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ABSTRACT For a given weight function w(z) on an interval [a,b], we
study the generalized Welerstrass problem of determining the class of func-
tions f € C[a,b] that are uniform limits of weighted polynomials of the form
{w™(z)pn(z)}°, where p, is a polynomial of degree at most n. For a special
class of weights, we show that the problem can be solved by knowing the

denseness interval of the alternation points for the associated Chebyshev
polynomials.

1 Introduction

"In the asymptotic analysis of orthogonal polynomials with respect to an ex-

ponential weight of the form w(z) = exp(~|z]|*), @ > 1, on R = (~o0, ),
an important step is to determine the class of functions f continuouson R
that are uniform limits of ‘weighted polynomials {w"p,}, where p, € II,
(the class of polynomials of degree < n), and the power n of w matches the
(maximum) degree of the polynomial. For these so-called Freud weights,
this problem was solved by Lubinsky and Saff [9] using techniques from
potential theory. The analogous problem for weighted polynomials of the
form {z"*p,(z)} on [0,1], which are called incomplete polynomials, was
raised by G.G. Lorentz and was resolved independently by Saff and Varga
[12] and by M. v. Golitschek [3]. Further extensions to Jacobi type weights

were obtained by He and Li [6} and He [5].

The above investigations are special cases of the followmcJr

Generalized Wezersirass Problem leen a closed set E C R and a weight
w : E — [0,00), determine necessary and sufficient conditions on 'f such
that f is the uniform limit on E of a sequence of weighted polynomials
{w'pn}, pn € I, as n — 0.

For the case when F is an interval and w(z) = ¢~9(), with Q(z) con-
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vex on E, a plausible solution can be described as follows. From potential
theoretic considerations, it is known (cf. [10]), that there exists a unique
smallest compact interval S, such that for every n > 1 and every ps € I,,

lw"pnlle = llw"Palls.,

where ||-||4 denotes the sup norm over the set A. Moreover, if one considers

weighted Chebyshev polynomials Tn(z) = w™(z)(z™ + - --) that are defined
by the extremal property

[Ealls= ot 0@ + 2@l
then the alternation (extreme) points of T, are dense in S,,. Based on the

above mentioned special cases, the second author has previously made the
following

Conjecture. If E C R is a compact interval and w(z) = e~9(®), with Q(z)
convex on E, then f € C(E) is the uniform limit on E of a sequence of the
form {w"pn}$°, pn € L,, if and only if f vanishes identically on £\ S,.
(In case F is unbounded, additional assumptions need to be imposed on

Q(z) as |z| = 0,2 € E.)

The aim of the present paper is to show that for a special class of weights
w, a proof of the above conjecture follows from the denseness property of
the alternation points of the weighted Chebyshev polynomials. Thus we
avoid much of the “hard analysis” involved with the potential theoretic
arguments used in [9]. However, our technique requires strong assumptions
on the weight w and so falls short of proving the general conjecture.

2 An Approximation Lemma

Let
Hn':z Span{go,---,gn}, g,EC’[a,b]

be a Chebyshev system on [a,}]. Define Ty, the normalized Chebyshev
polynomial for H, on [a,b], by

n
Tn =T ap) = ch;,
=

where the ¢; are chosen so that ||Th|la,s) = 1 2nd so that T has exactly
n zeros £, < --- < Zn in (a,b) and oscillates n + 1 times between X1 on
[a,b]. So defined, Ty exists and. is unique up to multiplication by 1. (See
[7, p. 72].) With zo := a and 2,41 := b we define the mesh of T, by

M, = Mp (T, : [a, b)) := 15ringaf+1lzi —zi_1|
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and the mesh of T,, restricted to an interval I := [a, 8] C (a,8] by

Mnl] = kgr?é]fil l:L',' = :1:,‘_1],

where 23 =« , zj41:=fand 7 < --- < z; are all the zeros of T}, in

(e, 6)-

Lemma 1. Assume that

Hy :=span{gq,...,ga}
is a Chebyshev system on [a,b] with associated Chebyshev polynomials T,.

a) Suppose that each g; € C*[a, f] and H., := span{gg,...,gL} is @ Cheby-
shev system on [a, 8] C [a,8]. If f € Cla, B), then there ezists b € H? :=
span{l,g0,...,9n} such that

175, — Fllie81 < Dwy(V/85),

where 65 := Mp(T, : [a,8))|(a,5)- (Here D is a constant that depends only
on a and b, and wy is the modulus of continuity).

b) Suppose further that f € Cle, B, that I is a closed interval contained in
[, B, and that f is constant on [, B]\ I. Then there exists h, € H such

that
1A} = fllia.57 € D'wy(1/61)
where 6, := M (T, : [a,b])|r and D’ depends only on a and b.

Proof. The proof of Lemma 1 follows [1] closely where a similar result is
proved for Markov systems, but is reworked for current purposes. Note that
H), a Chebyshev system on [c, §] implies that A is a Chebyshev system
on [, f]. Suppose S, € H is the best uniform approximation from H: to
. F on [o,c] U[d, B], where ‘ '

0, z€la,q
1: IE[d,ﬂ]

Flz) ==

Then we claim the following:
A) S, is monotone on [c,d].
B) |5, - F“[a,c]u[d,ﬂ] < 106n/(d - C)-

Let 7 := n+2 be the size of the Chebyshev system H?. Since S, is a best
approximant to F, there exist 5 + 1 points where the maximum error, ¢,,
occurs with alternating sign. Suppose m+1 of these points yg < - - - < ¥,y lie
in [o, c] and 7—m of these points ym41 < -+ < y, lie in [d, #]. Then S}, has
at least m — 1 zeros in (e, c] (one at each alternation point in [e, ¢] except
possibly at the endpoints a and ¢). Likewise S/, has at least § —m — 2 zeros
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in (d, B). So S, has at least —3 zeros in (a, c)U(d, B). Note that this count
excludes ym and ymy1. Thus S, has at most one more zero in (a, 8) unless
S’ vanishes identically (which is not possible for 7 > 1). Now suppose S,
has a zero (with sign change) on (c,d). Then since there is at most one
zero of S', in (c,d) it cannot be the case that both ym = ¢ and ypyy =d
with both S'(c) # 0 and S.(d) # 0. (Otherwise sign(Sa(c) — f(c)) =
sign(Sy(d)— f(d)) as a con51derat10n of the two cases shows.) But if y,, # ¢
or Yms1 # d or Si(c) = 0 or S;,(d) = 0, we have accounted for all the
zeros of S!, by accounting for the (possibly) one additional zero (either S7,
vanishes at ¢ or d or one of y;; or ym+1 1S an interior alternation point
where S/ vanishes). Thus S}, has no zeros with sign change in (c,d) and
claim (A) is proved.
For claim (B) we make the following observation. Let

én = ||IF = Sallia,dua,51-

Then .
Dn = EnTn - Sn

has at least m zeros on [, ¢] and
D:=D,+1=14+¢6T,—-5,

has at least n — m — 1 zeros on [d, ] (counting the possibility of double
zeros). Thus D/, has at least n — 3 zeros on [a,c] U [d, f]. Suppose T, has
at least 4 alternations on an interval [§,7] C (¢,d) and suppose that

Sa(7) — 5a(8) < €n.
Then, because of part (A) and the oscillation of T}, on [6,7],

O E O P ,,(~,)+s,,(5)]
2 2

has at least 3 zeros on [a, ff] and hence

_ (Dn L5 +Sn(6))'

2

has at least 2 zeros on [6,7]. This, however, gives D, € H, a total of at
least 7 — 1 = n + 1 zeros which is impossible. In patticular,

S (7)) = Sa(6) > €,

on any interval [6,7] C (¢, d) where Ty, has at least 4 alternations. Thus

Sa(d) = Sa(c) > ( — c)
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However, since S, is a best approximation,

and we deduce claim (B) on comparing these last two inequalities and
noting that e, < 1/2.

The proof of (a) is now a routine argument which for simplicity we present
only on the interval [a, ] := [0, 1]. Let

v =% (1(5) -1 (2)) s+,

i=1

where S;(z) € H}; is the best approximant to

0, z€[0,%]

Filz) = '
: 1, ze[%,]]

(as in claims (A) and (B)). Then with (d — ¢) = 1/m we deduce that
V() - f( )]<m2106 w -—1— 4w i
T Z) s n&f pu f po—
and with m := 1//8,,

IV(2) - £(=)| < Duy(V/35).

The proof of part (b) is an obvious modiﬁcz;tion of the proof of part (a).
- |

3  Weighted Incomplete Approximants
for Special Weights

We restrict our attention to systems of the form
H, :=span{w" - 1l,v"z,...,0w"z"}

where w 1= w(z) > 0, = € [a,b]. Then for a large class of weights w we
are guaranteed the existence of a support set S, where all the zeros of all
the associated Chebyshev polynomials lie. Moreover, whenever H,, satisfies
the conditions of Lemma 1 we will be able to conclude that {H,} is dense
in the continuous functions that vanish off of S,,. Denseness, for such f, in
this context means that there exists f, € H,,lim, . f, = f- The basic
result we need is (essentially) Corollary 2.5 due to Mhaskar and Saff [10].
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Theorem 1. Let ¥ := [a,b] with a,b possibly infinite. Let w(z) = e~9)
where, Q(z) is continuous on [a,b], convez on (a,b) and where w(z) |z| —
0 as |z] — oo (when X s unbounded). There ezists a smallest compact
interval Sy C T with the following properties.

a) The Chebyshev polynomials for H, have all their zeros in S, .

b) The zeros are dense in Sy, in the sense that Myls, —0 asn — oo.

C) prﬂ € nﬂ.l then “wnpﬂ”-su = Hwnpﬂ”E: n= 0)13 et

d)Ifpa €, and Aisa compact subset of X\ Sy, then

[w”pnlla = o(|lw"palls.), @s n— oo

The interval Sy is known (cf. [10]) to be the support of the unique
probability measure pw that minimizes the generalized energy integral

1= [ [ ogllz = thote)wl@) ()

over all probability measures supported on [a,b]. Moreover, for the case

when Q(z) is convex on [a,b], the endpoints of the support set Sy = [¢*, d7]
can be obtained by maximizing the so-called F-functional

d— d
F(c,d) :=log ( c) - }-/ Q(z)d= ,
1) 7). Jd-2e-9
over all pairs (¢,d) with a £ ¢ < d < b. This maximum will be attained
precisely when' ¢ = ¢* and d = d*, i.e. at the endpoints of Sw-

Lemma 2. a) Suppose w satisfies the conditions of Theorem 1 on [a,b]
and 8¢ = [a,b] \ Sy is nonempty. Let H, := span{w” - 1,0z, ...wtz"}
Suppose that ' '
H :=span{l,w" - 1,u"z,...,w"z"}
and
H' = span{(w” - 1), (v"z), o, (w'z™)'}

are both Chebyshev systems on the interval [a,b), for all n. Then for ev-
ery f € Cla,b] that vanishes identically on SS (a collection we denote by
Co[Sw]), there ezists a sequence Pn € U,, with

Jim ||w"pn — flia = 0.

(This is referred to as {H,} being dense in Co[Sul)-

b) Suppose Hy, and H! are Chebyshev systems on Sy (but not necessarily
on [a,b]). Suppose the other assumptions of (a) hold. Then there exists @
sequence p, € Oy with

Jim [[u"pa ~ flls. =0
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and
lim ||w”p, — flla =0,
n—oo

where A is any compact subset of [a,8]\ S, .

Proof. By Lemma 1 and Theorem 1, f € Co[S,] is uniformly the limit of
elements h} € H} on [a,b]. We now show that f is actually the limit of
elements ¢, € H,,. If hi — f, b}, € H}, then we may write

hi(z) == an + qn(z), ¢, € H,, a, €R.

If lan| — oo, then gn(z)/a, — —1 uniformly on [a,b] and we may ap-
proximate constants from {H,}. If |a,| % oo, then there exists {an,} with
@n, — ¢ # £oo. In this case ||gn, ||s, is uniformly bounded and by Theo-
rem 1, part (d), if 4 is a compact subset of £\ S,,, then llgni]l4a — 0. From
this and the assumption that f = 0 on S, we deduce that a,, — 0 and we
are done. B

We wish now to record classes of weights which satisfy the conditions
of Lemma 2, part (a), because for these weights we can conclude that the
weighted incomplete approxirnants are dense exactly in Cy[S,].

Lemma 3. Suppose w € C*[q,b], w(z) > 0. Ifspan{l,w™.1,..., w';x'"} is
6 Chebyshev system for all positive inlegersn and m, then span{(w"1Y,...,
(w”z™)'} is also a Chebyshev system.

Proof. See [7, p. 378].

Lemma 4. Suppose either

a) 1/w is totally monotone on [a,b] or _

b) 1/w(z) =37 jan(z—a)”, ap >0, is convergent on [a,b], wherea > 0.
Then w satisfies the conditions of Lemma 3.

P;oof. To show that w satisfies the conditions of Lemma 2 it suffices to
show that a non-vanishing linear form ‘

Lo(z) := 1 —ib,—z"
i=0

w"(z)

has at most m+1 zeros. This follows, in both cases, on differentiating m+1
times and observing that (Lm(z))(™+1) has no sign changes in [a,b]. M

"This gives us the following result.

Theorem 2. Suppose w satisfies the conditions of Theorem 1 and that
either '

a) w=! is totally monotone on [a,b] or

b) w=! has a power series ezpansion at a, convergent on [a,b], with non-
negative coefficients or (equivalently to (b))
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b') w=! has all derivatives sirictly positive on (a,b].
Then {w"pn}, Pn € I,, is dense in Co[Sw]-

Observe that weights of the following form work on any interval [a,b] C
[0, c0).

a) exp(—zf), p a positive integer;
byz? , 8>0;
c) exp(—z%) , 6 € (0,1).

For (c) above, the convexity condition of Theorem 1, doesn’t hold. However
in the case & := [a,b] C [0,c0), we can replace the convexity of Q@ =
log(1/w) by the condition that zQ'(z) is strictly increasing on (g, d).

We remark that for the generalized Weierstrass problem von Golitschek,
Lorentz, and Makovoz (cf. [4]) have simultaneously but independently ob-
tained results similar to Lemma 2.

4 The Sublinear and Superlinear Cases

For a sequence of positive numbers {2,}¢°, we consider weighted spaces
Hn(w:An) = {w"'\"Pn ‘Pn € Hn}-

We expect the following to happen for “decent” nonconstant weights. If
A\, — oo, the approximation should be impossible. If A, — 0, then the
whole interval becomes the interval of approximation. If Ay — ¢ > 0, then

the approximants should live on the set Sye associated with w®. We prove
the following.

Theorem 3. Assume w € C[a,b], w > 0 and w is nonconstant on [a,b].
~ Suppose that A, — oo as n — 0. If there ezist w™ p, € Hn(w,An) such
that W™ np, — f as n — oo uniformly.on [a,b], then f=0.

Proof. Suppose w**p, € H,.(w,A,) converges uniformly to f > 0 on
[o, 8] C [a,b]. Since w is not constant on [@, B], there exist intervals Iy and
I, contained in {o, 8] with

0<c <w(z)<ey, z€IL,
0<ca<w(z)<ea<cr, z€I,

for some positive constants ci,c2,¢3,Ca. Now from the convergence of

w™*p, to a strictly positive limit on [a, f] we deduce the existence of
positive constants di, d,, ds, d4 so that

d d
S <lpn(@lin € =55 2 M (4.1)

Cy 1
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and d J
4 3
e <lpa(2)llr, < C—gj:, n 2 Na. (4.2)

4
From (3.1) and Bernstein’s inequality we have

dz
o (@)lle ) < =57 m 2 My, (4.3)
: 1

for some constant ds. However with (3.2) and the facts that A\, — oo and
c4 < ¢ this leads to the contradiction that

dz? d
1pn(2) ) < —rom <
1]

= <l (@,

for some large n. a

Theorem 4. Suppose that for n large w*~ as well as w salisfy the cond:i-
tions of Lemma 2,

a) Iflimp_.co An = 8 > 0, then {w™~p,} is dense in 'CQ[SG], where §7 is
the support associated with w®. '
b) If limn—co An =0, then {1,w™*p,} is dense in Cla, ).

Proof. Part (a) requires knowing that &y, only depends on the n'* root
asymptotic (cf. [11]) and the rest follows as before.
For part (b) we show that the zeros of the Chebyshev polynomials fill

out [a,b] and apply Lemma 1. For this purpose consider functions of the
form

Fa(z) = [w("“*‘")’\" (z)(b=2)"(z - a)"] Af(mtE)

b}
where the integer m+k divides n. Observe that since (F,)(™+5)/7 converges
to (b — )™(z ~ a)* uniformly, F,, behaves like a §~function. In particular,
given I C [a,b] it is possible to-construct ¢, € {w™*»p,} , V n> N, so
that - C ’

llgn(2)llia 511 < € maxgn(z) 22 and

min g (z) < 2.

In fact, such ¢, can be constructed having many oscillations of magnitude
> 2. It now follows, that for n > N, the Chebyshev polynomial, T}, for
{w™*p,} has a zero in I; otherwise T,, would have too many zeros. Thus,
My |(a,5) — 0 and we can apply Lemma 1, to get denseness. .

5 Remarks

1. The condition in Lemma 2 that H! be Chebyshev can be weakened to
the following condition (as is apparent from the proof of Lemma 1).
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