


[oe]

22, yOL 4 2yt 205 L,y 3 L is the sum of two convergent

n=1[R"? 310 pSo[R" 3" n=0 2" n

. . 1
geometric series and converges to 1t 1
1-5 1-3

2 n . . n 1
28. nglln(2n+5) diverges because lim In( )—In 5 #0.

n_ oo 2n +5

34 1 _12 1 12 _ 11 1 _1f 1
" nn+1)(n+2) T n n+1 n+2 ~ 2\n n+1 2\n+1
. . n 1 n 141 1 n o1
th -y +  _gifi_ 1\ _ <1
The nt partial sumis sy i;i(i+1)(i+2) iglz(i i1 iglz(
_1 1 1(1 1 .
=5(1-,41) 2\5 — 32 ) sincethe sums telescope.

. . 1 . 1
Since lim s, = 7 the series converges to 7
n- oo

44, §03”x”: §0(3x)n converges if and only if |3x|<1.
n= n=

. o . 1 1
This condition is equivalent to |x|<%, orto -3 <x< 3.

For such values of x the series convergesto ;"5 .

48. 'y tan"x= Y (tanx)" converges if and only if |tanx|<1.
n=0 n=0

1

T n+2

1

i+1

).

1

i+2

This condition is equivalent to (k - %)n< X < (k + %) T (for some integer k).

For such values of X the series convergesto ;. -
64. > (ah +bn) might converge if Y a, and 3 b, both diverged.
For example consider what happens if > a, diverges and b, =-a,.

Then again it might not converge.
Consider what happens if Y a, diverges and by = a,.

)-



3n +4 3 _3n+4 3 _ 7

on+5- NOUCE @n— 5 = 5 5 ~ 5 =~ 20n+5)"

54. ap=

Then gan —g% is clearly increasing, because of the minus sign, and so is {a,} itself.

56. If a,=3+ ﬁ-_nlE then {an} is not monotonic. When n is odd, a, <3, and when

n is even, a, > 3. So the terms oscillate from one side of 3 to the other, forever.

66. | -0|=|m|. Assume r#0. Thenif € is any positive number, we can make
Im|<e by making nin|r|<Ine. For 0<|r[<1, In|r|<0, so this inequality

nin|r| <Ine is equivalent to n>|'r:'—|f|. Take any integer N for which Nzll:—;'.
If n>N then n>|':l‘_|f|, so nlin|r|<Ing, In|rn|<lns, and |rn—0|:|rn|<€_

What if r=07? The above argument won’'t work since In|r| doesn’t exist. But to get
|On —O| < ¢ is easy; it holds for every positive integer n. Sotake N =0 for instance.
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8. 1-t4r_ L, o5 (-1)i metric seri
: 4”8 _nzo > ) s ageometric series.

_ | 1 2
<1 it converges and its sum is 1-(-1/2) ~ 3°

NlR NP

Since ‘—

8L .9 _ 10 _ < (_8LY[(_10\n. : .
10. =900 T10 "1+ 7 _ngo( 100)( 9 ) IS a geometric series.
Since ‘—% >1, it diverges.

1 x 1\n . . .
14. —=>1; IS a geometric series.
nS1 e =1\e?
1
. 1 . . . e2 1
Since |={<1, it converges and its sum is 1= 5 .-
e2 1-5 ec-1

oo 32

18. > (-1 23n:l =3 (— %) (— %)n is a geometric series.
n=1 n=1

‘—% >1, it diverges.

Since




This will make —¢€ < arctan(2n) - g On the other hand, arctan(2n) — g <0<eg

regardless of how large or small n may be. Soif n>N = %tan (72—T - s) then

—g<arctan(2n) - g <eg, and arctan(2n)—g <E€.

n!
(n+2)!

To see why, notice that a, =

26. If ap= then {a,} convergesto O.

1

1
n+DMn+2) and thus O<a, < 2

To make |an —0|=lan| <€, where ¢ is any positive number, it will be more than

sufficient to have n >N, where N is any integer for which Nzé. Thenif n>N,
VE

. 1 1
we willhave 0<an< 5 < o, <¢ sothat |a,-0|=lan|<e.
Actually this is overkill. By solving a quadratic equation you can show that
N=>-15++/0.25+¢-1 will work, and that this is the best one can do.

30. If ap= M%) then {a,} converges to % :
In(2 +en) _1‘ _In@+en-n_In@2+en-inen _ 1, 2+en

n 3 3n 3n 3n en

The continuity of the natural logarithm function insures that if (1 + 2e~") gets close
enoughto 1, In(1+2e-n) will get as close as we wantto 0. The (3n) inthe

denominator makes things even better. And we can bring (1 + 2e~") as close as we
wantto 1, since eh can be made as large as we please by taking n large enough.

Notice

1
- + n
n|I’l(1 2e )

ncosn
nZ+1

Since |cosn|<1, |an—0|=|an|s

36. If ap= then {an} convergesto O.

n
We can make

. < g, where € isan
n2 +1 nZz+1 y

positive number, just by taking n >N where N is any integer for which N = %

1 n n_1
If n>N then n> ¢ so 2e1 S pz=n <&

(This argument shows that probably we can get away with a slightly smaller value of N

than % since we have “thrown away” the +1 in nZ + 1. Sometimes |cosn| is a lot
smaller than 1, too, but then sometimes it is quite close to 1 so that won't help.)

_1.3.5--(2n-1)
- n!

48. If an then {a,} divergesto +oo.

. 135 2n-1
To see why, write an= 7 -5 -3~
, 3 _5 7 2n-1 3\n-1
2 2Ll 2 = -1
Notice 5 <3< << 7,80 an>(2) =1.5"-1 when n> 2.
Since 1.5n-1 gets as large as you please and a, is larger, {a,} divergesto +,
almost as fast as 2"-1 (not quite that fast, since g <2, g <2, -, and Znni_l <2).

A good way to illustrate this with a graph would be to look at aL instead of a.

n



46. If r=0 then g—1 y

The length of the portlon of the
graph of r=06 with 0<0<2T is

L= [, /62 +1d0 =
1 Ino 4 4 OCEPT
=2 P82 +1+Infp+62 +1E[EO =

= T4 +1+iln(2n+ V4T +1).

See graph to the right.

For Exercise 46
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8 16

_ 2\N _ _ 4 _ _ 32
2. If a,= —3 thenal——g,a2—§,a3——§,a4—81,anda5——

243

1 1
'g’ 2n"
infinitely many other sequences that start out that way for the first four terms.

| [

8. Forthe sequence EQ_ % L % it could be that a, = There are of course

14. If a, =4+/n then {a,} divergesto +o.
To insure that 4+/n >M, where M is any positive number, all we need do is have

n >N, where N is any integer for which N > 16 Then if n> N, we will have
M2

N> Js, S0 16n>M2 and 4/n>M.
16. If a,= 32 ;i then {an} converges to %.
To see why, notice that 4n-3 —ﬂ‘ =_2
3n+4 3| 3(3n+4)
To make 3(3317‘14) <e¢g, where ¢ is any positive number, all we need do is have
n >N, where N is any integer for which N > 25578128. Then if n> N, we will have
25 - 12¢ 3 25
n>""gc.  , s0 9ne>25-12¢, 3¢(3n+4)>25, and 3(3n +4) <g

24. If ay ={arctan(2n)} then {a,} converges to 72—1

To make ‘arctan(Zn)— ‘<a where ¢ is any positive number, all we need do is have
n >N, where N is any integer for which N > %tan (g - e). Thenif n> N, we will

have n> %tan(g —s), so 2n >tan(g —s), and arctan(2n) > g - €.
(The last step uses the fact that the arctangent function is strictly increasing.)



38. The curve r=cos(36) has three y
loops during 0 <0< 21, and so does
the curve r =sin(30).

If these two curves intersect with r >0
for both curves or with r <0 for both
curves then we have cos(36) =sin(36),
so tan(36) =1, and 6 must be one of
W12, 51712, 9112 =314, 13112,
17112, or 21112 =7174.

But the points defined by the last three
values of O are duplicates of the ones

defined by the first three values of 0 since
for example 1712 and 131712 differ by 1t
(one-half turn), 3-(1712) and 3:(131712) For Exercise 38
differ by 31 (one and one-half turns), and

thus the sine values for 3:(17/12) and for

3:(131712) are negatives of each other,

as are the cosine values.

Labels are
inside loops

If the graphs of the two curves intersect with the value for r for one graph positive and
the value for r for the other graph negative then cos(30) =-sin(3(0 + 1)), but this
equation is equivalent to cos(36) =sin(308) and therefore leads to no new intersection

points. Of course there are lots of intersections at the origin where the values of 6 for
the two curves need not have any relationship to each other. Since

_+3+1

cos(rr/lZ) = sin(5rr/12) = (write TY12 = TY3 — 174 to see why),
sin(m/12) = cos(5m12) = Vf—; and cos(314)= -sin(3y/4) = —%,
Y

the rectangular coordinates for the intersection points other than the origin are
(cos(1/12)//2, sin(1/12)//2) = (/3 +1)/4, (/3 -1)/4) = A,
(cos(5T/12)/(-=+'2), sin(51/12)/(-+2)) = (-3 +1/4, (-3 -1/4) = B,
(cos(31/4)/~/2, sin(31/4)/~2) = (-1/2,1/2) = C.

See graph above and to the right.

44, If r=e"9 then % =-e 5, y
The length of the portion of the
graphof r=e-® with 0<0<3m is
L= 2T[\/(e—9)2 +(_e—6)2 de =
=P 2e-20 g8 = ["/2 e-08d0 =
= [, V2e 2 do=[ "2e0d8=

= -2 e‘e]g’T =+2(1-e"3n).

See graph to the right. As 8 increases, 0<6=<3m
r=e~-9® decreases dramatically, so only (1, 0) X
the portion with 0 <6 <312 is clearly

For Exercise 44



18. r=2cos(46) has eight loops. y

One loop occurs when —T178 < 6 < 178.
The area inside that loop is

A :ﬂ”fvg T [2cos(46)]2d8 =
T8
—I;Vg/SZ cos2(40)de =
:J'_ng [(1 + cos(86)]d6 =
1. T8
=[o+ 5sin@®)]] =4
See graph to the right.

28. r=sin(20) has four loops for

0 <0< 21 one occurring for each of
0<B<T12, MW2<6<TmM M<O< 3102,
and 31W2<0<2m The second and
fourth loops involve negative values for r,
while the first and third involve positive r values. The circle r =sin@ is traced out twice
for 0 <0< 2m the entire graph occurring in the first and second quadrants. So in
addition to meeting at the origin, the y

two graphs also meet in the interiors of

the first and second quadrants, but the
second quadrant intersection uses a r = sin(26)

fourth quadrant value for 6 for the
graph of r =sin(20).

r=2cos(406)

For Exercise 18

r=sin®

If we solve sin(20) =sinB, orin other
words if we solve 2sinBcos 0 =sin0,
we obtain sin@=0 or cos=1/2, so

in addition to the intersections at the
origin we also have intersections when

0 =13 and when 0 =5173, atthe
points with rectangular coordinates

(3/4,3/4) and (-~3/4,3/4),

For the interval 0 <6 < 1/3, and also
for 51/3 <0 < 2m, the curve closer to
the origin is the circle r =sin®.

For the interval /3 <8 < 172, and also for the interval 3172 < 0 < 5717/3, the curve
closer to the origin is r = sin(20).

r=sin(20) r=sin(20)
For Exercise 28

The first- and the second-quadrant portions have equal areas. Thus the total area is

A= 218”3 L (sin©)2de + 2}32 1 (sin(26))2de) :Ig”ssinzede +I$§sin2(2 8)de =

_ ¢T3 1 -cos(26) W2 1 —cos (46) _f26-sin(26) \] 3 40 -sin(40) w2 _
_Io 2 de+Im3 2 de_( 4 )]o +( 8 )]n/3_
343

=n_
4 16 °



MATHEMATICS 152 98-2 Solutions for Assignment 10
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2.  The area bounded by r = e®, —g <0< g I o2 (e9)2d6 =
w2 1 1 e’"-1 1
I 40 2 €2000 = 29] = Len-e1= aon = 2Sinhm

See graph below and to the left.

6. The area bounded by r =cos(360), - T <ot is A= J’ 12 2 [co s(36)]2d6 =

12 =9= 12
w2 1 Wiz 1
y j w12 2 C0S2(30)dO=[_ ' 7 [1+cos(66)]d6 =
r=e® 12 o1 T 1
B 1 CERTACD) | Wb A EPVE
See graph below and to the right.
y
T
Q=12
r = cos(36)
0:\ ﬂ
X 12
For Exercise 2 For Exercise 6
y

8. r=4(1-cosH) is a cardioid, traced out

once for 0 <0< 2m with enclosed area

A Zj’z"i [4(1 - cos 6)]2d6 =

—J’O "8[1 - 2cos O + cos20]d6 =
_.[0 "[12 - 16c0s 6 + 4cos(26)] d6 =

(0, 4)
r=4(1- cos0)

= [126 - 165in6 + 2sin(26)] | = 247
[ 0
See graph to the right.

For Exercise 8



