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INTRODUCTION

This paper will exhibit positive, non-decreasing, infinitely differentiable
functions f with the property that the best rational approximations of
degree n in the supremum norm to 1/f on [0, <o) tend to zero arbitrarily
slowly. Furthermore, such f can be chosen to have very general growth
characteristics at infinity.

In particular, this demonstrates that the following two conjectures of
Erdos and Reddy [1] are false.

I. Let f(x) be any nonvanishing, infinitely differentiable and monotonic
function tending to + co. Then for infinitely many

3?}, I 1f(x) — 1p(x)llo.) < 1/log n,

where P, denotes the set of polynomials of degree at most n.

2. Letf(x) be any nonvanishing, infinitely differentiable and monotonic
function tending to + co. Then, there exist polynomials of the form

o(x) = z a;x™

. with 1y =0, ny <ny <ny <+, ¥y 1/n; = oo, for which, for infinitely
- many k, ‘
Il f(x) — /X0,y < 1/l0g log n, .

THE CONSTRUCTION

We shall make use of the following Lemma due to Gon&ar [2). Let R,
denote the set of rational functions which are the quotients of two poly-
nomials each of degree at most n.
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LEMMA.  Ifg is a continuous functiononfa — 1,a + 1], g = Oon [a—1,a]
and g is nondecreasing on [a, a -+ 1], then

_ B gla + h)
N8 = Ml 2 SUP e T Ty

THEOREM. Let o, be any sequence of positive numbers tending to zero
monotonically. Let S, be any sequence of positive numbers with Spar =85, + 1.
Then there exists an f satisfying:

(1) [fis infinitely differentiable and nondecreasing on [0, ).
2) f@k) =S fork=1,2,...
(3 infieg I 1f(x) — r(Ollio,e = a for all sufficiently large n.
Proof. (a) Let 8, be any sequence of positive numbers with 1 < S, .
Let h(n) = e~%. Define f on [0, o) by: |
f(x) =5, xe0,2]
JO) = Seass x€e2k + hk), 2k + 2], k=1,2,..
f) = 0ux),  xe(2k 2% + AR, k =1,2,.
where Q, is any increasing, infinitely deffrentiable function on [2k, 2k + (k)]
which satisfies Qu(2k) = S,, Qu2k + h(k)) = Sep and for n > 1,
0y"(2k) = Q{"(2k + h(k)) = 0.

Parts (1) and (2) now follow from the construction. We show that, for
suitably chosen 8, , (3) holds.

(b) The Lemma applied to f — S, on [2k — 1, 2k + 1] with & = h(k)
yields

riel}ef; LS~ rlo,ons21 = riel}t; 1 — 7 lak—1,0841)

S SOk A M) =S, 1
1 + emn/t 1 4 em*nid

() If 8, =n then infreRn WL — 1r llig.ons21 = T(k), where T(k) =
1/3(1 + e }(Si11)?

Suppose on the contrary that there exists r € R, with || 1)f — 1/r llto.2x42) <<

T(k) (*). Then || r llto.2n+21 — Il 7 lto.2%+21 1 S llto. 2421 T(k) < ”f“[o.zkw] and so

I/ Tlro.2x+21
r < M = <2 4] »
I llto.2r+21 < T Moern TG0 = /o, 2x421
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since || flio.2x+21 = Sw+r - Thus, using (b) with 6, > n, we have

”f — r”(o 2k-+2] I 1
W1/f — 1/rllo.ox421 = = : > T(k),
T N Moz 1 7 lozsny (1 + €™) 2(Spin)?

which contradicts (*) and proves (c).

(d) Let H, ={i: T(k) = oy > T(k 4 1)}. Pick &, = max H, (=1 if
H, is empty). Then, for sufficiently large n, n € H, for some k and by (c)

inf 11f — rllow > T() = o

Remarks. (1) A similar theorem is easily proved for strictly monotone
f{x) by considering f(x) + x.
(2) Freud, et al. [3] have shown that e~*"""* can be approximated on
[0, o) by reciprocals of polynom'als of degree n with an error of order
(log n)/n.
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