
2

24. For  p ≤ 0,   
(ln n)p

n ≥ (ln(n + 1))p

n + 1    for all  n ≥ 1,  and  lim
n→∞

(ln n)p

n = 0.

So  ∑
n=1

∞
(− 1)n−1 (ln n)p

n    converges by the alternating series test when  p ≤ 0.

In fact the series also converges for all values of  p > 0.

By L’Hospital’s Rule,  lim
x →∞

(ln x)p

x = lim
x →∞

p (ln x)p− 1 ·x−1

1 = p lim
x →∞

(ln x)p− 1

x .

The exponent on  (ln x)  decreases by  1,  and a constant coefficient  p  appears.

Now if  (p − 1) ≤ 0,  we observed that  lim
x →∞

(ln x)p− 1

x = 0  in the first part of the exercise.

If  (p − 1) > 0,  repeat the argument to see that  lim
x →∞

(ln x)p

x = p(p − 1) lim
x →∞

(ln x)p− 2

x .

Continuing until the exponent has finally been reduced to  0  or less, we see that

lim
x →∞

(ln x)p

x = 0  regardless of how large  p  may be! Changing from a real variable  x  to

an integer variable  n,  lim
n→∞

(ln n)p

n = 0  for all values of  p.  Although for  p > 0,  the

function   
(ln x)p

x    is not decreasing for all  x ≥ 1,  it is decreasing for  x ≥ ep  (take the
first derivative to see why). So by chopping off the first part of the series (where the
terms may be temporarily increasing in size) we can use the alternating series test on
the rest of the series to see that it will converge regardless of the size of  p.  Once we
know that, we can put the early terms back, changing the final sum but not the
convergence status of the series.

26. To approximate  ∑
n=1

∞ (− 1)n + 1

n4    with error less than  0.001,  we use the partial sum

sn = ∑
i=1

n (− 1)i+ 1

i4
   with   

1
(n + 1)4 < 0.001.  This first occurs with  n = 5.

Since  s5 = 12280111
12960000 ≈ 0.947539429,  the desired approximation is  0.948.

30. To approximate  ∑
n=0

∞ (− 1)n

(2n)!    to four decimal places the error must be less than

0.00005.  We use  sn = ∑
i=0

n (− 1)i

(2 i)!    with   
1

[2(n + 1)]! < 0.00005.  This first occurs with

n = 3.  Since  s3 = 389
720 ≈ 0.540277777,  the desired approximation is  0.5403.
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2. ∑
n=1

∞ 1

n
  is a divergent p-series so  ∑

n=1

∞ ( )−1 n

n
  is not absolutely convergent.

The conditions of the alternating series test are met, so the series is conditionally
convergent.
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2. − 5 − 5
2 + 5

5 − 5
8 + 5

11 − 5
14 + … = ∑

n=1

∞ (− 1)n − 1 ·5
3 n − 4    converges.

Except for the first term, the signs of the terms alternate;   
5

3 n − 4 ≥ 5
3 (n + 1) − 4   for

n ≥ 1;  and  lim
n→∞

5
3 n − 4 = 0.

4.
1

ln 2 − 1
ln 3 + 1

ln 4 − 1
ln 5 + 1

ln 6 − … = ∑
n=2

∞ (− 1)n

ln n    converges.

The signs of the terms alternate,   
1

ln n ≥ 1
ln (n + 1)   for  n ≥ 2,  and  lim

n→∞

1
ln n = 0.

8. ∑
n=2

∞ (− 1)n − 1

n ln n    converges by the alternating series test.

The signs of the terms alternate,   
1

n ln n ≥ 1
(n + 1) ln (n + 1)   for  n ≥ 2,  and  lim

n→∞

1
n ln n = 0.

10. ∑
n=1

∞
(− 1)n n2

n2 + 1
   diverges.

Although it is an alternating series, the other two conditions are not met, since
n2

n2 + 1
<

(n + 1)2

(n + 1)2 + 1
,  and  lim

n→∞

n2

n2 + 1
= 1 ≠ 0  so that  lim

n→∞
(− 1)n n2

n2 + 1
   does not exist.

16. ∑
n=1

∞ sin
nπ
2

n! = 1
1! + 0

2! − 1
3! − 0

4! + 1
5! + 0

6! − 1
7! − 1

8! + … = ∑
k =1

∞ (− 1)k− 1

(2k − 1)!   converges.

It is an alternating series with   
1

(2k − 1)! ≥ 1
(2k + 1)!   for all  k ≥ 1,  and  lim

n→∞

1
(2k − 1)! = 0.

22. For  p > 0,   
1
np ≥ 1

(n + 1)p   and  lim
n→∞

1
np = 0.

Thus  ∑
k =1

∞ (− 1)n − 1

np    converges by the alternating series test.

For  p = 0,  lim
n→∞

1
np = lim

n→∞

1
n0 = lim

n→∞

1
1 = 1 ≠ 0,  so  lim

n→∞

(− 1)n − 1

np    does not exist, and

worse yet for  p < 0,  lim
n→∞

1
np = + ∞  and  lim

n→∞

(− 1)n − 1

np    does not exist.

Thus  ∑
k =1

∞ (− 1)n − 1

np    diverges when  p ≤ 0.


