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  is the sum of constant multiples of two p-series, with  p = 1.5  and

p = 3,  and therefore converges.

4. ∑
n=1

∞
n−0.99  is a p-series with  p = 0.99  and therefore diverges.

8. ∫ 2

∞ dx
x2 − 1

= lim
t →∞ ∫ 2

t 1
2 ( )1

x − 1 − 1
x + 1 dx = lim

t →∞

1
2 ln

x − 1
x + 1 ]2

t
 =

= lim
t →∞

1
2 ( )ln

t − 1
t + 1 − ln

1
3  = 1

2 ln3.

By the integral test, the series  ∑
n=2

∞ 1
n2 − 1

   converges also.

Alternatively,   
1

n2 − 1
= 1

2 ( )1
n − 1 − 1

n + 1   using partial fractions.

So the  (n − 1)st  partial sum is  sn = ∑
i=2

n 1
2 ( )1

i − 1 − 1
i + 1  = 1

2 ( )1 + 1
2 − 1

n − 1
n + 1 .

Since  lim
n→∞

sn = 3
4 ,  the series converges to   

3
4 .

14. ∫ 1

∞ dx
4 x2 + 1

= lim
t →∞

1
2 tan−1(2x)]1

t
 = lim

t →∞

1
2 [tan−1(2 t) − tan−1 2] = 1

2 ( )π
2 − tan−1 2 .

By the integral test, the series  ∑
n=1

∞ 1
4 n2 + 1

   converges also.

18. For  x ≥ 3,  ln x > 1  and  ln(lnx) > 0.  Applying the integral test,

∫ 3

∞ dx
x ln x ln (ln x) = lim

t →∞
ln(ln(lnx))]3

t
 = lim

t →∞
[ln(ln(ln t)) − ln(ln(ln3))] = +∞,

and therefore the series  ∑
n=3

∞ 1
n ln n ln (ln n)   diverges to  + ∞  also.
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20. We saw in Exercise 18 that when  p = 1,  ∑
n=3

∞ 1
n ln n [ln (ln n)]p

   diverges to  + ∞.

If  p > 0  and  p ≠ 1  then   
1

x ln x [ln (ln x)]p
   is positive, continuous, and decreasing for

x ≥ 3,  so we may apply the integral test.

∫ 3

∞ dx
x ln x (ln(ln x))p = lim

t →∞

1
1 − p (ln(lnx))1−p]3

t
 = 1

1 − p lim
t →∞

[(ln(ln t))1−p − (ln(ln3))1−p].

This converges to   
[ln (ln 3)]1 − p

p − 1    if  p > 1  but diverges to  +∞  if  0 < p < 1,  so the

series  ∑
n=3

∞ 1
n ln n [ln (ln n)]p

   converges if  p > 1  and diverges to  +∞  if  0 < p < 1.

If  p = 0  the series becomes  ∑
n=3

∞ 1
n ln n   and if we apply the integral test we see that

∫ 3

∞ dx
x ln x = lim

t →∞
ln(ln x)]3

t
 = lim

t →∞
[ln(ln t) − ln(ln3)] = +∞.  Therefore the series diverges to

+ ∞  in this case also.

If  p < 0,  the integrand   
1

x ln x [ln (ln x)]p
   is positive, continuous, and eventually

decreasing (as soon as  ln(lnx)·[ln x + 1] + p > 0).  Applying the integral test (but not
starting at 3; starting wherever we must so that the integrand will be decreasing) we

obtain the same indefinite integral   
1

1 − p [ln (lnx)]1−p  as before and since this diverges
to  +∞  as  x → + ∞,  the series diverges to  + ∞  in this case too.

24. (a) For the series  ∑
n=1

∞ 1
n4 ,  s10 = 43635917056897

40327580160000   exactly (I used Maple).

To 10 significant figures,  s10 ≈ 1.082036583  according to Maple; by comparison, the
entry in the ninth decimal place is  4  according to my TI–36 calculator, with agreement
earlier. Asking Maple for 20 significant figures yields  1.0820365834937565468.

If  s  is the sum of the infinite series then  s10 < s < s10 + ∫ 10

∞ dx
x4 = s10 + 1

3 (10)3   and thus

0 < s − s10 <
1

3000 .

(b) s10 + 1
3 (11)3 = s10 + ∫ 11

∞ dx
x4 < s < s10 + ∫ 10

∞ dx
x4 = s10 + 1

3 (10)3 .

To nine decimal places this says  1.082287022 < s < 1.082369917.
The midpoint of this interval is  1.082328470,  so  s − ≤1 082328470 000041448. . .

(c) If we want a value of  n  such that  0 < s − sn < 0.00001  then we select  n  so

that  ∫ n

∞ dx
x4 ≤ 0.00001.  This means that we want   

1
3 ·n3 ≤ 0.00001,  or  3·n3 ≥ 105.

Since  3·323 = 98304 < 105  and  3·333 = 107811 > 105,  we need  n = 33  terms to be
sure that  0 < s − sn < 0.00001.
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2. Since  0 ≤ 3
4n + 5

≤ 3
4n   and  ∑

n=1

∞ 3
4n   is a convergent geometric series,

∑
n=1

∞ 3
4n + 5

   converges by the comparison test.

6. Since  0
2

1 5

1≤ ≤sin
.

n

n n n
  and  ∑

n=1

∞ 1
n1.5   is a convergent p-series,

∑
n=1

∞ sin2 n

n n
  converges by the comparison test.

8. Since  0 1

1 2

1
1 5

≤ ≤
+ +n n n n( )( ) .

  and  ∑
n=1

∞ 1
n1.5   is a convergent p-series,

∑
n=1

∞ 1

1 2n n n( )( )+ +
  converges by the comparison test.

12. Since  0 ≤ n
(n + 1)2n ≤ 1

2n   and  ∑
n=1

∞ 1
2n   is a convergent geometric series,

∑
n=1

∞ n
(n + 1)2n   converges by the comparison test.

16. Since  0 ≤ arctan n
n4 ≤ π/2

n4    and  ∑
n=1

∞ π/2
n4    is  (π/2)  times a convergent p-series,

∑
n=1

∞ arctan n
n4    converges by the comparison test.

22. Notice that  0 ≤ (3n − 2)n2

n4 + n2 + 1
= 3 n3 − 2 n2

n4 + n2 + 1
   for all positive integers  n.

lim
n→∞

3n3 − 2n2

n4 + n2 + 1
1
n

= lim
n→∞

3 n4 − 2 n3

n4 + n2 + 1
= lim

n→∞

3 −
2
n

1 +
1
n2 +

1
n4

= 3.

Since  ∑
n=1

∞ 1
n   is a divergent p-series,  ∑

n=1

∞ 3 n3 − 2 n2

n4 + n2 + 1
   diverges by the limit form of the

comparison test.
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26. Notice that  0 ≤ 2 n2 + 7 n
3n(n2 + 5 n − 1)

   for all positive integers  n.

lim
n→∞

2n2 + 7n
3n(n2 + 5n − 1)

1
3n

= lim
n→∞

2 n2 + 7 n
n2 + 5 n − 1

= lim
n→∞

2 +
7
n

1 +
5
n −

1
n2

= 2.

Since  ∑
n=1

∞ 1
3n   is a convergent geometric series,  ∑

n=1

∞ 2 n2 + 7 n
3n(n2 + 5 n − 1)

   converges by the

limit form of the comparison test.

30. There are many ways to show that  ∑
n=1

∞ n!
nn   converges. Here is one.

Notice that  0 ≤ n!
nn = 1 ·2 …n

n ·n …n
≤ 2

n2   for  n ≥ 2  (and even for  n = 1).

Since  ∑
n=1

∞ 2
n2   is a constant multiple of a convergent p-series,  ∑

n=1

∞ n!
nn   converges by the

comparison test.

34. Since  −1 ≤ cos n ≤ 1,  ∑
n=1

∞ 1 + cos n
n5    converges by comparison with  ∑

n=1

∞ 2
n5 .

My TI–36 calculator gives  s10 ≈ 1.559723537,  and Maple agrees. To 20 significant
figures, Maple gives  1.5597235374638962825  for  s10.  To estimate the error,

0 < ∑
n=11

∞ 1 + cos n
n5 < ∑

n=11

∞ 2
n5 < ∫ 10

∞ 2
x5 dx = 2

4 ·104 = 0.00005.


