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THE RELATIONSHIP BETWEEN THE ZEROS
OF BEST APPROXIMATIONS AND DIFFERENTIABILITY

PETER B. BORWEIN!

ABSTRACT. We examine the relationship between the analytic properties of
continuous functions on [—1,1] and the location of the roots of the sequence
of best polynomial approximations. We show that if the approximants have
no zeros in a certain ellipse then the function being approximated must be
analytic in this ellipse. We also show that the rate at which the zeros of the nth
approximant tend to the interval {1, 1] determines the global differentiability
of the function under consideration.

1. Introduction. The theorems of Bernstein and Jackson establish an exact
relationship between the rate of convergence of the sequence of best polynomial
approximants to a function f € C[~1,1] and the global differentiability of f on
[~1,1] (see [1 or 3]). We intend to show that such a relationship also holds be-
tween the location of the zeros of the sequence of best approximants and the global
differentiability of f. ,

Let C[—1,1] be the set of continuous functions on [-1,1]. Let m, denote the
collection of algebraic polynomials of degree at most n with real coefficients. For

feC[-1,1] let
(1) Pa(f) = p?eign W = pnlli=1,1

where || - ||{o,5] denotes the supremum norm on [a, b]. Let P,.(f) be the best uniform
approximation to f from m,. Then P,(f) is, of course, the unique polynomial of
degree at most n which attains the minimum in (1).

Let E,, p > 1, be the open ellipse (in the complex plane C) with foci at +1 and
with axes (p+p~1).

We will prove the following theorems:

THEOREM 1. Let N be an integer. Suppose f € C[—1,1] and, for alln > N,
P.(f) has no zeros in E,. Then f s analytic in E, (that 1s, f s the restriction to
[—1,1] of a function analytic in E,).

THEOREM 2. Let N be an integer. Suppose f € C[—1,1] and there exist integers
k and N and a 6 € (0,1) so that, for eachn > N, P,(f) has no zeros i Epy,, where
pn = nTETO/n Then, for any € > 0, f is k times continuously differentiable on
[~14¢,1—¢] and f*) satisfies a Lipschitz condition of order 6 on [-1+¢,1-¢].

Theorem 1 is an analogue of the observation that if a formal power series
Yoo p@n2™ has the property that, for each N, ZQ’ZO a,z" has no zeros in
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Vs = {lz| < p}, then }°7° janz" is convergent in C,. This is straightforward.
We can write, for ay # 0,

and thus,

N
lan| [T 12l = laol-
=1

In particular,

lan "N < Jao'™ /p,

from whence the observation follows.

Jentzsch’s Theorem says that the zeros of the partial sums of f(z) = 77 [ an2™
arc dense in {|z| = p}, where p is the radius of convergence of f. Walsh [5] offers
the following analogue of Jentzsch’s Theorem.

THEOREM 3. If E, s the mazimal ellipse of analyticity for f, then the zeros
of Pn(f) are dense in the boundary of E,.

If we had assumed, in Theorem 1, that f was analytic on [—1, 1], instead of just
continuous, then we could have deduced the result from this analogue of Jentzsch’s
Theorem. Professor Gonéar, in private communication, informs me that he can
prove the following interesting generalization: If there exists a domain D, D N
[—1,1] #©, so that no P,(f) has any zero in D, then f is analytic in D. This
generalization and other extensions of Theorem 1 to general compact sets were
discussed by H. P. Blatt and E. B. Saff at the Tampa Conference on Rational
Approximation and Interpolation in December 1983. Related problems for Padé
approximants are considered by Gonéar in [2].

2. An inequality for polynomials with no roots in E,. The proofs of
Theorems 1 and 2 are consequences of the following inequality:

INEQUALITY 1. Suppose pn(z) = >, _,axz* € m, and p,, has no zeros in E,.
Then

lan] < (2"/p"palli=1.17-
PROOF. Let
g2n(2) = 2"pa((z + 27 1)/2).

We note that gz, € 73, has lead coeflicient a,, /2" and that if 2 is a root of g,
then so are 1/zp and Zp. Since w = (2 + 2 1)/2 maps C — {z|1/p < |z| < p} into
C - E,, it follows that

(o) = 2T [[ (- 1),
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where |o;| > p for each 7 and where the a; come in conjugate pairs. Thus, for
|Z| =1,
n

ZanﬁZ—azH —l/z

Z

_lgﬂlﬂizl(zfal)ﬂ 1 (7 — o)

IQZn | =

n T2,
_ |a4n_||H:L (2 -y )2
A IH 1a1| '

By the maximum modulus principle

n

H(z - )

=1

mn
ZHai,

t=1

{lzl=1}
and, hence,
n
21
ay

| o
Prll-1,0) = llg2nllgz1=1y 2 57 2 lan|gy- O
|

There exists pn € Tn, Pn = 2"z™ + - - -, s0 that, in the variable z = (z + 271)/2,

m (Z55) = e = )

For this polynomial a,, = 2™ and

n

lonll—1,0 < 12" = Pn||%|z|:1}//’" <ptt2+4p7
or
lan| > (27/(p" + 2+ p ")) IPnlli-1.1)-

In particular, Inequality 1 is asymptotically best possible.

Minor modifications to the proof of Inequality 1 yield:

INEQUALITY 2. Suppose p,(z) = 3 p_y an®* € m, and py has k or fewer zeros
in E,. Then

lan] < (2"/0™ ) pnlli-1,1)-

PROOF OF THEOREMS 1 AND 2. Let n > N and let a,, be the lead coeflicient
of P,(f). From Inequality 1 and the assumptions on the roots of p, we have

(2) lan) < (27 /P Pu(H)ll -1y < (27/p")M
where M = 2||f|l;-1,1)- It follows that there exists S,,—1 € Tn—1 so that
(3) 1Sn—1 = Pr(fMj-1.0y < 2M/p™.

One need only set P,(f) — Sn—1 = a,T,,/2"" !, where T, is the nth Cebytev
polynomial (see {3, p. 31]). Thus,

Pi(f) SN = Salli=1a) WM = Patalli-1.1) + 180 = Priall(-1.1)

“ < Pra(f) + 2M/p!
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and

(5) ) <2M Z

n+m*
mlp

where C is independent of n. This, by Bernstein’s characterization of analytic
functions in terms of the rate of convergence of P, guarantees that f is analytic
in E,. (See, for example, (3, p. 76].)

The proof of Theorem 2 proceeds along similar lines. Equations (2)-(5) become

(2/) |an| S 2"M/’n1+k+6,

(3) 1Sn—1 = Pu(f)llj=1,1) < 2M/n'Fr+e,
(4) Pr(f) € Ppyy{f) + 2M/nltEYS,
and

(5) Pi(f) < C'/nkte.

Equation (5'), once again by Bernstein’s results [3, p. 61], guarantees that f has k
continuous derivatives on [~14¢,1 — ¢] and f*) € Lips on [-14+¢,1—¢]. O

If we use Inequality 2 instead of Inequality 1 in the above proofs, we can deduce
that both Theorems 1 and 2 hold under weaker assumptions. For example, we need
only assume that the number of zeros of P,(f) in E, (or E,,) is o(n).

3. How sharp are Theorems 1 and 27 If f is analytic and nonzero in E,
then the sequence {P,} converges uniformly to f on compact subsets of E, [3, p
76]. Hence, for p’ < p and for n sufficiently large, the zeros of P, will lie outside
E,. In particular, Theorem 1 can be used to characterize the largest ellipse in
which f is analytic.

For nonanalytic f we have the following example: Let k be a positive integer

and let
= Z ™) Tym (2),

where T} is the ith Cebyéev polynomial on [—1,1]. Then, for 3h < p < 3hHL

h
_ Z 3™ kT3m )
(See [1, p. 132].) Also,
ITmlle, < p™.
(See [3, p. 42].) For h sufficiently large, if p < 3kh/3" then

h 33 A &
<Z< ) < 5.

> (3™ T
m=1
Thus, for n sufficiently large, P,.(f) has no zeros in E,, where p = n*/™. However,
by examining f{cos @) one can verify that f is not k times continuously differentiable
n[—-1+¢e1—¢l.

E,
k/n



532 P. B. BORWEIN

The previous example leaves a gap of 1 + § between the assumptions on k in
Theorem 2 and the “best possible” assumptions.

The results of this paper are quintessentially results about best approximants.
Given f € C[-1,1] and any compact sets K in the complex plane that separates
[~1,1] from infinity, it is always possible to find a sequence of polynomials with all
roots in K that converges to f. (See, for example, [4].)
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