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1 .  I n t r o d u c t i o n  

Consider the two term iteration defined by 

a,~ + 2b,~ 
(1.1) a,,+l . -  - - ,  

3 

and 

(1.2) 

Then since 

(1.3)  

it follows that ,  for a,b E (0, co), and for n >_ 1, 

la.+l - b,~+ll _< - -  

and 

(i.4) 

a0 := a, 

3 
b0 := b. 

3 z ( a s  - b . )  3 
% + 1  - b . + l  = 2 7  ' 

ta .  - b.I 
27 

F ( a , b )  := lira as = lim bn 
n - - ~ o o  n - - + o o  

is well defined, and that  on compact subsets of (0, oo) the convergence is cubic. It is 
also easy to see that  F(1,  z) is analytic in some complex neighbourhood of 1. All of 
this is a straightforward exercise. What  is less predictable is that  we can identify the 
limit function explicitly, and that  it is a non-algebraic hypergeometric fimction. Thus, 
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it is one of a very few such examples; and it is certainly the simplest cubic example we 
know. The most familiar quadratic example is the arithmetic-geometric mean iteration 
of Gauss and Legendre. Namely the iteration 

an + bn 

an+l :=  2 ' 

bn+l :=  ~ ,  

where, f o r O < x <  l a : : l  

a o  :---- a ,  

b 0 : =  x ,  

1 
lim an = lim b~ = 

~F, ( 1 , } ; 1 ; 1 -  x2) " 

For a discussion of this and a few other examples see [2] and [31. 

2.  T h e  m a i n  t h e o r e m  

The point of this note is to provide a self-contained proof of the closed form of the 
limit of (1.1) and (1.2). This is the content of the next theorem. 

T h e o r e m  1. Let 0 < x < 1. Let 
a,~ + 2bn 

a n + l  . - -  ao := 1 
3 

b=+l := 3 b0 X. 

Then the common limit, F(1 ,x ) ,  is 

1 
= ( 1 - x  a) =2F1 - ' 1 ; 1 - x  3 

F ( 1 , x )  Z==o (n!)3 33,~ ' 3 '  " 

(2.2) 

or 

Proof. The limit function F (a, b) must satisfy 

(2.1) r (a0, b0) = F (el, bl) . . . .  

and since the iteration is positively homogeneous so is F.  In particular 

F(a°'b°)=F(al 'bl)=F(a°+2b° ~ b ° ( a 2 ° + a ° b ° + b ~ ) ) 3  ' 3 

(2.3) 

F(1,x) = F ( l + 2 x  ~ x ( l + x + x 2 ) ) 3  ' 3 
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If we set H(x) :--- ~ - x)/F(1, (1 - x)~) then the functional equation (2.3) beco- 
mes 

(2.4) 

where 

(2.5) 

H(x) = ~ H(t(x)), 

t(z) := 1 - 9x*(1 + x* + ~'~) x" (1 ~)~. 
(1 + 2x*) 3 ' := - 

Furthermore x/~H(x) is analytic at 0. The point of the proof is to show that  

2-.1;x) (2.6) G(x) := ~ 1 -  x) 2Ft (3, 3, 

also satisfies the functional equation (2.4). From this it is easy to deduce that  G(x) = 
H(x); as follows from the functional equation for H/G, and the value at x = 1. The 
(hypergeometric) differential equation satisfied by G is 

(2.7) a(x) a"(x) {-8x~ + 8x-  9~ 
• - G(~) - k  3-~x~--~7~ ] 

Now it is a calculation (for details see [2]) that 

(2.8) a ' ( x )  := ~ ,/-,3 ,a(t(x)) 
V ~'Lx) 

also satisfies (2.7) exactly when 

(2.9) a(x) = (t'(x))2a(t(x))- 
t(x) 2 \t ,(x) / 

It is now another calculation, albeit a fairly tedious one, that  a and t defined by (2.7) 
and (2.5) satisfy (2.9). We have now deduced that  G*(z) and G(x) both satisfy (2.7). 
Furthermore, since the roots of the indicial equation of (2.7) are (1/2, 1/2) there is a 
fundamental logarithmic solution. Since both G* and G are asymptotic to vz~ at 0, they 
are in fact equal. Thus (2.8) shows that G satisfies (2.4). This finishes the proof. • 

As a consequence we derive the following particularly beautiful cubic hypergeometric 
transformation. 

Corollary 1. For x E (0, 1) 

~F1 l !  2_. 1- ) 3 
\ 3 ' 3 '  ' 1 - x 3  - l + 2 x  - -  2F1 ;5; \ l + 2 x ]  ]" 

Proo£ This is just a rewriting of the functional equation (2.3). • 
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The above verification entirely obscures our discovery of Theorem 1. This arose 
from an examination of some quadratic modular equations of Ramanujan [1, Chapter 
21]. Notably, Ramanujan observed that,  

(2.10) (1 - u3)(1 - v 3) = (1 - uv) 3 

is a quadratic modular equation, for 2F1 (1, 2 . .  ~, 1, .). We then observed, with the aid of 
considerable symbolic computation, that if 

(2.11) L(q) := ~ qm~+m~+~2 

and 

(2.12) R(q) . -  3L(q3) 1 
2L(q) 2 

then 

u := u(q) := R(q) and v := v(q):= R(q 2) 

solve (2.10) parametrically. From (2.12) it is natural to examine the cubic modular 
equation for R. This leads to the following result. 

and 

T h e o r e m  2. Let 

L(q) := ~ qm:+.~.+~2 
- - 0 0  

3L(q 3) - L(q) 
M(q) :-- 2 

Then, L and M parameterize the mean iteration of (1.1) and (1.2) in the sense that  i f  
a := L(q) and b :-- M(q), then 

L(q3 ) . -  a + 2b 
3 

and 

M(q3) = i b(a2 4- 3ba --k b 2) 

and the limit function F (of Theorem 1) satis6es 

M(q) ~ 1 
F 1, L(q) ] - L(q) " 

The derivation of this, which requires some modular function theory, will be discussed 
elsewhere [3]. 
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