z, pn) + w, — 0. (2.12)
Furthermore, we see from (?7) that

1
| = [[Xn.oll = = degpn < @,
n

| tn o

1
[1tn 81l = lIxnsll = ;deg qn < .
Hence, we can find a subsequence A C N and positive measures /i,, /15 such
that asn — oo, m € A,
fno = fay Niall S @i pap = g, sl < B; (2.13)

where = denotes weak-star convergence.
It follows from (??) that p, — 1= g — po — 01dt and therefore as

n— oo, n €A,
1(C) = u(C), V() = Vizp), 2 €C\[0a].  (2.14)

Furthermore, on integrating (??) with respect to the (unit) equilibrium

measure oo(x)dr and utilizing (?7) we obtain

[V @+ e = [ Vit oode)dpn(t) + e,
0 0

= pn(C)log(4/a) +wn — 0
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asn — 00, n € A, and so from (??) we have

lim w, = —u(C)log(4/a). (2.15)

neEA

Next observe that for n sufficiently large, p,(x) and ¢,(z) do not vanish on
[0, a]; hence from (??) and (?7) it follows that V'(z, p1,,) is finite and contin-

uous on supp(p,) and therefore V'(z, i1, ) is continuous on C. Consequently,
ho(2) ==V (2, ptn) — pa(C)V (2, 0pdt)

is continuous on C = C U {oc} and harmonic in C \ [0,a]. Thus, by (?7),

(7?), (?7) and the maximum principle, we have

lim h,(z) =0, z€C.

neEA

On the other hand, (??) yields

}LIED hn(2> = V(27H) - N(C)V(’Z’ Uodt)7 2eC \ [07 (1]7

neA

and so

V(z,p) =V(z,Aapdt), z € C\|0,4d],
where A := p(C). Since the potential of the signed measure ji— Aogdt vanishes
outside a set of 2-dimensional Lebesgue measure zero, we have p = Aogdt

and we obtain

Mg — fo = 01dt — Aogdt = o(t, N)dt
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(see (?77)). Due to the minimizing property of the Jordan decomposition we

then have

o > [lnall 2 ll™ (2, Nt = n(A,a),
8 > llusll = llo* (¢, Nt = p(X,a),

which completes the proof.

Lemma 2.2 The following properties of the functions p(x) := p(x,a) and

n(z):=n(x,a) (cf. (7?) and (??)) hold for any fized a > 0 :
(i) p(z) —n(z) = g -z, veR;

(ii) p(x) = % —x and n(x) =0 forx <0,

p(z) =0 and H(I)—Jf——foras>a

(iii) p(z) = {(1—2 )sm \/: ,/g 1—— }7xe[0a

(iv) p'(z) = —%%m ! 1—;, € [0,a],

2 :
n'(r) = Zcos™t /1 — 27 x € [0,al.
oo a

Proof. We have from definitions (??), (??) and (??) (?7)

p(:v)—n(a:):/oaa(t,x)dt: %/Oﬁdt_x%/oﬁ _
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Furthermore, we have

. la—t-—
o(t,z) = i >0 for t €[0,a], v <0,
' Ty ft{a—1t)

and therefore n(xz) = 0 for x < 0. Likewise o(t,z) < 0 for t € [0,a] and
x > a; therefore, p(x) = 0 for + > a. Assertions (i) and (ii) immediately
follow from these remarks.

Next, we see from the representation o(t,x) = (1/7)(a—t — x)/m
that for z € (0,a) the function o(t, x) is positive for t € [0, a—x) and negative

in (a — z,a]. Hence,

e = o[ [
_ /Fd——/m (2.16)

where

Using the identities

b 1—t
/0 Tdt:sm Vi + 1/b(1 = b)
and

b
/ L = 2sin* \/B,
0 W /t(1—1)
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we obtain assertion (iii) from (?77).
The first equality in (iv) may be obtained by differentiation of (iii); the

second inequality then follows from the first and (i).

We now investigate the set of values of @ > 0 satisfying the condition in
the assertion of Lemma ?7. For given o, 3 > 0, oo + 3 > 0 we set

A:=A(a,B):={a:Jx e Rwith p(z,a) < (3, n(z,a) < a}. (2.17)

Lemma 2.3 For any o, >0, o+ 3 > 0 and a > 0 there exists a unique

root T = T(a;«, 3) of the equation

ap(x,a) = fn(z,a) (2.18)

in [0,a]. Furthermore,
A={a>0:p(T,a) < B} for >0, (2.19a)
A={a>0:n(7,a) <a} fora>0, (2.19b)

where A is defined in (7).

Proof. Consider first the case o, 3 > 0. It follows by Lemma 77 that for

fixed a > 0 the function p(z,a) decreases on (—o00,a) from +oo to 0 and
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p(x,a) = 0 for x > a. Also, the function n(z,a) increases from 0 to +oo
on (0,00) and n(x,a) = 0 for x < 0. The same is true for (3/a)n(z,a) and

therefore there exists a unique root 7 of the equation

plz,a) = gn(:r?a), z € (0,a), (2.20)

which is equivalent to (?7?) for a, 8 > 0. It also follows from the behavior of

n(z,a),p(x,a) that

B B
p(_l'7(1) - an’($7a> - ilfelllI{lIH&X{p(l'7a)7 a/n,(rja)}.

On the other hand, the definition (?7) may be written as

A=1{a: %ifr{lmax{p(x,a), gn(lya)} < B}

provided a, # > 0. Assertions (??) and (?7?) follow by these remarks.

It remains to notice that for a = 0,3 > 0 the representation (?7) holds
with @ = 0, which is the unique root of (??) in [0, a] for a = 0. Similarly, for
a > 0,0 = 0 the representation (?7) is true with 7 = a, which is the unique

root of (??) in [0,a] for « > 0, # = 0.

We define the function G(y) for y € [0,1] by

TG(y) := (1 — 2y)sin~! \/1 —y+ \/y(l —y), y €[0,1]. (2.21)
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Lemma 2.4 The equation

(0= 9)Gw) =5 (v~ 3) (2.92)

has a unique rooty = Yo, §) in [0, 1]. Furthermore, with @ as in Lemma 77

T(a; o, B) = ay(a, B), (2.23)

p(z,a) =aG(z/a), a>0,z€l0,a] (2.24)

Proof. For o = (3 the unique root of (??) is § = 1/2. For a # [ we can

rewrite (?7) as

Gly) = (y - %) - f 5 (2.25)

The range of k := /(o — () for a, f > 0 is (—o0, —1] U [0, 00). We also note

that

2
G'(y) = ——sin ' \/1—y € [-1,0], fory e [0,1].

™

Now, if k € (—o0, —1], then the function

Gi(y) == G(y) — & (y — %)

is increasing in [0, 1] since G'(y) = G'(y) — k > 0. We have also G1(0) =
1/2+ k/2 <0 and G1(1/2) =1/27 > 0. Thus (??) has a unique root ¥ for

B/(a— ) € (—oo,—1]. Next, if k € [0,00), then G(y) = G'(y) —x <0
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for y € [0,1] and so G4(y) decreases on [0, 1]. Since G1(1/2) = 1/27 and
G1(1) = —k/2 <0, (??) has in [0, 1] a unique root ¥ which actually belongs
to [1/2,1].

The equality (?7) follows by (??) and (iii) of Lemma ?7?. It remains to
compare equations (??) and (??). Using (i) of Lemma ?? we may rewrite
(77) as

(5 +a)p(a.a) =5 (v~ 5)

or, using (?7), as
rvaa(E)-s(e-d)

The last equation coincides with (??) for y = x/a. Since both have a unique

solution we obtain the assertion (77).

|
Lemma 2.5 For any o, 3 > 0, o+ 8 > 0 we have (cf. (?7))
A =10,qa, (2.26)
where @ :=a(a, 3) is defined by
o3 a—f3
G=——=—— for a#p, (2.27
G) T-1/2 7 227)

a=2n3 for a=}p. (2.28)
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Proof. Let a = . Then (??) has the unique root ¥ = 1/2 and G(y) =
G(1/2) =1/27 by (?7?). Now, it follows by (??) and (??) that p(7,a) = a/27
and so (??) may be written as A = {a > 0 : a/27 < 3}. Assertion (77)
follows.

Suppose a # (3 and § > 0. It follows by ( ??) and (??) that (??7) may
be written as A = {a : aG(y) < B}. Then (?7) follows from the second
equality in (??) and the fact that @ > § implies that 7 > 1/2 (cf. the proof
of Lemma 77).

In case 3 = 0 we rewrite (?7) using (i) of Lemma ?? as

A:{a>0:p(aa‘)+f—%ga}. (2.29)

On the other hand, we have by (??) and (??) that

a

=g = olawstn-b)-o(Z5 1) (-}
a /[ 1 /
= o (y_i)'

Therefore (?7) is equivalent to (77).

Proof of Theorem 1.3. Using the notation of (??7), the assertion of

Lemma 7?7 may be written as follows. If a < a*, then a € A. In view of
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Lemma 77 this means that

(a <a”) = (a <T7)

and therefore we have a* < @.
It remains to notice from (??) and (1.8) that y = 1 — 7, and so from (?7)

and (1.7) we have a = .

|
3 Proofs of Theorems 1.2 and 1.4
For a fixed b € (0,1) we let
Golt) = L te b1 (3.1)
0\ ._71' (t—b)(l—t)’ [ ) t
51(t) == Vb 50;-”, t e b 1], (3.2)
a(t,x) = o1(t) — xoo(t), te€[b1], z€R. (3.3)

We note that dydt is the equilibrium distribution for [b, 1] and &, dt is the

balayage of the unit mass at x = 0 to [b,1]. Thus we have

4
V(z,d0dt) = log Ty T b, 1], (3.4)

1
V(z,d1dt) =log—+ const, x € [b,1]. (3.5)
’ x
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For the measure &(t, x)dt ( * € R is fixed) we consider its Jordan decom-

position adt = ¢*dt — 6~dt and put

p(a) = p(x,b) = /A ot (t, x)dt, (3.6)
n(x) :=n(x,b) := /Aﬁf(t,x)dt, (3.7)

where A :=[b,1].

Following the scheme of proof of Lemma 7?7 we obtain the following.

Lemma 3.1 Let b* be defined as in (?7). If 1 > b > b*, then there exists an

r € R such that

|

p(z,b) < and n(z,b) < %.

Lemma 3.2 The functions p(x,b) and n(x,b) defined in (?7) and (??7) sat-

1sfy the following properties:
(i) p(x,b) — n(z,b) =1 —x, reR, be(0,1)

(ii) p(z,b) =1 - and n(x,b) = 0 for v < Vb,
plx,b) =0 and n(x,b) = x — 1 for v > 1/V/b;

(iii) p(z,b) = /\/E/x&(t,:r)dt, Vb <z < 1/Vb;

b
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(iv) 2p(r,b) = —zsin_1 @ - x\/57 Vb <z <1/V0;
’ oxr T x 1-=0

2 Vb bl —1tvb
(v) p(z,b) = —/ sin~! T\/_ 1 \b/_dt, Vb<a< 1/\/5;
) T Ja -

1=V L2._1l Vb1 — a0 Vo< <1/V;

(vi) p(z,b) :% sin

2 1 1—avb 2 1— 2
vii) p(z,b) = Ztan™' \| — : n~' [ VD ,
( )p( ) T \/I;I—\/B T [E—\/B

N 1@ = V(1 - avh) .
(viii) %p(m,b)——; A=) . Vb <x<1/Vb;

Vb <z < 1/Vb.

(ix) p(x,0) =1~ %/Ob \/(‘” — Vi) (1 — zV) dt

t3/4(1 —t) ’
Proof.

(i) With A = [b,1], we have

p(x,b) — n(z,b) :/Aa(jt,,x)dt:/Aal(t)dt—r/Aao(t)dt:1—1».

(ii) The function &(t,x) = (\/E/t - x) o (t) satisfies the inequalities 6(¢, x) >
0forte Aife < vbanda(t,z) <0fort € Aifa > 1/vb. Hence (ii)

follows from (i).

(iii) This property follows immediately from the definition of p.
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(iv) We use (iii) to take derivative with respect to = . Since 6(v/b/z,z) = 0,

we obtain

or" b

where

\/I;/x—b_\/gl—;r\/g
1-b x 1-0b

A=Az, b) = (3.8)

(we use this notation hereafter).
(v) Since p(1/v/b,b) = 0, (v) follows from (iv).

(vi) We integrate by parts in (v) to obtain

1/vb NG Vb
gp(_;r,b) = / sin~! \/th = tsin /\ !/ — / t— (sin_1 \/X) dt

dt
/l/ft(a)\/at )(t, b)
VA 2 VAT =)

= —xsin !

For the integrand in the last term we have

torjor -1

A=Y S —1) (- vB)

and after the substitution 7 = (1/\/5 — t) / (1/\/5 — \/5) in the inte-

gral we obtain

1 /1/f tox/ot dt dt

B 1/1/\f
VAL =X © a1t - VB
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1—zvh 1 1_1.\/5

B l/ﬁ dr _ i

and (vi) follows.

1 1

(vii) Since sin™" a = tan~ (vii) follows from (vi).

a
V1—a?’
L N AL ;

(viii) We use (v): p(z,b) = (2/%)/ sin ' /A(t,b) dt to take the derivative

with respect to b. We have

o 2N N 1 VB (9M/0b)(t,b)dt
%p(r,b) = /f 2% (sm \//\(t,bv)) dt = - [r \//\(t,b)(l — /\(t7b))7

since A(t,b) equals zero for t = 1/v/b (cf. (?7)). The integrand in the

last term is

orfob  (1/vVb+ VD) —Qt/J Vi1 = tvB)(t — VB)
A1 = A) 2t(1 —b)? l t2(1 — b)?
1 v —2t

2Vb(1 =)Vt =12 =1

where

Hence, we have

0 ‘ 1 Vb oy 2t
—p(z,b) —/ —— it
o 21Vb(1 —b) Ja Nyt =12 —1
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7Vb(1 — b)

(since vt —t> — 1 = 0 for t = 1/v/b ). The representation (viii) now

follows.

(ix) We have p(z,0) = 1 from (vi). Now if v/b < 2 < 1/v/b, then
Vit <o <1/y/t fort € [0,b] and we can integrate (viii) with respect to

t instead of b over [0, b].

|
Next we define
B = B(4;a,5) (3.9)
. "] a
= <b€(0,1):Ir € R with p(z,b) < 7 n(z,b) < 7l
and we set
b=0b(0,a,3):=inf B. (3.10)

Lemma 3.3 (i) If 3/0 > 1, then b = 0.

(ii) If 3/0 < 1, then b is the unique Toot of the equation

3 «
12,402 po 2

satisfying Vb <1 — 3/0 + a /0 < 1/Vb.
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Proof. We consider first the case o, 3 > 0. Using the notation

h(b) := miIrilmaX {p(a:,b), gn(x,b)} (3.11)

e

we can rewrite the definition (?7) of B as
_ . p
B=1<be(0,1):h(b) < 7 ( (3.12)

It follows by (i) and (viii) of Lemma ?? that

0

%p(va) = Qﬂ‘(xab) <0 for \/g <zr<

= (3.13)

1
% ,
hence both functions (of b) p(x,b), n(x,b) decrease for fixed z in the indicated
domain.

On the other hand, it follows by (i), (ii) and (iv) of Lemma ?? that for
fixed b € (0,1) the function p(x,b) decreases from +o00 at = —oo to 0 at
T = 1/\/5 and n(z,b) increases from 0 at = = Vb to +00 at £ = +oc. This

means that the equation

ap(z,b) = fn(z,b) (3.14)
has a unique root x1(b) € (v/b, 1/vb) and

h(b) = p(x1(b),b). (3.15)
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We note that x1(b) is a continuous function of b and we can conclude that

for any fixed b € (0,1), definition (??) may be written as

h(b) = min  max {p(x, b), gn(x, b)} ) (3.16)

w€fer—c, 21 4]
where xy = x1(b). Moreover, this equality holds in some neighborhood of b
with the same value of x; as defined by the original value of b. If € > 0 is
small enough, then (z1 —€, 21 +€)x (b—¢, b+¢) C D := {(z,b) : b€ (0,1),
Vb < & < 1/3/b} since (21(b),b) € D. Hence, it follows by (??) and (??)
that h(b) is decreasing in some neighborhood of b € (0,1). Since b € (0,1) is
arbitrary, we conclude that /(b) is decreasing on (0, 1).

Next, we observe that p(z,b) — 1 as b — 0 uniformly over any interval x €
[0, R] (cf. (ii) and (vi) of Lemma ?7). Also,asb — 0, (#/a)n(z,b) — (f/a)x
(cf. (i) of Lemma ?? ), so that z,(b) — «/f3 and h(b) = p(x1(b),b) — 1.
On the other hand, we have 0 < p(z,(b),b) < p(v/b,b) = 1 — V/b. Therefore,
h(b) = p(x1(b),b) — 0 as b — 1. Hence h(b) decreases from 1 to 0 on (0,1).

Now, if 3/6 > 1, then h(b) < 3/ for any b € (0,1) and assertion (i) of
the lemma follows by (?7). If 3/6 < 1, then from the properties of h and p

described above, the value of b is determined by the system of equations

b (3.17)

ap(x,b) = fn(x,b), p(z,b) = 7 _
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which has the unique solution (z1(b),b). Using (i) of Lemma ?? the first
equation may be written as p(x) = (8/a){p(x)+x—1} or p(x)=0F(x—1)a— /).

If we substitute this expression for p(x) in the second equation of (7?7) we
see that the system (77) is equivalent to

r=1-05/0+a/0,

p(z,b) = 3/6.
Hence assertion (ii) of the lemma follows.

Now suppose that &« = 0, # > 0. The requirement n(x,b) < 0 is included

in the definition (??) of the set B, which implies that 2 < v/b . The minimal
value for p(x,b) over (—oo,/b] is achieved at x = v/b; hence (??7) may be

written in this case as
I6;
B= {b €(0,1) : p(vVb,b) < 5}.
Since p(v/b,b) = 1 — /b, this yields for b = inf{b € B},
3\ 2
b=0if 3/0 > 1, 5:(1—’5) if 3/6 < 1. (3.18)

For 3/ < 1, it is clear that b = (1 — 3/6)? is a root of the equation

p(1 = (3/6,b) = 3/6. It remains to show that this root is unique; i.e.

pla,b) #1 -z for Vb <z <1/Vb. (3.19)
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It follows from (iv) of Lemma 77 that

aip(a:,b) >—1 for Vb <z <1/Vb.
x

Therefore,

p(x,b) = \/_b +/ —p?‘b
>1-Vb— (2= Vb)=1—2z, for Vb < 2 < 1/Vb,

which yields (?7). Thus assertions (i) and (ii) of the lemma hold when a = 0.

Finally, for a > 0,3 = 0, we have from definition (??) that for b € B,
there exists an x such that p(z,b) < 0, and so « > 1/vb. The minimal
value for n(z,b) over & > 1/v/b is achieved only at z = 1/vb and thus
B={be (0,1):n(1/Vb,b) < a/8} or

1

b=infB= ——— .
T T Tx a6y

(3.20)

Clearly b = (1 + a/6)2 is a root of p(1 + a/0,b) = 0 satisfying Vb <
(14 a/8) < 1/v/b. Moreover, according to (ii) and (v) of Lemma ?7, b is
the only root of p(1 4+ «/@,b) = 0 satisfying Vb < 1 + a/f < 1//b. This

completes the proof of Lemma 77.

Proof of Theorem 77. The assertion of Lemma 7?7 combined with def-

inition of (??7) may now be written as (1 > b > b*) = (b € B) = (b > b).
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This implies that

Using (ix) of Lemma ?? the equation for b in (ii) of Lemma ?? may be

written as

—/ b Ve Vi Sl SE P (3.21)

t3/4(1 — t) 0

with ¢ = 1—3/0+a/6. Thus b = b and the proof of Theorem ?? is complete.
|

Proof of Theorem ??7. In the case « = 3 we have E =1— (/0 +«a/0 =1

and the integral on the left-hand side of (??7) becomes
1/5 11—t 5 — 1/3 dt /b d(t'/*)
who BAT—1)" T who AL+ V) wh T+812

4 _
= Ztan Y(b'/Y).
~ an” (b"/%)

Hence, equation (?7) has the solution

Y L
b = tan (4 (1 0))

Theorem ?? now follows from Theorem ?? (with o = g =1).



wra.tex 31

4 Appendix

Here we prove the identity (2.2):

1 a—

t
Fl dt = —x+¢, z€][0,a, (A.1)

1 a
u(z) == ;/0 log

where ¢ is a constant.
The integral in (??) defines a function u(z) continuous in the whole plane

C. In the upper half-plane, we have
u(x) = ReU(x), Imaz >0, (A.2)

where

1 —
U(z):= ——/ log(z —t) aTdt, Imz > 0, (A.3)
7 Jo

and the branch of log is determined by the normalization 0 < arg(z —t) < ,

t €10,a],Im 2 > 0. The derivative

r, 1 a a—t dt —
= — D :=C A4
U == [ sepi=Tid, (A

is a single-valued analytic function in D. Let

f(z)i=\["= €D, f(x0):=1.
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and denote by fT(z), f (x), x € [0, a], the boundary values of f(z) from the

upper and lower half-planes, respectively. Then we have

) = |22 (A5)
Using (??) we can rewrite (?7) as
: 1 f(t)
Z) = 7— —dt, z€D Al
UE) 27r2'/8Dt—z ’ €5 (4.6)

where 0D is the boundary of D with positive orientation with respect to D.

The integral in (?7) is the Cauchy integral for f(z) in D and therefore

\ Z—a

U'(z) = f(z) — f(o0) = —1,

U(z) = /OZ MC Z ad( — z+const., Imz>0.

Now (??) follows from the last representation and (?7).

so that

Finally we remark that (?7) is well-known (cf. [Ts]) since oodt is the
equilibrium distribution for the interval [0, a], which has logarithmic capacity

a/4.
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