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Abstract. We present various classes of rapidly convergent power
series for 1/1 . This allows us to give all of Ramanujen's mysterious
series for 1/m and to produce some interesting additional examples.
Many of these additional examples add more than 10 or 20 digits

accuracy per term.

L. Introduction: In (7, §13] Ramanujan sketches the derivation of 3
remarkable series for 1/17. In §14, with essentislly no explanation, he
gives 14 more remarkable series. Hardy [3], quoting Mordell, observes
that "It Is unfortunate that Ramanujan has not developed in detail the
corresponding theories." In [1] we constructed seven general classes
of hypergeometric-like power series for /1. In each case the power is
an invariant from elliptic function theory and the coefficients involve
simitar quantities. In particular, we recovered sll of Ramanujan's
series. In this note we concentrate on the three forms which prove the

most flexible.
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We begin by listing some additional examples. First,

L.p 2 (i —(Bn)t__ 13501400 + n545140134
I S NP ey 64032050+ V2 °

which arises with N:= 163 in TYPE 3a of the tables of our final section.
(This series seems to have been first observed by the Chudnovskys.]

Second, with N:= 427 in TYPE 3¢ of the tables we have

1.p P (en)t [A+ nB)
& (P (3n) V2

where
A= 212175710012/61 + 1657145277365
B:= 13773980892672v61 + 107578229802750
C:= [5280(236674 + 3030361)F .

This series adds roughly twenty-five digits per term, /C/12A) already

agrees with pi to twenty-five places. Surprisingly, one also has

1 .S Cr(en) A+ nB
I ach (NP (3n) Tt 12

where A, B, and C are the conjugate quadratic numbers
212175710912/61 - 1657145277365
13773980892672/61 - 107578229802750

wl ol
i "1k

(5280 (236674 - 30303v61F .

In this case convergence is much slower - Less than one digit per term.
The most recent record setting calculations of digits of pi all rely

on methods that trace their genesis to related material. Details of the

theory and of the celculations of Gosper, Bailey, Tamura and Kanads,

and Kenada may be found in [1].
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2. Preliminary Results: The complete elliptic integrals of the first
and second kind may be defined in terms of hypergeometric functions

by

I AU R
Kl =7 F1[2 =i ), (2.1
and
L (2.2)
eW=T-F 25008,

for 0 ¢ k < 1. The complementary modutus is the quantity

k:=V1-k° and we write Kkl :=K(k) ,ETk) :=E(K) .
These are related by the differential equation

E - k2K + kK2 3K (23)
dk

They are also Linked by the beautiful Legendre relation (1], [11]]
E'K + KE-KK =~ /2 (2.4)

We will use the following invariants employed by Ramanujan [7],
G:=(2kkTV12 | g:- (2k/kTV12

and (25)
V456 - (k272 TV12

In Weber's terms (10] 246 - 1, 2V4g-f,. We also need Klein's

absolute invariant J which is expressible as

d:= [4624‘1]3 [4024*”3 [26]
2762 27¢%
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With these invariants one can obtain the following hypergeometric

equations

12, -2
2K 2y-1 1 3 1. . + 2
""_k -1+k F —s—:“‘l1l1s 3
WP -5, b 5 Rl
12_~-12
2 2+ 1 3 1 GG "2
AL L2 2 R
T S S o)
and (2.7)
2K n2y-1/2 1 5 1 -1
== (k) =(1-(kk El=,2,—;1,1;d
2 gf - 0-0k TR (51 20 g )

Finally, we will need the rising factorial tal, - ala+1a+2) ~(a+n-1l.

3. Series Identities of Ramanu jan-type: The singular value
function may be defined as the solution of
£ 1w - N (3.1

for positive real N . This uniquely defines k on (0,00} as a decreasing

function with k(0) = oo , k(1) - 12, kloo ) = 0 . Importantly, kIN) is
algebraic when N is rational [1]. Some values are given below (§4).
Moreover, for some k = k{N) one or more of our invariants becomes very

simple. In terms of theta functions, kN) = (B5(q)/ 93[q]]2 with g = e'”\/ﬁ.

In [1] we introduced the function o (a singular value of the
second kind). It connects elliptic integrals of the first and second kinds
and is intimately related to Ramanujan's algebraic approximations to pi.
It is defined by

S S
a(N) K 2 (k = k(N]} (3.2)
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and also is algebraic at rational values with a(1) -% , a{o0) -711- :

Additionally, « satisfies recursions which allow one to compute it

at many values both numerically and explicitly. The simplest recursion

is,
_ 4adN) - 2/NKAN]
al4N) T (3.3)
and
_1-KIN)
4Ny = oS (3.4)

This is equivalent to the Gauss-Salamin-Brent iteration for pi. The
recursion and its extensions Lead to explicit high-order iterations for

/11 and to the recent record breaking computations of pi, [1]. Vsalues of

o are also given below (§4). The construction of o shows that

i 2
LoIN ke? L o - NG 2 (- kg (3.5)
™ n.Z _n2

{Here and below the dot signifies differentiation.) This follows from

using Legendre's identity (2.4) to write a gne-sided Legendre identity

a(N) - /(4K2) - /NIE/K - 1)
and then using (2.3) to replace E by the derivative K . Similarly,
£ ke ot - N -k (3.6

Given «(N) and k(N) we can combine (3.5) with (2.7 to produce power

series for 1/7 as follows. In each case we have [—ZT—T&F[k] = mikJF{dlk))

for algebraic m and ¢ where F(¢] has a hypergeometric power-series
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S . .0
expansion 2a ¢ .
n0 "

Now

KK L e + L a)

P 2

and substitution in (3.5) Leads to

[mkk' m + (aIN) - /_k]m+n'/— Q-kk'a]d) (3.7

-2 8
Ry

1
i
Note that, for each rational N, the bracketed term is of the form A+nB
with A and B algebraic. We now make explicit these considerations for

the three invariants which give the most remarkable and elegant

special cases.

2, 12
[gN H I i 4k[N]k' N . ror N> 2
2 1+ ENE

1. Series in T

.3 (1. (31, (3], (3.8)

1
TT n=0 [n!]3

where

oo

12_ -2
4 (N): - —— Mgy J_g;:2]+n/_[QN_9N

1+2N)



8]
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_GI:’IZ
2. Seriesin y :=[- e 4NKN) . por Ny g

2 H2k(NKINJP

Y

n=0

:xl—-

n

3. Series in d

JEACA N

n

. I ) G]+rh/—[GN GN

KANHEN) 2

2?Gﬁ4 z?gf:'
41324 = Chatli

: For N> 1

1_![_ 2 ] [3] (2 ] f[N][J;Vz]zn”

where

fn[N] -

1 ~24 2 (]
v (N e+ 2lalN)-IN & (Nnmeﬁ 0

[[scfj‘ Nl

365

(3.9)

(3.10)

There are many equivalent rearrangements of the formulae for

AN, en(N), T N).

{See [1] especially page 186.)
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4. Specific Examples: We begin by Listing velues of «(N] and of k[N]

(or equivalently 6,° or g whichever is simpler].

12

Mo ZKINK' TN = G;‘“ kM)

| 1 142

9 (237 (3342 15002
13 513 -18 W13+ 74413 -258 142
w7 | 2o 33 +1-2%%)2
37 W37-68 W37 -171- 25437 W37 622

N | 2kINIZKINE = g cel]

2 | Wz-1)

10 5-2F (7 + 25 {0 3z - 1P
18 -2l 343 + {216 - 1P 2-5- 246)
22 Wz-1F Wz e fEa- 2 iafz2- 7 -5/2)

- > = h
5§ ({223 ["Ej5]“[99@—444][994@?0—13{29]

“

[

[N ]
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kIN) Many other values of Gy, gy mMay be found in [7], [10] or [1].

Certain values of k(N) are givenin [12]. The computation of k{N) is
discussed in [1], [8) and [13]. Many values of «(N) are derived in [1].

For N:=23457 they are givenin[12]. From information Like that in
these tables and the formulae given for 1/, we may explicitly

compute all but two of Ramanujan's series. These two which rely on
another zf- are treatedin[1].

Ramanu jan gives series of form (3.8) for N:=6, 10, 18, 22, 58 and
of form (3.9) for N:=5, 9,13, 25, 37 . He gives series of form (3.10) for

N:= 3,7 In each case manipulation of the formulae yields the desired
result. Infact o(37] and «(58) were calculated by obtaining dg(58)
and egl37] to high precision numerically and then solving for e« .

Given the algebraic nature of o this ultimately suffices to verify the

values. In these cases, we have

o8 1 2 3
1. > (3 (30 (3 (1123 + 121460 _L_pn+ ! (4.1
T =0 (P ' 4 882 :
using (3.9) for N:=37; and using (3.8 for N:=58
& (4,034,023 | e
1 2Inlgintyln 1
= ——— [2vy 2 (1103 + n26390
“ Zo nE /2(103 + n 11[992 (4.2]

Series (4.2) is the most rapid and most celebrated of the series
given by Ramanujan. It is the series with which Gosper performed his
record breaking computation of more than 17,000,000 terms of the

continued fraction for 1 in 1985.
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gince k2(N) behaves Like 16!3’”‘/,'q {1] it is very easy to estimate
the number of digits added in each series. For N at all Large, the
convergence while linear is most impressive. Not surprisingly,
Ramanujan has given most of the special cases of (3.8) and (3.9} for

which the power is rationsl. We add some quadratic examples which
come in conjugate pairs from invariants Gy (respectively on

corresponding to discriminants with one form per genus for which Nis of
the form PQ or P/Q (respectively 2PQ and 2P/Q) with P and Q prime.
{See [1, page 2931} In these cases the invariant is a product of two

algebraic units and so Xy or yy is & real quadratic irrational. These

examples are Listed as TYPE 1 and TYPE 2 in the next section.

In a similar fashion we may apply (3.10) for rational or quadratic

values of Jy. Ramanujan gives two of the four series for which Jy is

rational and positive { N:= 3, 7) and in [1] we produced the two others
(N := 2, 4). There are also eight negative rational values of J. In our
terms they come from /N -i/2 for N:= 3,7, 1,19, 27 ,43, 67, 163.
These correspond (27 excepted) to the seven imaginary quadratic fields
Qlv/-N) of class number 1, with N congruent to 3 mod 4. These 7 glve
rise to the series listed as TYPE 3a. While we stated (3.10] for positive
numbers, it continues to hold more generatly by analytic continuation -
as long as J ¢ -1. The real part of the identity gives a series for \/1;
the imaginary part an obscure formula for zero. Note that now the
underlying q veriable becomes ie VN2 rather then eI,

There are also many quadratic values of J both positive and

negative. They again give rise to conjugate pairs of series. These are
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listed as TYPE 3b and TYPE 3c. it should be noted that each case the J
value is a perfect cube, white the X and Y values are perfect
squares. Granted the knowledge that the quantities A and B
corresponding to the conjugate Invariants are conjugate, the easiest
way to determine their precise values is to compute the underlying
q-series expansions from the information in Chapter 5 of [1] and to
match off the rational coefficients. This is how the quadratic series
were determined. In similtar fashion, one can determine the
corresponding series for many other values of the invariants: both
quadratic and higher order.

Finally we should mention the interesting Log series for pi derived
in [5] and [8], and the more abstract approach to Ramanujan's

approximations described by the Chudnovskys in their contribution to

this volume.
TYPE 1
o [1] [2) [3
1 n=0 [n‘]:" x2n+1

Here A:= 1 if the signs are "+"and A := (smallest odd prime

factor of N] if the signs are "-".

(Approximate] digits correct per term

(+ signs) [~ signs)

N:= 42 =143 6 <1
A=186 2 + 151/ 3
B:=3780y/ 2 + 3080y 3
¥:= 825 + 336/ 6
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N:= 78:= 263 9 2
A=/ 3(4302/ 2 + 12161/2)
B:=/ 3(119340/ 2 + 168740)
X := 33099 + 23400V 2

N:= 70 = 145 8 ¢
A=/ 701356 V2 ¢ 1715/2/5)
B:=/ 7(35640 2 + 22540/ 5)
X = 15939 + 504010

N := 130 = 265 12 1
A=/ 21117046 /T3 ¢+ 188730/ 5)
B :=/ 2(4192540 /T3 + 6760260 5)
X := 1874061 + 232560 / 65

N:=190 = 385 15 1
A = /18(11552301/2 + 4084354 / 2)
B := /19(250129620 + 176868340/ 2]
X := 79097931 + 55930680/ 2

TYPE 2

i ap [-“;]nﬁ]n[%]n (A + nB)

A .
— ntP yan+!

n=0

Here A:= 1 ifthesigns are "+"and A:= (smallest odd prime
factor of N] if the signs are *-".

(Approximate) digits correct per term

(+ signs] (- signs)

N =177 = 59-3 15 4
A = 1781017/2 177 + 47389527/4
B := 37219780177 + 495176085
Y = 21488850 /3 + 4845594 /59




MORE RAMANUJAN-TYPE SERIES FOR l/m 371

N =253 = 2311 19 {DIVERGES)
A = 212750712 / 11 + 2822457127/4
B := 10631172240/ 11 + 35259609385
Y = 2216752650 + 668376072/ 11

TYPE 3a (J<0, RATIONAL)

o (1] [B] [S
L S LB
m [ze0 a6 P Jn

(Approximete) digits correct per term

N=7 ¢!
A=24
B:=189
=-125/64

N=1 1
A =60
B:=616
=-5612/27

A= 300
B := 4104
Ji=-512

N:=27 4
A:=116
B := 18216
J = -64000/9
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N:=43 6
A= 0468
B := 195048
J :=-512000

N:= 867 8
A= 122124
B = 3140424
J = -85184000

N:= 163 15
A = 163096908
B := 6541681608
J = -151931373056000

TYPE 3b (J>0, QUADRATIC])

1. A i (&G )E)n as )
T ‘/_5 n=0 [n!]3 Jn

Here A:= 1 ifthesignsare "+"and A:=2 if the signs are"".

(Approximate] digits correct per term

(+ signs} (- signs)

N=6=32 3 <1
A:=15+102
B:=228+ 156/ 2
J=1399 + 088/ 2

N:=10=52 5 1
A=62y/5 ¢ 135
B:=1224/5 + 2700
J = 123175 + 55080/ 5
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N:=22=12 9 3
A= 16659 + 11750/ 2
B := 490644 + 346500 2
J = 1821424375 + 1287940500/ 2

N := 58 = 20.2 17 7
A= 30282810/ 29 * 163073763
B := 1440063000/ 29 + 7803343548
J = 174979733174158375 + 32492920723263000 29

TYPE 3c (J<0, QUADRATIC]

e S BB g
T 23y ns0 (m'? J°

Here A:= 1 if thesigns are "+"and A:= (smallest prime factor
of N} if the signs are "-".

(Approximate] digits correct per term
(+ signs) (- signs)

N =235 =475 17 1
A -= 380527125 + 170176896 /5
B := 18326073150 + 8195668992/ 5

J = - [238187910720320000 + 106520871957857280 v/ 5)

N:= 267 :=89:3 19 4
A == 197238000/ 89 *+ 1860739157
B := 10125024000 / 89 * 95519278302

J = - (5695330078148000000 + 603704734875424000 v/ 89)

N=427=61-7 25 1
A= 212175710912 /61 ¢ 1657145277365
B := 13773980892672 /61 + 107578228802750
J = - [451720356265155784 7168000 + 57836865018366744 7104000 VB1)
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