Appendix A
BACKGROUND

A.1 Should I read this chapter?

This background chapter is not meant for the instructor but for the
student. It is a mostly informal account of ideas that one needs
to survive an elementary course in analysis. The chapters in the
text itself are more formal and contain actual “mathematics”. This
chapter is about mathematics and should be an easier read.

You may skip around and select those topics that you feel you
really need to read. The section on notation (Section A.2) may be
looked through to be sure that you are familiar with the normal way
of writing up many mathematical ideas such as sets and functions.

The sections on proofs (Sections A.4, A.5, A.6, A.7 and A.8)
should be read if you have never taken any courses that required an
ability to write up a proof. For many students this course on real
analysis is the first exposure to these ideas and you may find these
sections helpful.

A.2 Notation

If you are about to embark on a reading of the text without any
further preliminaries then there is some notation that we should
review.

A.2.1 Set Notation

Sets are just collections of objects. In the beginning we are mostly
interested in sets of real numbers. If the word “set” becomes too
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often repeated you might find that words such as collection, family,
or class are used. Thus a set of sets might become a family of sets.
(One finds such variations in ordinary language, e.g., flock of sheep,
gaggle of geese, pride of lions.)

The statement x € A means that z is one of those numbers
belonging to A. The statement z ¢ A means that = is not one of
those numbers belonging to A. (The stroke through the symbol €
here is a familiar device, even on road signs or no smoking signs.)

Here are some familiar sets and notation. We use

(The empty set) () to represent the set that contains no elements,
the empty set.

(The natural numbers) IN to represent the set of natural num-
bers (positive integers) 1, 2, 3, 4, etc..

(The Integers) Z to represent the set of integers (positive integers,
negative integers and zero).

(The Rational Numbers) Q to represent the set of rational num-
bers, i.e., of all fractions m/n where m and n are integers (and

n #0).
(The Real Numbers) IR to represent all the real numbers.

(Closed Intervals) [a,b] to represent the set of all numbers be-
tween g and b including a and b. We assume that a < b. This
is called the closed interval with endpoints ¢ and b. (Some au-
thors allow the possibility that @ = b in which case [a, b] must
be interpreted as the set containing just the one point a. This
would then be referred to as a degenerate interval. We have
avoided this usage.)

(Open Intervals) (a,b) to represent the set of all numbers between
a and b excluding a and b. This is called the open interval with
endpoints a and b.

(Infinite Intervals) (a,c0) to represent the set of all numbers strictly
greater than a. The symbol oo is not interpreted as a number.
(It might have been better for most students if the notation
had been (a, —) since that conveys the same meaning and the
beginning student would not have presumed that there is some
infinite number called “—” at the extreme right hand “end” of
the real line.)
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The other infinite intervals are (—oo,a), [a,o0), (—o0,a] and
(—00,00) = R.

(Sets as a List) {1,—3,v/7,9} to represent the set containing pre-
cisely the four real numbers 1, —3, v/7, and 9. This is a useful
way of describing a set (when possible): just list the elements
that belong. Note that order does not matter in the world of
sets so the list can be given in any order that one wishes.

(Set Builder Notation) {z : 2 + x < 0} to represent the set of
all numbers z satisfying the inequality z?> + z < 0. (It may
take some time, see Exercise A:2.1, but if you are adept at
inequalities and quadratic equations you can recognize that
this set is exactly the open interval (—1,0).) This is another
useful way of describing a set (when possible): just describe,
by an equation or an inequality, the elements that belong. In
general if C(z) is some kind of assertion about an object z then
{z : C(z)} is the set of all objects z for which C(z) happens
to be true. Other formulations can be used. For example
{r € A: C(z)} describes the set of elements z that belong to
the set A and for which C(z) is true. The example {1/n :
n € IN} illustrates that a set can be obtained by performing
computations on the members of another set.

described that consists of

Subsets, unions, intersection, differences The language of
sets requires some special notation that is, doubtless, familiar. If
you find you need some review take the time to learn this notation
well as it will be used in all of your subsequent mathematics courses.

1. A C B (A is a subset of B), if every element of A is also an
element of B.

2. AN B (the intersection of A and B), is the set consisting of
elements of both sets.

3. AU B (the union of the sets A and B), is the set consisting of
elements of either set.

4. A\ B (the difference! of the sets A and B) is the set consisting
of elements belonging to A but not to B.

"Don’t use A — B for set difference since it suggests subtraction, which is
something else.
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In the text we will need also to form unions and intersections of
large families of sets, not just of two sets. See the exercises for a
development of such ideas.

De Morgan Laws Many manipulations of sets require two or
more operations to be performed together. The simplest cases that
should perhaps be memorized are

A\(BlUBQ) = (A\Bl)ﬂ(A\Bg)
and a symmetrical version

A\ (BiNBy) = (A\B1) U(A\ By).
If you sketch some pictures these two rules become quite evident.

There is nothing special that requires these “laws” to be re-

stricted to two sets By and Bs. Indeed any family of sets {B; : i € I}
taken over any indexing set I must obey the same laws:

A\(UBi>:ﬂ(A\B,~)

i€l el
and
A\ (ﬂ&) =J A\ B)).
el i€l
Here J;c; B; is just the set formed by combining all the elements of

the sets B; into one big set (i.e., forming a large union). Similarly
icr Bi is the set of points that are in all of the sets Bj, i.e., their
common intersection.

Ordered Pairs Given two sets A and B often one needs to discuss
pairs of objects (a,b) with a € A and b € B. The first item of the
pair is from the first set and the second item from the second. Since
order matters here these are called ordered pairs. The set of all
ordered pairs (a,b) with a € A and b € B is denoted

AXx B
and this set is called the Cartesian product of A and B.

Relations Often in mathematics we need to define a relation on
a set S. Elements of S could be related by sharing some common
feature, or could be related by a fact of one being “larger” than
another. For example the statement A C B is a relation on families
of sets and a < b a relation on a set of numbers. Fractions p/q and
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a/b are related if they define the same number; thus we could define
a relation on the collection of all fractions by p/q ~ a/b if pb = qa.

A relation R on a set S then would be some way of deciding
whether the statement xRy (read as z is related to y) is true. If we
look closely at the form of this we see it is completely described by
constructing the set

R = {(z,y) : z is related to y}

of ordered pairs. Thus a relation on a set is not a new concept: it is
merely a collection of ordered pairs. Let R be any set of ordered pairs
of elements of S. Then (z,y) € R and zRy and “z is related to y” can
be given the same meaning. This reduces relations to ordered pairs.
In practice one usually views the relation from whatever perspective
is most intuitive. (For example the order relation on the real line
z < y is technically the same as the set of ordered pairs {(z,y) : z <
y} but hardly anyone thinks about the relation this way.)

A.2.2 Function Notation

Analysis (indeed most of mathematics) is about functions. Do you
recall that in elementary calculus courses you would often discuss
some function such as f(z) = z2+2z+1 in the context of maxima and
minima problems, or derivatives or integrals? The most important
way of understanding a function in the calculus was by means of the
graph: for this function the graph is the set of all pairs (z, z?+z+1)
for real numbers z and often this graph was sketched as a set of points
in two dimensional space.

Definition of a Function What is a function really? Mathe-
maticians noted long ago that the graph of a function carried all the
information needed to describe the function. Indeed, since the graph
is just a set of ordered pairs (z, f(z)), the concept of a function can
be explained entirely within the language of sets without any need
to invent a new concept. Thus the function is the graph and the
graph is a set.

Definition A.1 Let A and B be nonempty sets. A set f of ordered
pairs (a,b) with a € A and b € B is called a function from A to B,
written symbolically as

f:A— B,

provided that to every a € A there is precisely one pair (a,b) in f.
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The notation (a,b) € f is often used in advanced mathematics
but is awkward in expressing ideas in calculus and analysis. Instead
we use the familiar expression f(a) = b. Also when we wish to think
of a function as a graph we normally remind the reader by using the
word “graph”. Thus an analysis or calculus student would expect to
see a question posed like this:

Find a point on the graph of the function f(z) = z2+z+1
where the tangent line is horizontal.

rather than the technically correct, but awkward looking

Let f be the function
f={(z,z*+z+1):z€R}.

Find a point in f where the tangent line is horizontal.

Domain of a Function The set of points A in the definition is
called the domain of the function. It is an essential ingredient of the
definition of any function. It should be considered incorrect to write

Let the function f be defined by f(z) = /z.
Instead one should say

Let the function f be defined with domain [0,00) by

flz) = .

The first assertion is quite sloppy; it requires the reader to guess at
the domain of the function. Calculus courses, however, often make
this requirement leaving it to the student to figure out from a formula
what domain should be assigned to the function. Often we, too, will
require this of the reader.

Range of a Function The set of points B in the definition is
sometimes called the range or co-domain of the function. Most writ-
ers do not like the term range for this, preferring to use the term
range for the set

fA)={f(z):zc A} CB

that consists of the actual output values of the function f, not some
larger set that merely contains all these values.
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One-one and Onto Function If to each element b in the range
of f there is precisely one element a in the domain so that f(a) = b
then f is said to be one-one or injective. We sometimes say, about
the range f(A) of a function, that f maps A onto f(A). If f: A — B
then f would be said to be onto B if B is the range of f, i.e., if for
every b € B there is some a € A so that f(a) = b. A function that
is onto is sometimes said to be surjective. A function that is both
one-one and onto is sometimes said to be bijective.

Inverse of a Function Some functions allow an inverse. If f :
A — B is a function there is, sometimes, a function f~' : B — A
that is the reverse of f in the sense that

f_l(f(a)) =aqaforeveryac A

and
f(f1(b)) =bfor every be B .

Thus f carries a to f(a) and f~! carries f(a) back to a while f~1
carries b to f~1(b) and f carries f~!(b) back to b. This can happen
only if f is one-one and onto B. See the exercises for some practice
on these concepts.

Characteristic Function of a Set Let £ C IR. Then a conve-
nient function for discussing properties of the set E is the function
X defined to be 1 on E and to be 0 at every other point. This
is called the characteristic function of E or, sometimes, indicator
Sfunction.

Composition of Functions Suppose that f and g are two func-
tions. For some values of z it is possible that the application of the
two functions one after another

flg(x))

has a meaning. If so this new value is denoted f o g(z) and the
function is called the composition of f and g. The domain of fog is
the set of all values of z for which g(x) has a meaning and for which
then also f(g(z)) has a meaning, i.e., the domain of f o g is

{z : £ €édom(g) and g(z) €dom(f)}.

Note that the order matters here so f o g and g o f have, usually,
radically different meanings. This is likely one of the earliest ap-
pearances of an operation in elementary mathematics that is not
commutative and which requires special attention by the reader.
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Exercises

A:2.1 This exercise introduces the idea of set equality. The identity X =
Y for sets means that they have identical elements. To prove such an
assertion assume first that x € X is any element. Now show z € Y.
Then assume that y € Y is any element. Now show y € X.

(a) Show that AUB = B if and only if A C B.
(b) Show that AN B = A if and only if A C B.
(¢) Show that (AUB)NC =(ANnC)u(BNC).
(d) Show that (ANB)UC = (AUC)N(BUC).
(e) Show that (AUB)\C =(A\C)U(B\C).
(f) Show that (ANB)\C=(A\C)n(B\ ().
(g) Show that {x € R : 22 + 2 < 0} = (—1,0).

A:2.2 This exercise introduces the notations |J\_, A; and N_, A; for the
union and intersection of the sets Ay, As, ... An:

(a) Describe the sets

N N
U (=1/n,1/n) and ﬂ (=1/n,1/n).

(b) Describe the sets

N N
U (=n,n) and ﬂ (—n,n).

(c¢) Describe the sets
N N
U [n,n + 1] and ﬂ [n,n + 1].
n=1 n=1

A:2.3 This exercise introduces the notations | J;~; A; and (2, A; for the
union and intersection of the sets A;, A, ... .

(a) Describe the sets

U (=1/n,1/n) and () (=1/n,1/n).

(b) Describe the sets

[j (=n,n) and ﬁ (—n,n).

n=1 n=1
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(c) Describe the sets

D [n,n + 1] and ﬁ [n,n + 1].
n=1 n=1

A:2.4 Do you accept any of the following as an adequate definition of the
function f? (The domain is not specified but it is assumed the reader
will try to find a domain that might work.)

(a) f(z) = 1/VI—=.
(b) f(z) = x if z is rational and f(z) = —=z if z is irrational.

(¢) f(z) = 1if x contains a 9 in its decimal expansion and f(z) = 0
if not.

(d) f(z) =1if z contains a 7 in its decimal expansion and f(z) =0
if not.

(e) f(z)=1if z is a prime number and f(z) = 0 if it is not.
A:2.5 This exercise promotes the use of the terms mapping in the study
of functions. If f: X - Y and F C X then
f(B)={y:f(zx)=yforsomez € E}CY

is called the image of E under f and we say f maps E to the set
f(E).

(a) Let f: R — IR. Give an example of sets A, B so that f(AN

B) # f(A)N f(B).
(b) Would f(AU B) = f(A) U f(B) be true in general?
(c¢) Find a function f: IR — IR so that f([0,1]) = {1,2}.

A:2.6 This exercise concerns the notion of one-one function (i.e., injective
function):

(a) Show that f : IR — IR is one-one if and only if f(AN B) =
f(A) N f(B) for all sets A, B.
(b) Show that f : R — IR is one-one if and only if f(ANB) =0
for all sets A, B with AN B = 0.
A:2.7 This exercise concerns the notion of preimage. If f : X — Y and
E CY then
FUB)={z: f(z) =y forsomeye E}C X
is called the preimage of F under f. (There may or may not be
an inverse function here; f~!(E) has a meaning even if there is no
inverse function.)
(a) Show that f(f '(E)) C E for every set E C R.
(b) Show that f~1(f(E)) D E for every set E C R.
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(c) Can you simplify f (AU B) and f~1(AN B)?

(d) Show that f : R — IR is one-one if and only if f~!({b}) con-
tains at most a single point for any b € IR.

(e) Show that f: R — IR is onto (i.e., the range of f is all of IR)
if and only if f(f~(E)) = E for every set E C IR.
A:2.8 This exercise concerns the notion of composition of functions:

(a) Give examples to show that f o g and g o f are distinct.
(b) Give an example in which f o g and g o f are not distinct.

(¢) While composition is not commutative, is it associative, i.e., is
it true that

(fog)oh=fo(goh)?
(d) Give several examples of functions f for which fo f = f.

A:2.9 This exercise concerns the notion of onto function (i.e., surjective
function): Which of the following functions map [0, 1] onto [0, 1]?

(a) f(z) ==z

(b) f(z) =2

(¢) flz) =2’

(d) f(2) =2z - 3l
(e) f(z) =sinmx
(f) f(z) =sinz

A:2.10 This exercise concerns the notion of one-one and onto function
(i.e., bijective function):

(a) Which of the functions of Exercise A:2.9 is a bijection of [0, 1]
to [0,1]7

(b) Is the function f(z) = z? a bijection of [-1,1] to [0,1]?

(c¢) Find a linear bijection of [0, 1] onto the interval [3,6].

(d)

(e) Find a bijection of IN onto Z.

Find a bijection of [0, 1] onto the interval [3, 6] that is not linear.

A:2.11 This exercise concerns the notion of inverse functions: for each of
the functions of Exercise A:2.9 select an interval [a, b] on which that
function has an inverse and find an explicit formula for the inverse
function. Be sure to state the domain of the inverse function.

A:2.12 This exercise concerns the notion of an equivalence relation. A
relation x ~ y on a set S is said to be an equivalence relation if

(a) z~zforalzes.
(b) = ~y implies that y ~ z.
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(¢c) z ~y and y ~ z imply that z ~ z.

(a) Show that the relation p/q ~ a/b if pb = qa defined in the text
on the collection of fractions is an equivalence relation.

(b) Define a relation on the collection of fractions that satisfies two
of the requirements of an equivalence relation but is not an
equivalence relation.

(c) Define nontrivial equivalence relations on the sets IN and Z.

A:2.13 Set builder notation can be used to “describe” some curious sets.
For example
S1 ={S:S5is aset}.
This has the peculiar property that S; € S;. (That is similar to
joining a club where you find the club appearing on the membership
list as a member of itself!) Worse yet is
Se={S:Sisasetand S ¢ S}.

This has the paradoxical property that if So € S2 then Ss € S2 while
if So € S5 then Sy € Sy. Any thoughts?

A.3 What is Analysis?

The term “analysis” now covers very large parts of mathematics.
One pretty well needs to be a professional mathematician to under-
stand what it might mean.

For a course at this level, though, “real analysis” mostly refers
to the subject matter that you have already learned in your calculus
courses: limits, continuity, derivatives, integrals, sequences, and se-
ries. The calculus as a subject can be thought of as an eighteenth cen-
tury development, analysis as a nineteenth century creation. None
of the ideas of the calculus rested on very firm foundation and the
lack of foundations proved a barrier to further progress. There was
much criticism by mathematicians and philosophers of the funda-
mental ideas of the calculus (limits especially) and often when new
and controversial methods were proposed (such as Fourier series) the
mathematicians of the time could not agree on whether they were
valid.

In the first decades of the nineteenth century the foundations of
the subject were reworked, most notably by Cauchy (whose name will
appear very frequently in this text), and new and powerful methods
developed. It is this that we are studying here.

We will look once again at notions of sequence limit, function
limit, etc. that we have seen before in our calculus classes, but now
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from a more rigorous point of view. We want to know precisely
what they mean and how to prove the validity of the techniques of
the subject.

At first sight the student might wonder about this. Are we just
reviewing our calculus but now we do not get to skip over the details
of proofs? If, however, you persist you will see that we are entering
instead a very new and different world. By looking closely at the
details of why certain things work we gain a new insight. More than
that we can do new things, things that could not have been imagined
at a mere calculus level.

A.4 Why Proofs?

Can’t we just do mathematics without proofs? Certainly there are
many applications of mathematics carried on by people unable or
unwilling to attempt proofs. But at the very heart and soul of
mathematics is the proof, the careful argument that shows that a
statement is true.

Compare this with the natural sciences. The advancement of
knowledge in those subjects rests on the experiment. No scientist
considers very seriously whether students can skip over experimen-
tal work and just learn the result. At the very core of all scientific
discovery is the experimental method. It is too central to the disci-
pline to be removed. It is the reason for the monumental success of
the subject.

Mathematicians feel the same way about proofs. One can, with
imagination and insight, make reasonable conjectures. But one can’t
be sure a conjecture is true until one proves it. The history of math-
ematics is filled with plausible (but false) statements made by math-
ematicians, even famous ones.

Proofs are an essential part of the subject. If you can master the
art of reading and writing proofs you enter properly into the subject.
If not you remain forever on the periphery looking in, a spectator
able to learn some superficial facts about mathematics, but unable
to do mathematics.

What is a Proof Mathematicians are always prepared to define
exactly what everything in their subject means. Certainly it is pos-
sible to define exactly what constitutes a proof. But that is best left
to a course in logic.
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For a course in analysis just understand that a proof is a short or
long sequence of arguments meant to convince us that some state-
ment is true. You will understand what a proof is after you have
read some proofs and find that you do in fact follow the argument.

A proof is always intended for a specific audience. Proofs in this
text are intended for readers who have some experience in calculus
and good reasoning skills, but little experience in analysis. Proofs
in more advanced texts would be much shorter and have less moti-
vation. Proofs in professional research journals, intended for other
professional mathematicians, can be very terse and mysterious in-
deed.

Traditionally courses in analysis do not start with much of a
discussion of proofs even though the students will be expected to
produce proofs of their own, perhaps for the first time in their career.
The best advice may be merely to jump in. Start studying the proofs
in the text, the proofs given in lectures, the proofs attempted by
your fellow students. Try to write them yourself. Read a proof,
understand its main ideas and then attempt to write the argument
up in your own words.

How to Read a Proof While a proof may look like a short story
it is often much harder to read than one. Usually some of the com-
putations will not seem clear and you will have to figure out how
they were done. Some of the arguments (this is true and hence that
is true) will not be immediate, but will require some thinking. Many
of the steps will appear completely strange and it will seem that the
proof is going off in a weird direction that is entirely mysterious.

Basically you must unravel the proof. Find out what the main
ideas are and the various steps of the proof.

One important piece of advice while reading a proof: try to re-
member what it is that has to be proved. Before reading the proof
decide what it is that must be proved exactly. Ask yourself “what
would I have to show to prove that?”

How to Write a Proof Practice! One learns to write proofs by
writing proofs. Start off by just copying nearly word for word a proof
in a text that you find interesting. Vary the wording to use your own
phrases. Write out the proof using more steps and more details than
you found in the original. Try to find a different proof of the same
statement and write out your new proof. Try to change the order
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of the argument if it is possible. If it is not possible you’ll soon see
why.
We all have learned the art of proof by imitation at first.

A.5 Indirect Proof

Many proofs in analysis are achieved as indirect proofs. This refers
to a very specific method.

The method argues as follows. I wish to prove a statement P is
true. Either P is true or else P is false, not both. If I suppose P is
false perhaps I can prove that then something entirely unbelievable
must be true. Since that unbelievable something is not true it follows
that it cannot be the case that P is false. Therefore P is true.

The method appears in the classical subject of rhetoric under the
label reductio ab absurdam (I reduce to the absurd).

Ladies and gentlemen my worthy opponent claims P but
I claim the opposite, namely Q . Suppose his claim were
valid. Then ... and then ... and that would mean ... .
But that’s ridiculous so his claim is false and my claim
must be true.

The pattern of all indirect proofs (also known as “proofs by con-
tradiction”) follows this structure. We wish to prove statement P
is true. Suppose, in order to obtain a contradiction, that P is false.
This would imply the following statements. [Statements follow.] But
this is impossible. It follows that P is true as we were required to
prove.

Here is a simple example. Suppose we wish to prove that

For all positive numbers z, the fraction 1/z is also posi-
tive.

An indirect proof would go like this.
Proof. Suppose the statement is false. Then there is a positive
number z and yet 1/z is not positive. This means

Lo
x

Since z is positive we can multiply both sides of the inequality by z
and the inequality sign is preserved (this is a property of inequalities
that we learned in elementary school and so we need not explain it).
Thus

1
rx —<zx0
X
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or

1<0.
This is impossible. From this contradiction it follows that the state-
ment must be true. |

Indirect proofs are wonderfully useful and will be found through-
out analysis. In some ways, however, they can be unsatisfying. After
the statement “suppose not” the proof enters a fantasy world where
all manipulations work towards producing a contradiction. None of
the statements that you make along the way to this contradiction is
necessarily of much interest because it is based on a false premise.
In a direct proof, on the other hand, every statement you make is
true and may be interesting on its own, not just as a tool to prove
the theorem you are working on.

Also indirect proofs reside inside a logical system where any state-
ment not true is false and any statement not false is true. Some peo-
ple have argued that we might wish to live in a mathematical world
where, even though you have proved that something is not false, you
have still not succeeded in proving that it is true.

Exercises
A:5.1 Show that /2 is irrational by giving an indirect proof.

A:5.2 Show that there are infinitely many prime numbers.

A.6 Contraposition

The most common mathematical assertions that we wish to prove
can be written symbolically as

P=qQ

which we read aloud as “statement P implies statement Q ”. The
real meaning attached to this is simply that if statement P is true
then statement Q is true.

A moments reflection about the meaning shows that the two
versions

If P is true, then Q must be true.
and

If Q is false, then P must be false.
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are identical in meaning. These are called contrapositives of each
other. Any statement

P=Q
has a contrapositive
not Q =not P .
To prove a statement it is sometimes better to prove the contrapos-
itive.
Here is a simple example. Suppose, as calculus students we were
required to prove that

Suppose that fol f(x)dx # 0. Then there must be a point
& € 10,1] such that f(&) # 0.

At first sight it might seem hard to think of how we are going
to find that point £ € [0,1] from such little information. But let us
instead prove the contrapositive. The contrapositive would say that
if there is no point ¢ € [0, 1] such that f(£) # 0 then it would not

be true that fol f(z)dz # 0. Let’s get rid of the double negatives.
Restating this, now, we see that the contrapositive says that if f(§) =

0 for every ¢ € [0, 1] then fol f(z)dz = 0. Even the C- students (none
of whom are reading this book) would have now been able to proceed.

Exercises

A:6.1 Prove the following assertion by contraposition: If z is irrational
then x + r is irrational for all rational numbers r.

A.7 Counterexamples

The polynomial

p(z) =2+ 2+ 17
has an interesting feature: it generates prime numbers for some time.
For example p(1) = 19, p(2) = 23, p(3) = 29, p(4) = 37 are all prime.
More examples can be checked. After many more computations we
would be tempted to make the claim

For every integer n = 1, 2, 3, ... the value n? + n+17is
prime.

To prove that this is true (if indeed it is true) we would be re-
quired to show for any n, no matter what, that the value n? 4+ n+ 17
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is prime. What would it take to disprove the statement, i.e., to show
that it is false?

All it would take is one instance where the statement fails. Only
one! In fact there are many instances. It is enough to give one of
them. Take n = 17 and observe that

172 +174+17=17(1T4+1+1) =17-19

which is certainly not prime. This one example is enough to prove
that the statement is false. We refer to this as a proof by counterex-
ample.

The Converse In analysis we shall often need to invent coun-
terexamples. One frequent situation that occurs is the following.
Suppose that we have just completed, successfully, the proof of a
theorem expressed symbolically as

P=Q.
A natural question is whether the converse is also true. The converse
is the opposite implication

Q=P

Indeed once we have proved any theorem it is nearly routine to ask
if the converse is true. Many converses are false and a proof usually
consists in looking for a counterexample.

For example in calculus courses (and here too in analysis courses)
it is shown that every differentiable function is continuous. FEx-
pressed as an implication it looks like this:

f is differentiable = f is continuous
and, hence, the converse statement is
f is continuous = f is differentiable.

Is the converse true? If it is then it, too, should be proved. If it is
false then a counterexample must be found. To prove it false we need
supply just one function that is continuous and yet not differentiable.
The reader may remember that the function f(z) = |z| is continuous
and yet not differentiable since at the point 0 there is no derivative.

Exercises

A:7.1 Disprove this statement: For any natural number n the equation
422 +  —n = 0 has no rational root.

A:7.2 Every prime greater than two is odd. Is the converse true?
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A:7.3 State both the converse and the contrapositive of the assertion “ev-
ery differentiable function is continuous”. Is there a difference be-
tween them? Are they both true?

A.8 Induction

There is a convenient formula for the sum of the first n natural
numbers:
n(n + 1)

5 .

An easy direct proof of this would go as follows. Let S be the
sum so that

14243+...(n—1)+n=

S=14243+...(n—-1)+n
or, expressed in the other order
S=n+n-1)+n-3)+---+2+1
Adding these two equations gives
2S=mn+1)+n+1)+n+1)+---+(n+1)+(n+1)
and hence
28 =n(n+1)

or
g n(n + 1)
2
which is the formula we require.

Suppose instead that we had been unable to construct this proof.
Lacking any better ideas we could just test it out for n =1, n = 2,
n =3, ... for as long as we had the patience. Eventually we might
run into a counterexample (proving the theorem is false) or have an
inspiration as to why it is true. Well indeed we find

1(141)

2
2(2 + 1)
2

3(3+1
1+42+3= 7( ;— )
and we could go on for quite some time. On a computer we could
very rapidly check for several million values, each time finding that
the formula is valid.
Is this a proof? If a formula works this well for untold millions of

values of n how can we conceive that it is false? We would certainly

1+2=
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have strong emotional reasons for believing the formula if we have
checked it for this many different values but this would not be a
mathematical proof.

Instead there is a proof that, at first sight, seems to be just a
matter of checking many times. Suppose that the formula does fail
for some value of n. Then there must be a first occurrence of the
failure, say for some integer N. We know N # 1 (since we already
checked that) and so the previous integer N — 1 does allow a valid
formula. It is the next one N that fails. But if we can show that
this never happens, i.e., there is never a situation with N — 1 valid
and N invalid, then we will have proved our formula.

For example here, if the formula

M(M +1
1+2+3+...M:%
is valid, then
M(M +1
1+2+3+...M+(M+1):%+(M+1)

MM+1)+2(M+1) (M+1)(M+2)
2 2
which is indeed the correct formula for n = M + 1. Thus there never
can be a situation in which the formula is correct at some stage and
fails at the very next stage. It follows that the formula is always
true. This is a proof by induction.
This may be used to try to prove any statement about an integer

n. Here are the steps:

Step 1 Verify the statement for n = 1.

Step 2 (The induction step) Show that whenever the statement is
true for any positive integer m it is necessarily also true for the
next integer m + 1.

Step 3 Claim that the formula holds for all n by the principle of
induction.

In the exercises you are asked for induction proofs of various
statements. You might try too to give direct (noninductive) proofs.
Which method do you prefer?

Exercises

A:8.1 Prove by induction that for every n =1,2,3, ...,
2 nn+1)2n+1)

124+22+32+...n 5
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A:8.2 Compute for n =1, 2, 3, 4 and 5 the value of
1+34+5+---+(2n—1).
This should be enough values to suggest a correct formula. Verify it
by induction.
A:8.3 Prove by induction for every n =1,2,3,..., that the number
™ —4"
is divisible by 3.
A:8.4 Prove by induction that for every n =1,2,3,...,
14+z2)">1+nz
for any = > 0.
A:8.5 Prove by induction that for every n =1,2,3,...,
1—pntl
l+r+r? 4+ 4" ="——
1—7r
for any real number r # 1.
A:8.6 Prove by induction for every n =1,2,3,..., that
BP+22 4334+ 4n®=1+24+3+---+n)
A:8.7 Prove by induction that for every n =1,2,3,...,
a .,
A:8.8 Show that the following two principles are equivalent, i.e., assuming
the validity of either one of the them prove the other.

— e2w+n log 2 .

(Principle of Induction) Let S C IN such that 1 € S
and for all integers n if n € S then so also is n + 1. Then
S =1N.

and

(Well Ordering of IN) If S C IN and S # ) then S has
a first element (i.e., a minimal element).

A:8.9 Criticize the following “proof”.

(Birds of a feather flock together) Any collection of n birds must
be all of the same species.

Proof: This is certainly true if n = 1. Suppose it is true for some
value n. Take a collection of n + 1 birds. Remove one bird and keep
him in your hand. The remaining birds are all of the same species.
What about the one in your hand? Take a different one out and
replace the one in your hand. Since he now is in a collection of n
birds he must be the same species too. Thus all birds in the collection
of n + 1 birds are of the same species. The statement is now proved
by induction.



496 Appendix A. Background

A.9 Quantifiers

In all of mathematics and certainly in all of analysis the student will
encounter two phrases used repeatedly:

For all ... it is true that ...
and
There exists a ... so that it is true that ...

For example the formula (z + 1)? = 2% + 2z + 1 is true for all real
numbers z. There is a real number z such that z2 +2z+1 =0
(indeed z = —1).

It is extremely useful to have a symbolic way of writing this. It
is universal for mathematicians of all languages to use the symbol ¥
to indicate “for all” or “for every” and to use

3 to indicate “there exists”. Originally these were chosen since it
was easy enough for typesetters to turn the characters “A” and “E”
around or upside down. These are called by the logicians quantifiers
since they answer (vaguely) the question “how many?”. For how
many z is it true that (z + 1) = z2 + 2z + 1? For all real z. In
symbols

VeeR, (x+1)?=22+2z+1.

For how many z is it true that 2 + 2z +1 = 0? Not many, but there
do exist numbers z for which this is true. In symbols

Jz€R, 22 +2x+1=0.

It is important to become familiar with statements involving one
or more quantifiers whether symbolically expressed using V and 3 or
merely using the phrases “for all” and “there exists”. The exercises
give some practice. You will certainly gain more familiarity by the
time you are deeply into an analysis course in any case.

Negations of quantified statements Here is a tip that helps in
forming negatives of assertions involving quantifiers. The two quan-
tifiers V and 3 are complementary in a certain sense. The negation
of the statement “all birds fly” would be (in conventional language)
“some bird does not fly”. More formally the negation of

For all birds b, b flies.

would be
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There exists a bird b, b does not fly.

In symbols let B be the set of all birds. Then the form here is
Vb € B “statement about b” is true

and the negation of this is
Jb € B “statement about b” is NOT true

This allows a simple device for forming negatives. The negation
of a statement with V is a statement with 3 replacing it, and the
negation of a statement with 3 is a statement with V replacing it.
For a complicated example what is the negation of the statement

Jda€e A, Vbe B, Vce C
“statement about a, b and ¢” is true

even without assigning any meaning? It would be

VYa€e A, dbe B, dc € C,
“statement about a, b and ¢” is NOT true.

Exercises

A:9.1 Let IR be as usual the set of all real numbers. Express in words
what these statements mean and determine whether they are true or
not. Do not give proofs just decide on the meaning and whether you
think they are valid or not.

(a) Vz e R,z > 0.
(b) Iz e R,z > 0.
(c) Vz e R,z% > 0.

(d) Ve R,Vye R,z +y=1.

(¢) VeR,IyeR,z+y=1.

) IzeR,Vye R,z +y=1.

(g) xeR,eR,z+y=1.

(h) etc
A:9.2 Form the negations of each of the statements in the preceding ex-

ercise. If you decided that a statement was true (false) before, you
should naturally now agree that the negative is false (true).

A:9.3 Explain what must be done in order to prove an assertion of the
following form:
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(a) Vs € S “statement about s” is true
(b) ds € S “statement about s” is true
Now explain what must be done in order to disprove such assertions.

A:9.4 In the preceding exercise suppose that S = §. Could either state-
ment be true? Must either statement be true?



