Chapter 9

SEQUENCES AND
SERIES OF FUNCTIONS

9.1 Introduction

We have seen that a function f that is the sum of two or more
functions will share certain desirable properties with those functions.
For example, our study of continuity, differentiation and integration
allows us to state that if

f=ht+fot-+fa
on an interval I = [a,b], then:

(1) If f1, f2,... , fn are continuous on I, so is f.

(2) If f1, fa,... , fn are differentiable on I, so is f, and
ffl=f+f+-+ 1
(3) If f1, f2,..., fn are integrable on I, so is f, and

/abf(:v) dm:/abfl(x) d:z:-l—/abe(a:) d$+"'+/abfn(:v) da.

It is natural to ask whether the corresponding results hold when f
is the sum of an infinite series of functions,

F=> fr
k=0

If each term of the series is continuous, is the sum function also
continuous? Can the derivative be obtained by summing the deriva-
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tives? Can the integral be obtained by summing the integrals? We
study such questions in this chapter.

These problems are of considerable practical importance. For
example if we are allowed to take limits, integrate and differentiate
freely then the computations in the following example would all be
valid.

Example 9.1 From the formula for the sum of a geometric series

we know that
1 2_ 3. ,4_ 5
H—$—1—$+m —z 4zt -z +... (1)
on the interval (—1,1). Differentiation of both sides of (1) leads
immediately to
—1
(1+2)?
Repeated differentiation would give formulas for (1 4+ z) " for all
positive integers n.
On the other hand integration of both sides of (1) from 0 to ¢
leads immediately to

= 1422 -3z +423 -5z +....

1 1 1 1

In(l+¢)=t—t+-t*— >+ t*— ...

n(l +1) 5 + 3 1 + =

Taking limits as ¢t — 1 in the latter yields the intriguing formula for
the sum of the alternating harmonic series:

1 1 1 1
M2=1-=4--=f2—. .
n 57371753

<

The conclusions in the example are all true and useful. But have
we used illegitimate means to find them? If we use such methods
freely might we find situations where our conclusions are very wrong?

We first formulate our questions in the language of sequences of
functions (rather than series). We do this in Section 9.2, where we
see that the answer to our questions is “not necessarily”. Then in
Sections 9.3-9.6 we see that if we require a bit more of convergence,
the answer to each of our questions is “yes”.

9.2 Pointwise Limits

Suppose f1, fo, f3,... is a sequence of functions, each of which is
defined on a common domain D. What should we mean by the
sum f =3 12, f? Perhaps the simplest notion for the sum is to
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extend the definition of finite sum using our familiar interpretation of
convergence of an infinite series of numbers as a limit of the sequence
of partial sums. We consider this idea first.

Definition 9.2 For each z in D and n € IN let

Sn(z) = fi(z) + - + fu(z).
If limy, 00 Sp () exists (as a real number), we say the series > 7° f
converges at © and we write Y ° fr(z) for lim, oo Sp(z). If the

series Y 1° fr(z) converges for all z € D, we say the series converges
pointwise on D to the function f = Y 7° fi defined by

n

fl@) =) filz) (= lim > fi(x)).
1

n—00
k=1

We would like such infinite sums of functions to behave like finite
sums of functions (as our three questions in Section 9.1 suggest): If
f =27 fx on an interval I = [a, b], is it true that

(1) If fx is continuous on I for all £ € IN, then so is f7

(2) If fi is differentiable on I for all £ € IN, then so is f and
o
@) =) fil2)?
1
(3) If fr is integrable on I for all k£ € IN, then so is f, and

[ 1@ dxzf:f/abfk(x) dr?

Let us reformulate our questions in the language of sequences.

Definition 9.3 Let {f,} be a sequence of functions defined on a
common domain D. If lim,_, fr(z) exists (as a real number) for
all x € D, we say that the sequence {f,} converges pointwise on D.
This limit defines a function f on D by the equation

flz) = liVILn fn(z).
We write lim,, f, = f or f, — f.

Our questions then become (for D an interval I = [a,b]): Is it
true that

1. if f,, is continuous on I for all n, then f is continuous on I 7
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Figure 9.1: Graphs of 2" on [0,1] for n =1, 2, 3, 4.

2. if f,, is differentiable on I for all n, then f is differentiable on
I and f' = lim, f] ?

3. if f, is integrable on I for all n, then f is integrable on I and
b . b
[, f(z) dz =1lim, [} fr () dz?

These questions have negative answers in general, as the three
examples that follow show.

Example 9.4 (A discontinuous limit of continuous functions)
For each n € IN and z € [0,1], let f,(z) = z™. Each of the functions
is continuous on [0,1]. Notice, however, that for each z € (0,1),
lim,, fp(z) = 0 and yet lim, f,(1) = 0. This is easy to see, but it
is instructive to check the details since we can use them later to see
what is going wrong in this example. At the right hand endpoint it
is clear that, for x = 1, lim,, f,(z) = 1. For 0 < 9 < 1 and ¢ > 0,
let N >1Ine/Inzg. Then (zy)V <¢, so for n > N

| frn(zo) — 0] = (z0)" < (.T())N <e.

Thus
0 ifo<zx<l1

f(2) = lim fu(z) = { 1 ifz=1,
so the pointwise limit f of the sequence of continuous functions { f, }
is discontinuous at x = 1. (Figure 9.1 shows the graphs of the first
few functions of the sequence.) <

Example 9.5 (The derivative of the limit is not the limit of
the derivative.) Let f,(z) = 2"/n. Then f, — 0 on [0,1]. Now
fl(z) = 2™ 1, so by the previous example, Example 9.4,

_ 0 ifo<z<1
. ! _n—1 __ -~
lim fn(z) = @ _{ 1 ifzr=1,
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2n

=
=

Figure 9.2: Graph of f,(z) on [0,1].

while the derivative of the limit function, f = 0, equals zero on [0, 1].
Thus
i d
00 da
at x = 1. |

(ale)) # 2 (lim fula))

n—00

Example 9.6 (The integral of the limit is not the limit of the
integrals.) In this example we consider a sequence of continuous
functions, each of which has the same integral over the domain. For
each n € IN let f,, be defined on [0, 1] as follows: f,(0) =0, f,(1/2) =
2n, fn(1/n) =0, fy is linear on [0,1/(2n)] and on [1/(2n),1/n], and
fn=0o0n [1/n,1]. (See Figure 9.2.)

It is easy to verify that f, — 0 on [0,1]. (For z =0, f,(z) = 0 for
all n, while for each z, 0 < z < 1, there exists N such that 1/N < z,
so fn(z) =0 for alln > N.)

Now, for each n € IN, fol fn(z) dz = 1. But

1 1
/0 (hénfn(w)) dr = /0 0dz = 0.
Thus ) .
lirrln/0 fn(x) dz # /0 liranfn(w) dz.
<

These examples show that the answer to each of our three ques-
tions is negative, in general. We present some additional examples
that illustrate similar phenomena in the exercises.

We shall see in the next few sections that by replacing pointwise
convergence with a stronger form of convergence, the answers to our
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questions become affirmative. The form of convergence in question
is called uniform convergence.

Interchange of Limit Operations Before turning to uniform
convergence, let us first try to get an insight into a difficulty one
must overcome if one wishes affirmative answers to our questions.
To say f is continuous at zo means that lim,_,, f(z) = f(zo).
If f = lim, f,, continuity of f at z(y means
lim (lim fp(z)) = lim (lim f,(x)).

=T N—00 n—00 T—To

Thus, two limit operations are required, and to assert that f is con-
tinuous requires us to know that the order of passing to the limits is
immaterial.

The reader will remember situations in which two limit opera-
tions are involved and the order of taking the limit does not affect
the result. For example, in elementary calculus one finds conditions
under which the value of a double integral can be obtained by iterat-
ing “single integrals” in either order. By way of contrast, we present
an example in the setting of double sequences in which the order of
taking limits 4s important.

Example 9.7 In this example we illustrate that an interchange of
limit operations may not give a correct result. Let

g _ 0, fm<n
mr 1, ifmo>n.

Viewed as a matrix,

= = O
o= ]
[en i en R an]

Smn =

For each row m, we have lim, o Sy = 0, so

lim (lim Sy,,) =0.
m—0o0 N—0o0

On the other hand, for each column n, lim,, o Spmn = 1, S0

lim ( lim Sp,,)=1.

n—00 M—>00
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Exercises

9:2.1 Examine the pointwise limiting behavior of the sequence of functions
fn(@)

9:2.2 Show that the logarithm function can be expressed as the pointwise
limit of a sequence of “simpler” functions,

Inz = lim n ({/z —1)
n— oo

for every point in its domain. If the answer to our three questions
for this particular limit is affirmative what can you say about the
continuity of the logarithm function? What would be its derivative?

What would be [ Inzdz?

xn
T 14gn’

9:2.3¢) Let x1,x,... be an enumeration of Q, let

1, fze{m,...,zn}
(o) = { 0, otherwise,

and let
|1, ifzeqQ
fla) = { 0, otherwise.

Show that f, — f pointwise on [0, 1], but fol fn (z) dz = 0 for all
n € IN, while f is not integrable on [0, 1].
9:2.4 Let fp(z) = sinnz/y/n. Show that lim,, f, = 0 but lim,, f},(0) = oco.

9:2.5 Each of Examples 9.4, 9.5 and 9.6 can be interpreted as a statement
that the order of taking the limit operation does matter. Verify this.

9:2.6 Refer to Example 9.7. What should one mean by the statement that
a “double sequence” {tnn} converges, i.e., that

lim tmn
m—00,N—00

exists)? Does the double sequence {S,,,} of Example 9.7 converge?
If so, what is its limit?

9:2.7 Let f, — f pointwise at every point in the interval [a,b]. We have
seen that even if each f, is continuous it does not follow that f is
continuous. Are any of the following statements true?

(a) If each f, is increasing on [a, b] then so is f.

) If each f,, is nondecreasing on [a, b] then so is f.

) If each f, is bounded on [a,b] then so is f.

(d) If each f, is everywhere discontinuous on [a, b] then so is f.

) If each f, is constant on [a,b] then so is f.

)

If each f,, is positive on [a, ] then so is f.
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(g) If each f, is linear on [a,b] then so is f.

(h) If each f, is convex on [a,b] then so is f.

9:2.8 If f,, — f pointwise at every real number then prove that

[ ol e o lNe o)

{z:f@>at=J U N{z: fal®) > a+1/m}.

m=1r=1n=r

9:2.9 Let {f,} be a sequence of real functions. Show that the set E of
points of convergence of the sequence can be written in the form

k=1 N=1n=N m=N

9.3 Uniform Limits

Pointwise limits do not allow the interchange of limit operations.
Generally uniform limits will. To see how the definition of a uniform
limit needs to be formulated let us return to the sequence of Exam-
ple 9.4. That sequence illustrated the fact that a pointwise limit of
continuous functions need not be continuous. The difficulty there
was that
lim ( lim fn(x)> £ lim ( lim fn(x)> .
z—1— \n—o00 n—oo \z—1—

A closer look at the limits involved here shows what went wrong and
suggests what we need to look for in order to allow an interchange
of limits.

Example 9.8 Consider once again the sequence {f,} of functions
fn(z) = z™. We saw that f, — 0 pointwise on [0, 1), and that for
every fixed g € (0,1) and € > 0,

|zo|™ < e if and only if n > Ine/Inxzy.

Now fix € but let the point zy vary. Observe that when z is relatively
small in comparison with ¢, the number Inzg is large in absolute
value compared with Ine, so relatively small values of n suffice for
the inequality |zo|™ < €. On the other hand, when z( is near 1, Inz
is very small in absolute value, so Ine/Inzy will be very large. In
fact,

1
lim — = 0. (2)

ro—1— In o

The table below illustrates how large n must be before |zf}| < €
for e = .1.
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[

Figure 9.3: The sequence {z"} converges infinitely slowly on [0, 1].

o n

1 1

D 4

9 22

.99 230
.999 2,302
19999 | 23,025

Note that For ¢ = .1, there is no single value of N such that
|zo|™ < € for every value of zy € (0,1) and n > N. (Figure 9.3
illustrates this.) <

Some 19th century mathematicians would have described the
varying rates of convergence in the example by saying' that
“the sequence {z"} converges infinitely slowly on (0,1)”.

Today we would say that this sequence, which does converge point-
wise, does not converge uniformly. Our definition is formulated pre-
cisely to avoid this possibility of infinitely slow convergence.

Definition 9.9 Let {f,} be a sequence of functions defined on a
common domain D. We say that {f,} converges uniformly to a
function f on D if, for every € > 0 there exists N € IN such that

|fn(z) — f(z)|<e foralln > N and z € D.
We write
fn — f [unif] on D or lim, f, = f [unif] on D

to indicate that the sequence {f,} converges uniformly to f on D. If
the domain D is understood from the context, we may delete explicit
reference to D and write

'T. Hawkins, Lebesque’s Theory of Integration, Chelsea Publishing Co.,(1979),
pp 21-23.
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frn = f [unif] or lim,, f, = f [unif].

Uniform convergence plays an important role in many parts of
analysis. In particular, it figures in questions involving the inter-
changing of limit processes such as those we discussed in Section 9.2.
This was not apparent to mathematicians in the early part of the
19th century. As late as 1823, Cauchy believed a convergent series
of continuous functions could be integrated term-by-term. Similarly,
Cauchy believed that a convergent series of continuous functions has
a continuous sum. Abel provided a counterexample in 1826. It may
have been Weierstrass who first recognized the importance of uni-
form convergence in the middle of the 19th century.?

Example 9.10 Let f,(z) =z", D =[0,7], 0 <n < 1. We observed
that the sequence {f,} converges pointwise, but not uniformly, on
(0,1) (or on [0,1]). We realized that the difficulty arises from the
fact that the convergence near 1 is very ‘slow’. But for any fixed 5
with 0 < n < 1, the convergence is uniform on [0, 7).

To see this, observe that for 0 < 2y < 71, 0 < (z¢)" < ™. Let
e > 0. Since limy, n” = 0, there exists N such that if n > N, then
0 <n™ <e. Thus, if n > N, we have

0<zj<n"<e,
so the same N that works for z = 7, also works for all z € [0, ).
<4

Suppose that f, — fon [0, 1]. It follows easily from the definition
that the convergence is uniform on any finite subset D of [0,1] (Ex-
ercise 9:3.3). Thus given any € > 0 and any finite set x1,z2,...,Zn
in [0,1], we can find n € IN such that

|fn (i) — flai)| <e

foralln > N and all 1 = 1,2,...,m. (Figure 9.4 illustrates this.)

The vertical line segments over the points x1, ..., z,, are centered
on the graph of f, and are of length 2¢. In simple geometric language,
we can go sufficiently far out in the sequence to guarantee that the
graphs of all the functions f, intersect all of these finitely many
vertical segments.

In contrast, uniform convergence on [0, 1] requires that we can
go sufficiently far out in the sequence to guarantee that the graphs
of the functions go through such vertical segments at all points of

*More on the history of uniform convergence can be found in Thomas Hawkins’
interesting historical book Lebesgue’s Theory of Integration, Chelsea Publishing
Co.,(1975).
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fn

Figure 9.4: Uniform convergence on the finite set {z1, z2,z3}.

Figure 9.5: Uniform convergence on the whole interval.

[0,1]; that is, that the graph of f,, for n sufficiently large lies in the
“e-band” centered on the graph of f. (See Figure 9.5.)

9.3.1 The Cauchy Criterion

Suppose now that we are given a sequence of functions {f,} on an
interval I, and we wish to know whether it converges uniformly to
some function on I. We are not told what that limit function might
be. The problem is similar to one we faced for a sequence of numbers
{an} in our study of sequences. There we saw that {a,} converges
if and only if it is a Cauchy sequence. We can formulate a similar
criterion for uniform convergence of a sequence of functions.

Definition 9.11 Let {f,} be a sequence of functions defined on a
set D. The sequence is said to be uniformly Cauchy on D if for
every € > 0 there exists N € IN such that if n > N and m > N then
|fm(z) — fn(z)| <€ for all z € D.

Theorem 9.12 (Cauchy Criterion) Let {f,} be a sequence of func-
tions defined on a set D. Then there exists a function f defined on
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D such that f,, — f uniformly on D if and only if {fn} is uniformly
Cauchy.

Proof. We leave the proof of Theorem 9.12 as Exercise 9:3.15.
|

Example 9.13 In Example 9.10 we showed that the sequence f,(z) =
z™ converges uniformly on any interval [0, 7], for 0 < < 1. Let us
prove this again, but using the Cauchy criterion.
Fix n > m and compute
sup |o" — 2™ <™. (3)
z€[0,7]
Let € > 0 and choose an integer N so that "V < ¢ (i.e., so that
N > Ine/Inn). Then it follows from (3) for all n > m > N and all
z € [0,n] that
|z — 2™ <™ <e.
We conclude, by the Cauchy criterion, that the sequence f,,(z) = ="
converges uniformly on any interval [0, 7], for 0 < < 1. Here there
was no computational advantage over the argument in Example 9.10.
Frequently, though, one does not know the limit function and must
use the Cauchy criterion rather than the definition. <

Cauchy Criterion for Series The Cauchy criterion can be ex-
pressed for uniformly convergent series too. We say that a series
>°1° fx converges uniformly to the function f on D if the sequence
{Sn} = {>2%_1 fr} of partial sums converges uniformly to f on D.

Theorem 9.14 (Cauchy Criterion) Let {f,} be a sequence of func-
tions defined on a set D. Then the series Y ;- fr converges uniformly
to some function f on D if and only if for every ¢ > 0 there is an
integer N so that

D film)| <e
j=m

for alln>m > N and all z € D.
Proof. This follows immediately from Theorem 9.12. |

Example 9.15 Let us show that the series
l+z+a? +23+2+ ...

converges uniformly on any interval [0,7], for 0 < n < 1. Our com-
putations could be based on the fact that the sum of this series is
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known to us; it is (1—z) . We could prove the uniform convergence
directly from the definition. Instead let us use the Cauchy criterion.
Fix n > m and compute

n

m m

n
< T—q (4)

x

sup Z 2| < sup

z€[0,1] j=m z€[0,1] -z

Let ¢ > 0. Since 7™(1 —n)~! — 0 as m — oo we may choose an
integer N so that
N(1-n)"" <e
Then it follows from (4) for all n > m > N and all z € [0,7)] that
m
‘a:m + g™t g™t 4 :v"| < 177— < €.

It follows now, by the Cauchy criterion, that the series converges
uniformly on any interval [0,7], for 0 < n < 1. Observe, however,
that the series does not converge uniformly on (—1,1), though it
does converge pointwise there. (See Exercise 9:3.16.) <

9.3.2 Weierstrass M—Test

It is not always easy to determine whether a sequence of functions is
uniformly convergent. In the settings of series of functions, a certain
simple test is often useful. This will certainly become one of the most
frequently used tools in your study of uniform convergence.

Theorem 9.16 (M—Test) Let {fx} be a sequence of functions de-
fined on a set D and let {My} be a sequence of positive constants.

If
o0
ZMk < o0
0
and if
| fr(2)] < My
for each z € D and k =0,1,2,..., then the series Y o f converges

uniformly on D.

Proof. Let S,(z) =Y} fe(z). We show that {S,} is uniformly
Cauchy on D. Let € > 0. For m < n we have
Sn(z) — S () = fms1(z) + -+ + fo(z),

S0
|Sn(z) — Sm(z)| < M1 + -+ My,
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Since the series of constants )y , M) converges by hypothesis,
there exists an integer N such that if n > m > N,
My + -+ M, <e.
This implies that for n > m > N,
1S0(@) — Sm(@)| < €

for all x € D. Thus the sequence {S,} is uniformly convergent on
D;ie. Y ° fi is uniformly convergent on D. |

Example 9.17 Consider again the geometric series 14z + 2 +. ..
on the interval [—a,a], for any 0 < a < 1 (as we did in Exam-
ple 9.15). Then |z*| < a* for every k = 0,1,2... and = € [—a,ad.
Since Y ¢° a® converges, the M-test implies that the series e zk
converges uniformly on [—a, al. <

Example 9.18 Let us investigate the uniform convergence of the
series
>, sink@
kp

k=1
for values of p > 0. The crudest estimate on the size of the terms
in this series is obtained just by using the fact that the sin function
never exceeds 1 in absolute value. Thus

Skl L allg e R.
kP kP
Since the series Y 7, 1/kP converges for p > 1 we obtain immedi-
ately by the M—test that our series converges uniformly (and abso-
lutely) for all real 6 provided p > 1. In particular, as we shall see in
subsequent sections, this series represents a continuous function, one
which could be integrated term by term in any bounded interval.
We seem to have been particularly successful here but a closer
look also reveals a limitation in the method. The series is also point-
wise convergent for 0 < p < 1 (use the Dirichlet test) for all values
of 8, but it converges nonabsolutely. The M—-test can not be of any
help in this situation since it can address only absolutely convergent
series. |

Because of the remark at the end of this example it is perhaps
best to conclude, when using the M—test, that the series tested “con-
verges absolutely and uniformly” on the set given. This serves, too,
to remind us to use a different method for checking uniform conver-
gence of nonabsolutely convergent series (see the next section).
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9.3.3 Abel’s Test for Uniform Convergence

The M-test is a highly useful tool for checking the uniform con-
vergence of a series. By its nature, though, it clearly applies only
to absolutely convergent series. For a more delicate test that will
apply to nonabsolutely convergent series we should search through
our methods in Chapter 3 for tests that handled nonabsolute con-
vergence. Two of these, the Dirichlet test and Abel’s test, can be
modified so as to give uniform convergence.

A number of nineteenth century authors (including Abel, Dirich-
let, Dedekind, and du Bois—-Reymond) arrived at similar tests for
uniform convergence. We recall that Abel’s test for convergence of
a series Y po ; agby required the sequence {b;} to be convergent and
monotone and for the series > 2, ai to converge. Dirichlet’s vari-
ant weakened the latter requirement so that > .- ; a; had bounded
partial sums but required of the sequence {by } that it converge mono-
tonically to zero. Here we seek similar conditions on a series

D ag(@)by(z)
k=1

of functions in order to obtain uniform convergence. The next theo-
rem is one variant; others can be found in the Exercises.

Theorem 9.19 (Abel) Let {ar} and {by} be sequences of functions
on a set E C IR. Suppose that there is a number M so that

N
—M < sn(z) = Zak(a:) <M
k=1

for oll x € E and every N € IN. Suppose that the sequence of
functions {by} — 0 converges monotonically to zero at each point
and that this convergence is uniform on E. Then the series

[
Z akbk
k=1

converges uniformly on E.

Proof. We will use the Cauchy criterion applied to the series
to obtain uniform convergence. We may assume that the bg(x) are
nonnegative and decrease to zero. Let € > 0. We need to estimate

the sum
n

> ap(z)by(z)

k=m

(5)
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for large n and m and all x € E. Since the sequence of functions
{bk} converges uniformly to zero on E we can find an integer N so
that

€
< < —
O_bk(:v)_ oM

forall k> N and all x € E.

The key to estimating the sum (5), now, is the summation by
parts formula that we have used earlier (see Section 3.2). This is
just the elementary identity

n

n
> arbr =Y (sk — sk-1)bk
k=m

k=m
= Sm(bm - bm—l—l) + 5m+1(bm+1 - bm+2) e Sn—l(bn—l - bn) + spbn.

This provides us with

n

> ax(@)bi(x)

<2M (Sup |bm(x)\) <e

k=m zek
for all n > m > N and all x € E which is exactly the Cauchy
criterion for the series and proves the theorem. |

It is worth pointing out that in many applications of this theorem
the sequence {b;} can be taken as a sequence of numbers, in which
case the statement and the conditions that need to be checked are
rather simpler.

Corollary 9.20 Let {ax} be a sequence of functions on a set E C
IR. Suppose that there is a number M so that

Z ag(z)
k=1

for all x € E and every integer N. Suppose that the sequence of real
numbers {by} converges monotonically to zero. Then the series

00
D bra
k=1

<M

converges uniformly on E.

Proof. Consider that {bs} is a sequence of constant functions on
FE and then apply the theorem. |

In the exercises there are several other variants of Theorem 9.19,
all with similar proofs and all of which have similar applications.



410 Chapter 9. Sequences and Series of Functions
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Figure 9.6: Graph of Y7, (sink@)/k for n =1, 4, 10 and 7.
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Example 9.21 As an interesting application of Theorem 9.19 con-
sider a series which arises in Fourier analysis:
>, sink@
k

k=1

It is possible by using Dirichlet’s test (see Section 3.6.13) to prove
that this series converges for all 6.

Questions about the uniform convergence of this series are in-
triguing. In Figure 9.6 we have given a graph of some of the partial
sums of the series.

The behavior near 8 = 0 is most curious. Apparently if we can
avoid that point, more precisely if we can stay a small distance away
from that point, we should be able to obtain uniform convergence.
Theorem 9.19 will provide a proof. We apply that theorem with
br(0) = 1/k and ai(6) = sinkf. All that is required is to obtain an
estimate for the sums

z”: sin k0
k=1

for all n and all € in an appropriate set. Let 0 < 7 < 7/2 and consider
making this estimate on the interval [n), 2 —7)]. From Exercise 3:2.11
we obtain the formula

cos6/2 — cos(2n +1)6/2

sin @ +sin 20 +sin 30 +sin46+- - - +sinnf = -
2sin6/2
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and using this we can see that

Zsm kO < 5111(77/2)

Now Theorem 9.19 immedlately shows that
o .
sin k6
k

k=1
converges uniformly on |7, 2w — 7].

Figure 9.6 illustrates graphically why the convergence cannot be
expected to be uniform near to 0. A computation here is instructive.
To check the Cauchy criterion on [0, 7] we need to show that the
sums

sin k0
k

k=m

sup
0€[0,n]

are small for large m, n. But in fact

2m . 2m .
sin k6 sin k/2m sin 1/2 sin1/2
I EDD Z

sSup Z 9
9€[0,m] k=m k=m k=m
obtained by checking the value at points @ = 1/2m. Since this is not
arbitrarily small the series cannot converge uniformly on [0,7]. <«
Exercises

9:3.1 Examine the uniform limiting behavior of the sequence of functions
z.n

fn(x) = 1+zn

On what sets can you determine uniform convergence?

9:3.2 Examine the uniform limiting behavior of the sequence of functions

2 —-nz
fn(z) = 2%
On what sets can you determine uniform convergence? On what sets
can you determine uniform convergence for the sequence of functions

n?fn(x)?
9:3.3 Prove that if f, — f pointwise on a finite set D, then the conver-
gence is uniform.

9:3.4 Prove that if f, — f uniformly on a set E; and also on a set Ey
then f, — f uniformly on E; U E,.

9:3.5 Prove or disprove that if f, — f uniformly on each set E;, E», E3,
. then f, — f uniformly on the union of all these sets | J;—, Ej.
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9:3.6 Prove that if f,, — f uniformly on a set E then f, — f uniformly
on every subset of E.

9:3.7 Prove or disprove that if f, — f uniformly on each set E N [a, b] for
every interval [a, b] then f,, — f uniformly on E.

9:3.8 Prove or disprove that if f, — f uniformly on each closed interval
[a,b] C (c,d) then f, — f uniformly on (c,d).

9:3.9 Prove that if {f,} and {g,} both converge uniformly on a set D
then so too does the sequence {f, + g, }-

9:3.10 Prove or disprove that if {f,} and {g,} both converge uniformly
on a set D then so too does the sequence {fngn}-

9:3.11 Prove or disprove that if f is a continuous function on (—o0, c0)
then

flz+1/n) = f(z)
uniformly on (—o0, 00). (What extra condition, stronger than conti-
nuity, would work if not?)

9:3.12 Prove that f, — f converges uniformly on D if and only if
lim sup | fn(z) — f(z)| = 0.
" zeD

9:3.13 Show that a sequence of functions {f,} fails to converge to a func-
tion f uniformly on a set E if and only if there is some positive &g
so that a sequence {z} of points in E and a subsequence {fy, } can
be found such that

| fri (zk) — f(zk)| > €0.

9:3.14 Apply the criterion in the preceding exercise to show that the se-
quence f,(x) = 2™ does not converge uniformly to zero on (0, 1).

9:3.15 Prove Theorem 9.12.

9:3.16 Verify that the geometric series Y ., ¥ which converges pointwise
on (—1,1) does not converge uniformly there.

9:3.17 Do the same for the series obtained by differentiating the series
in Exercise 9:3.16; i.e., show that > [° kz*~! converges pointwise
but not uniformly on (-1,1). Show that this series does converges
uniformly on every closed interval [a, ] contained in (—1,1).

9:3.18 Verify that the series

= cos kzx
k2
k=1
converges uniformly on all of IR .
9:3.19 If {f,} is a sequence of functions converging uniformly on a set E

to a function f what conditions on the function g would allow you
to conclude that g o f,, converges uniformly on E to go f?



9.3. Uniform Limits 413

9:3.20 Show that if f, — f uniformly on [a, b] and each f, is continuous
then the sequence of functions

Fo(z) = / () dt
also converges uniformly on [a, b].

9:3.21 Show that if f, — f uniformly on [a, b] and each f, is continuous

then
lim ab (/ ) dt) dz = /ab (/ £(t) dt) da.

9:3.22 A sequence of functions {f,,} is said to be uniformly bounded on an
interval [a, b] if there is a number M so that

[fn(2)] < M

for every n and also for every z € [a,b]. Show that a uniformly
convergent sequence {fn} of continuous functions on [a, b] must be
uniformly bounded. Show that the same statement would not be
true for pointwise convergence.

9:3.23 Suppose that f, = f on (—oo,+00). What conditions would allow
you to compute that

lim foe +1/n) = f(2)?

9:3.24 Suppose that {f,} is a sequence of continuous functions on the
interval [0,1] and that you know that f, — f uniformly on the
set of rational numbers inside [0,1]. Can you conclude that f, —
f uniformly on [0,1]? (Would this be true without the continuity
assertion?)

9:3.25 Prove the following variant of the Weierstrass M—test: Let {fi}
and {gr} be sequences of functions on a set E C IR. Suppose that
|fe(z)] < gr(z) for all k and € E and that ) .-, gi converges
uniformly on E. Then the series

oo

> i

k=1
converges uniformly on F.

9:3.26 Prove the following variant on Theorem 9.19: Let {ax} and {bs}
be sequences of functions on a set E C IR. Suppose that Y o | ax(z)
converges uniformly on E. Suppose that {b} is monotone for each
2 € E and uniformly bounded on E. Then the series

o]
D> akbe
k=1

converges uniformly on E.
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9:3.27 Prove the following variant on Theorem 9.19: Let {ax} and {bx}

be sequences of functions on a set £ C IR. Suppose that there is a

number M so that N
> k(@)
k=1

for all z € E and every integer N. Suppose that

<M

D bk = biyi |
k=1
converges uniformly on E and that by — 0 uniformly on E. Then

the series
oo
E arby,
k=1

converges uniformly on E.

9:3.28 Prove the following variant on Theorem 9.19: Let {ax} and {by}
be sequences of functions on a set E C IR. Suppose that > oo | ak
converges uniformly on E. Suppose that the series

Z |br, — b+
k=1

has uniformly bounded partial sums on E. Suppose that the sequence
of functions {by} is uniformly bounded on E. Then the series

oo
D aibi
k=1

converges uniformly on E.

9:3.29 Suppose that {f,} is a sequence of continuous functions on an in-
terval [a, b] converging uniformly to a function f on the open interval
(a,b). If f is also continuous on [a, b] show that the convergence is
uniform on [a, b].

9:3.30 Suppose that {f,} is a sequence of functions converging uniformly
to zero on an interval [a, b]. Show that

lim fn(zn) =0
n—oo
for every convergent sequence {z,} of points in [a,b]. Give an ex-

ample to show that this statement may be false if f,, — 0 merely
pointwise.

9:3.31 Suppose that {f,} is a sequence of functions on an interval [a, b]
with the property that
lim f,(xz,)=0

n—o0

for every convergent sequence {z,} of points in [a,b]. Show that
{fn} converges uniformly to zero on [a, b].
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9.4 Uniform Convergence and Continuity

We can now address the questions we asked at the beginning of this
chapter. We begin with continuity. We know that the pointwise
limit of a sequence of continuous functions need not be continuous.
We now show that the uniform limit of a sequence of continuous
functions must be continuous.

Theorem 9.22 Let {f,} be a sequence of functions defined on an
interval I, and let o € 1. If the sequence {f,} converges uniformly
to some function f on I and if each of the functions f, is continuous
at xg, then the function f is also continuous at xq. In particular, if
each of the functions f, is continuous on I, then so too is f.

Proof. Let € > 0. We must show there exists § > 0 such that
|f(z) = f(zo)| < e if |z —xo| <6, z € I. For each z € I we have

f(z) = fzo) = (f(2) = fu(2)) + (fu(2) = fn(20)) + (fn(z0) — f(20)),

SO

[f (@) = fzo)| < [f(2) = fu(@)| + | fn(2) — ful@0)| + [ fn(z0) — f(ﬂ(f‘g;\-

Since f, — f uniformly, there exists N € IN such that
€

|[ful2) = f(2)] < 3 (7)
for all z € I and all n > N. We infer from inequalities (6) and (7)
that
€ € 2
7@) = Fl@o)l < £ +1fx(@) = foo) | + = = |fn(@) = fulao)| + ze.
(8)
We now use the continuity of the function fx. We choose § > 0 such
that if x € I and |z — z¢| < J, then
€
Fv(z) = fveo)l < 5. ()

Combining (8) and (9) we have

7(@) = F@) < § +ze=¢

for each z € I for which |z — z¢| < J, as was to be shown. [ |

Note. Let us look a bit more closely at the proof of Theorem 9.22. We
first obtained N € IN such that the function fy approximated f closely
(within €/3) on all of I. This function fx served as a “stepping stone”
towards verifying the continuity of f at z¢. There are three small “steps”
involved:
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1. |fn(z)—f(z)| is small (for all z € I) because of uniform convergence.

2. |fn(z) — fn(xo)| is small (for all 2 near o) because of the continuity
of fN

3. |fn(zo) — f(=o)] is small because {fn(x0)} = f(z0).

If we tried to imitate the proof under the assumption of pointwise
convergence, the first of these steps would fail. The reader may wish to
observe the failure by working Example 9.4

Theorem 9.22 can be stated in terms of series. Recall that a series
-1 fr converges uniformly to the function f on D if the sequence
{Sn} = {3 §_1 fr} of partial sums converges uniformly to f on D.

Corollary 9.23 If Y 1° fi converges uniformly to f on an inter-
val I and if each of the functions fi is continuous on I, then f is
continuous on 1.

Proof. This follows immediately from Theorem 9.22. |

9.4.1 Dini’s Theorem

Observe that Theorem 9.22 provides a sufficient condition for conti-
nuity of the limit function f. The condition is not necessary. (The
sequence in Example 9.6 converges to the zero function, which is
continuous, even though the convergence is not uniform.)

Under certain circumstances, however, uniform convergence is
necessary as Theorem 9.24 below shows. (See also Exercise 9:4.6.)
This theorem is due to Ulysses Dini and gives a condition under
which pointwise convergence of a sequence of continuous functions
to a continuous function must be uniform.

Theorem 9.24 (Dini) Let {f,} be a sequence of continuous func-
tions on an interval [a,b]. Suppose for each x € [a,b] and for all
n € IN, fn(z) > foyi1(z). Suppose in addition that for all z € [a,b]
f(x) = limy, fn(z). If f is continuous, then the convergence is uni-
form.

Proof. Suppose the convergence were not uniform. Then

max (fn(z) — f(7))

z€[a,b]
does not approach zero as n — oo (see Exercise 9:3.12). Hence there
exists ¢ > 0 such that for infinitely many n € IN,

max (fn(z) — f(z)) >c> 0.
z€[a,b]
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Now, for each n € IN, f,, — f is continuous, so it achieves a maximum
value at a point z,, € [a,b]. By the Bolzano-Weierstrass theorem we
can thus choose a subsequence {z, } of the sequence {z,} such that
{zy, } converges to a point zg € [a,b]. Note that we must have

fnk(mnk) - f(mnk) >c
for all £k € IN.
Because of our assumption that f,(z) > fri1(z) for all n € IN
and z € [a, b], we infer

fa(zn,) — f(zn,) > cfor all n < ny.

Now fix n and let £ — oo. Using the continuity of the functions f,, — f
we obtain f,(zo) — f(zo) > ¢ for all n € IN. But this is impossible
since fp(z9) = f(zo) by hypothesis. Thus our assumption that the
convergence is not uniform has led to a contradiction. |

Example 9.25 The sequence of continuous functions f,(z) = 2" is
converging monotonically to a function f on the interval [0, 1]. But
that function f is (as we have seen before) discontinuous at z = 1,
so immediately we know that the convergence cannot be uniform.
Dini’s theorem implies that the convergence is uniform on [0, ] for
any 0 < b < 1 since the function f is continuous there. |

Exercises

9:4.1 Can a sequence of discontinuous functions converge uniformly on an
interval to a continuous function?

9:4.2 Let fr(z) = 2", 0 <z < 1. Try to imitate the proof of Theorem 9.22
for zg = 1 and observe where the proof breaks down.

9:4.3 Let {f,} be a sequence of functions each of which is uniformly con-
tinuous on an open interval (a,b). If f, — f uniformly on (a,b) can
you conclude that f is also uniformly continuous on (a,b)?

9:4.4 Give an example of a sequence of continuous functions {f,} on the
interval (0, 1) that is monotonic decreasing and converges pointwise
to a continuous function f on (0,1) but for which the convergence is
not uniform. Why does this not contradict Theorem 9.247

9:4.5 Give an example of a sequence of continuous functions {f,} on the
interval [0, 00) that is monotonic decreasing and converges pointwise
to a continuous function f on [0, 00) but for which the convergence
is not uniform. Why does this not contradict Theorem 9.24?

9:4.6 Let {f,} be a sequence of continuous nondecreasing functions de-
fined on an interval [a, b]. Suppose f, — f pointwise on [a, b].
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Prove that if f is continuous on [a, b], then the convergence is uni-
form. Observe that in this exercise, the functions are assumed mono-
tonic, whereas in Theorem 9.24 it is the sequence that we assume
monotonic.

9:4.7 The proof of Theorem 9.24 depends on the compactness of the inter-
val [a, b]. The compactness argument used here relied on the Bolzano-
Weierstrass theorem. Attempt another proof using one of our other
strategies from Section 4.5.

9:4.8 Prove this variant on Dini’s theorem (Theorem 9.24). Let {f,} be
a sequence of continuous functions on an interval [a,b]. Suppose
for each z € [a,b] and for all n € N, f,(z) < fnt1(x). Suppose in
addition that for all z € [a,b] lim, f,(z) = co. Show that for all
M > 0 there is an integer N so that

fole) > M

for all « € [a,b] and all n > N. Show that this conclusion would not
be valid without the monotonicity assumption.

9:4.9 Show that if, in Exercise 9:4.8 the interval [a,b] is replaced by the
unbounded interval [0, 00) or the non-closed interval (0,1) that the
conclusion need not be valid.

9:4.10 Let {f,} be a sequence of Lipschitz functions on [a, b] with common
Lipschitz constant M. (This means that |f,(z) — fo(y)| < M|z —y|
for alln € N, z,y € [a,b].)

(a) If f = lim, f, pointwise, then f is continuous and, in fact,
satisfies a Lipschitz condition with constant M,

(b) If f = lim, f, pointwise the convergence is uniform.

(c) Show by example that the results in (a) and (b) fail if we weaken
our hypotheses by requiring only that each function is a Lips-
chitz function. (Here, the constant M may depend on n.)

9:4.11 Give an example to show that the analogue of Theorem 9.24 fails if
[a, b] is replaced with an interval that is not closed or is not bounded.

9:4.12 (Continuous convergence vs. uniform convergence.) A se-
quence of functions { f,} defined on an interval I is said to converge
continuously to the function f if f,(z,) = f(zo) whenever {z,} is
a sequence of points in the interval I that converges to a point zg in
I. Prove the following theorem:

Let {f,} be a sequence of continuous functions on an in-
terval [a,b]. Then {f,} converges continuously on [a, b] if
and only if {fn} converges to f uniformly on [a,b].

Does the theorem remain true if the interval [a, b] is replaced with
(a,b) or [a,00)?
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9:4.13 Show that the sequence f,,(z) = z™/n converges uniformly on [0,1]:

(a) by direct computation using the definition of uniform conver-
gence.

(b) by using Theorem 9.24
(¢) by using Exercise 9:4.6.
(d) by using Exercise 9:4.12.

9.5 Uniform Convergence and the Integral

Calculus students often learn the following simple computation. The
geometric series

1 o
T => t (10)
0

is valid on the interval (—1,1). An integration of both sides for ¢ in
the interval [0, z], and any choice of z < 1 will yield

x 1 S .’L’k+1
—log(l —z) = —dtzz
0 0

k+1

1—-1¢

Indeed this identity is valid and provides a series expansion for the
logarithm function. But can this really be justified?
In general do we know that if f(z) = > 7° fn(z) on an interval

[a, b], then
/abf(x) dm:i/abfn(a:) dz?

In fact, we already observed in Section 9.3 that during the early
part of the 19th century, some prominent mathematicians took for
granted the permissibility of term-by-term integration of convergent
infinite series of functions. This was true of Fourier, Cauchy and
Gauss. Example 9.6, cast in the setting of sequences of integrable
functions, shows that these mathematicians were mistaken.

9.5.1 Sequences of Continuous Functions

Around the middle of the 19th century, Weierstrass showed that
term-by-term integration is permissible when the series of integrable
functions converges uniformly. Let us first verify this result for se-
quences of continuous functions.
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Theorem 9.26 Suppose f(z) = lim, o0 frn(z) for all z € [a,b], that
each function fy is continuous on [a,b], and that the convergence is

uniform. Then
b b
[ 1@ o= tim [ fa(@) da

Proof. By Theorem 9.22, f is continuous S0 f; f (z) dz exists.

We must show that f fo(z) dz — f f(z
Let ¢ > 0. We wish to obtaln N e€IN such that

/abfn(a:) dw—/abf(w) dx

< ¢ for all n > N.
We calculate that for any n € IN

/fn dw—/f ) da| = /[fn — f(s)] da

/Ifn - \dw</asgp|fn( )= ()| do

< (0-a) (suplfale) - 1(0)]).

Since fp, — f uniformly on [a, b], there exists N € IN such that

sgp|fn(ac)— flz)| < = for all n > N.
Thus, for n > N, we have
/fn da:—/f ) dz| < (b )fa:e
as was to be shown. |

Applying the theorem to the partial sums S, of a series allows
us to express this result for series.

Corollary 9.27 If an infinite series of continuous functions > o fi
converges uniformly to a function f on an interval [a,b], then f is
also continuous and

/abf(w) dxzi:j/abfm) d

Example 9.28 Let us justify the computations that we made in our
introduction to this topic. The geometric series

1 o0
—1_t:Ztk (11)
0
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converges pointwise on the interval (—1,1). Let 0 < z < 1. By the
M-test we see that this series converges uniformly on [0, z]. Each of
the terms in the sum is continuous. As a result we may apply our
theorem to integrate term by term just as we might have seen in a
calculus course. Thus

/Ol—td_ k+

9.5.2 Sequences of Riemann Integrable Functions

In Theorem 9.26 we required that the functions f,, be continuous.
Suppose we now weaken our hypotheses for these functions by re-
quiring only that they be integrable, but still requiring the sequence
{fn} to converge uniformly to f. We note that in all respects the
proof is the same. Thus, if a uniformly convergent sequence of inte-
grable functions converges to an integrable function, we can integrate
the sequence term-by-term. Our next theorem shows that a uniform
limit of integrable functions must be integrable and so we have the
following extension of Theorem 9.26.

Theorem 9.29 Let {f,} be a sequence of functions Riemann inte-
grable on an interval [a,b]. If f, — f uniformly on [a,b], then f is
Riemann integrable on [a,b] and

/abf(x)dlei%n/abfn(w)da;

Proof. Because of the preceding development, we need only show
that the limit function f is integrable on [a, b].

One proof (see Exercise 9:5.7) would be to show that f is bounded
and continuous everywhere except at a set of measure zero. It follows
by Theorem 8.17 that f is Riemann integrable.

We can also give a proof by constructing, for any ¢ > 0, step func-
tions having the property of Exercise 8:6.5. Since this proof is one
that was available to nineteenth century mathematicians who would
not have known about sets of measure zero this is worth presenting,
if only for historical reasons.

Let € > 0. We wish to find step functions L and U such that
L(z) < f(z) < U(z) for all z € [a,b], with f: [U(z) — L(z)] dz < .
We shall obtain the functions L and U in three natural steps:

1. We approximate f by one of the functions fy.
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2. We obtain corresponding step functions Ly and Uy approxi-
mating fn.

3. We modify Ly and Uy to obtain L and U.

We proceed according to the plan above.
(i) Since f, — f uniformly, there exists N € IN such that

|fn(z) — f(z)] < m

(ii) Since fy is integrable by hypothesis, there exist step functions
Ly and Uy such that Ly(z) < fn(z) < Un(z) for all z € [a,b] and

b
€
/ [Un(@) ~ Ly (o)) da < &
a
(iii) Let us define the step functions U and L by

L(z) = Ly(z) — ﬁ , U(z) = Un(z) + 4(b6_ 3

for all z € [a, b].

for all z € [a, b].
We then have

L(z) < Ly (@)+|f (z)—fn(2)] < f(2) < Un(2)+]f(2)-fn(2)| <Ulz)

and

/ab [U(z) — L(z)]dz = /ab {[UN(ac) — Ly(z)] + 2(b6_ 2 } dzx

-

as was to be shown. [ |

b b c
[Un(z) — Ly(z)] d:z:—l—/ mdﬁlt
+-=¢

bl

N ™
N ™

Corollary 9.30 If an infinite series of integrable functions Y 5" fx
converges uniformly to a function f on an interval [a,b], then f is
also integrable and

/abf(w) dwzi/abfk(x) dz.

Example 9.31 Let f,(z) = e *". Then for each € [1,2] and for

every n € IN, 0 < e~ e’ <e™and e ™ — 0, so f, = 0 uniformly
on [1,2]. It follows that

2 , 2
lim/ e ™ dxz/ 0dx = 0.
nJ1 1
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<

Note. We end this section with a short note that considers whether our
main theorem would be true under weaker hypotheses than uniform con-
vergence.

It is possible for a sequence {f,} of functions to converge pointwise
(but not uniformly) to a function f on [a,b] and still have

lirrbn/abfn(x) da::/abf(a:) dz.

For example, suppose we modify the functions of Example 9.6 so that
fn(1/(2n)) = 1 instead of f,,(1/(2n)) = 2n. We still have f,, — 0 pointwise
(but not uniformly), but now fol fn(x) de — 0.

These functions form a uniformly bounded sequence of functions: that
is, there exists a constant M (M = 1 in this case) such that |f,(z)| < M
for alln € IN and all z € [0,1]. A theorem (whose proof is beyond the scope
of this chapter) asserts that if a uniformly bounded sequence of integrable
functions {f,} converges pointwise to an integrable function f on [a,b],
then

liTrln/abfn(a:) dw:/abf(w) dx.

One cannot drop the hypothesis of integrability of f in this theorem. If,
for example, {r,} is an enumeration of the rationals in [0,1] and
1, ifx=r,re,...,1n
fn(@) = { 0, otherwise,

then
lim fule) = f(z) = { 0 s cpaNG

and f is not integrable on [0,1] by Exercise 9:2.3.

9.5.3 Sequences of Improper Integrals

Thus far we have studied limits of ordinary integrals, either of contin-
uous functions on a finite interval [a,b] or Riemann integrable func-
tions on such an interval. What if the integrals are of unbounded
functions so that they must be taken in the Cauchy (improper) sense?
What if the integrals are to be taken on an infinite interval?

More narrowly let us just ask for the validity of the formulas:
o

lim fa(t)dt = / ” f(t)dt

n—00 a
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g/@wgk(t)dtz/awf(t)dt

in case f = Y, 9gk. A fast and glib answer would be that we
hardly expect these to be true for pointwise convergence but certainly
uniform convergence will suffice.

But these integrals involve an extra limit operation and we there-
fore need extra caution. Indeed the following example shows that
uniform convergence is far from enough. It is not just the “smooth-
ness” of the convergence that is an issue here.

Example 9.32 Let f,(z) be defined as 1/n for all values of z € [0, 7]
but as zero for £ > n. Then the sequence {f,} converges to zero
uniformly on the interval [0, 00). But the integrals do not converge
to zero (as we would have hoped) since

/ falt)dt =1

for all n. |

in case f, — f or

What further condition can we impose so that, together with
uniform convergence we will be able to take the limit operation inside
the integral

o0
lim fu(t) dt?

n—o0 0

The condition we impose in the theorem just requires that all the
functions are controlled or dominated by some function that is itself
integrable. In our example above note that there is no possibility
of an integrable function g on [0, 00) such that f,(z) < g(z) for all

n and z. Theorems of this kind are called dominated convergence
theorems.

Theorem 9.33 Suppose that {f,} is a sequence of continuous func-
tions on the interval [a,00) such that f, — f uniformly on any in-
terval [a,b]. If there is a continuous function g on [a,00) such that

|fn(2)] < g(z)

for all a < z and such that the integral

/aoo g(z)dz
nli_)n;O/aoo fult) dt = /aoof(t) dt

erists, then
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Proof. As a first step let us show that f is integrable on [a, c0).
Certainly f is continuous since it is a uniform limit of a sequence
of continuous functions. Since each |f,(z)| < g(z) it follows that
|f(z)| < g(x). We check then

/cdf(t)dt‘ < [wonas [Cywa.

Since g is integrable it follows by the Cauchy criterion for improper
integrals (see Exercise 8:5.11) that the integral [ Cd g(t) dt can be made
arbitrarily small for large ¢ and d. But then so also is the integral
/ cd f(t)dt and a further application of the Cauchy criterion for im-
proper integrals shows that f is integrable. (Indeed this argument
shows that f is absolutely integrable in fact.)

Now let ¢ > 0. Choose L so large that

/oo g(t) dt < /4.
L

0

Choose N so large that
€

|fn(t) = F(O)] < 2o —a)

if n > N and t € [a, Lo]. This is possible because f, — f uniformly
on [a, Ly]. Then we have

[ nwa= [ sl < [Cino- sola [T
&

0

2¢
<—— (Lp—a)+==¢
= 2(L0—a)( 0o-a)t+
for all n > N. This proves the assertion of the theorem. |
Exercises
9:5.1 Prove that lim/ TRRT 4z = 0.
n z nx

ok
9:5.2 Prove that the series Z % converges uniformly on [0, b] for every
0

b €[0,1), but does not converge uniformly on [0,1).

™ . sinna — 2
9:5.3 Prove that / Z Tz dx = Z (2n—1)3
0 p=1 n=1

9:5.4 Prove that if )" fi converges uniformly on a set D, then the se-
quence of terms {fx} converges uniformly on D.
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ok
9:5.5 Show that the series Z 3;;—' converges uniformly on [—a, a] for every

0
a € IR, but does not converge uniformly on all of the real line. (Does
it converge pointwise on the real line?) Obtain a series representation

for / — d:z:

9:5.6 Let { fn} be a sequence of continuous functions on an interval [a, b]
that converges uniformly to a function f. What conditions on g
would allow you to conclude that

lim fn t)dt = / f(t)g(t) dt?

n— 00

9:5.7 Let {f,} be a sequence of bounded functions each continuous on an
interval [a,b] except at a set of measure zero. Show that if f, — f
uniformly on [a, b] the the function f is also bounded and continuous
on [a,b] except at a set of measure zero. Conclude that a uniformly
convergent sequence of Riemann integrable functions must converge
to a function that is also Riemann integrable.

9:5.8 Let p > —1. Show that

n t n o0
lim (1——) t”dt:/ e tP dt.
n—oo [y n 1

9:5.9 Formulate and prove a version of the dominated convergence theo-
rem (Theorem 9.33) that would apply to improper integrals on an
interval [a, b] where the point of unboundedness is at the endpoint a.

9:5.10 Compute
1
. e
R A

where the integrals must be interpreted as improper integrals.

9.6 Uniform Convergence and Derivatives

We saw in Section 9.5 that a uniformly convergent sequence (or se-
ries) of continuous functions can be integrated term-by-term. This
allows an easy proof of a theorem on term-by-term differentiation.

Theorem 9.34 Let {f,} be a sequence of functions each with a
continuous derivative on an interval [a,b]. If the sequence {f',}
of derivatives converges uniformly to a function on [a,b] and the
sequence {fn} converges pointwise to a function f, then f is differ-
entiable on [a,b] and

fl(z) = lirrln fr(z) for all x € [a,b].
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Proof. Let g =lim, f,. Since each of the functions f], is assumed
continuous and the convergence is uniform, the function g is also
continuous (Theorem 9.22 ). From Theorem 9.29 we infer

/wg (t) dt = lirlln/w f1 (t) dt for all z € [a, b). (12)

Applying the fundamental theorem of calculus (Theorem 8.9), we
see that

/ ") dt = fulw) — fula) for all 3 € [a,b] (13)

for all n € IN.
But fn(z) — f(z) for all z € [a,b] by hypothesis, so letting
n — 0o in equation (13) and noting (12) we obtain
T

/ g(t) dt = f(z) — f(a)

f(w)z/zg(t) dt + f(a).

It follows from the continuity of ¢ and the other half of the funda-

mental theorem of calculus (Theorem 8.8), that f is differentiable

and that f'(z) = g(z) for all = € [a, b]. [ ]
For series, the theorem takes the following form:

Corollary 9.35 Let{fr} be a sequence of functions each with a con-
tinuous derivative on [a,b] and suppose f =Y ° fi on [a,b]. If the
series Y o fr. converges uniformly on [a,b], then f' = > ° f} on
[a, b].

Example 9.36 Starting with the geometric series

! :ixk on (—1,1) (14)
0

1—2x

we obtain from Corollary 9.35 that

To justify (15) we observe first that the series (14) converges
pointwise on (—1,1). Next we note (Exercise 9:3.17) that the se-
ries (15) converges pointwise on (—1,1) and uniformly on any closed
interval [a,b] C (—1,1). Thus, ifz € (—1,1) and -1 <a<z <b<
1, then (15) converges uniformly on [a,b], so (15) holds at z. <
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9.6.1 Limits of Discontinuous Derivatives

The hypotheses of Theorem 9.34 are somewhat more restrictive than
necessary for the conclusion to hold. We need not assume that {f,}
converges on all of [a, b]; convergence at a single point suffices. Nor
need we assume that each of the derivatives f; is continuous. (One
cannot, however, replace uniform convergence of the sequence {f’,}
with pointwise convergence as Example 9.5 shows.) The theorem
that follows applies in a number of cases in which Theorem 9.34
does not apply.

Theorem 9.37 Let {f,} be a sequence of continuous functions de-
fined on an interval [a,b] and suppose that f)(x) exists for each n
and each x € [a,b]. Suppose that the sequence {f',} of derivatives
converges uniformly on [a,b] and that there exists a point xy € [a, b]
such that the sequence of numbers {fn(zo)} converges. Then the
sequence {fn} converges uniformly to a function f on the interval
[a,b], f is differentiable and

f'(z) = lim f;(z)

n—oo
at each point = € [a,b].

Proof. Let ¢ > 0. Since the sequence of derivatives converges
uniformly on [a, b] there is an integer N; so that

[fa(e) = fm(@)] <e
for all n, m > Nj and all z € [a,b]. Also since the sequence of
numbers { f,(z¢)} converges there is an integer N > N; so that

|fn(z0) = fm(z0)| <€

for all n, m > N. Let us, for any =z € [a,b], x # z¢, apply the
mean-value theorem to the function f, — f,, on the interval [zg, z]
(or on the interval [z, zo] if z < xp). This gives us the existence of
some point & between z and z( so that

fa(@) = fn(2) = [fa(z0) = fim(z0)] = (2 — 20)[fn () — fr(§)]- (16)
From this we deduce that
[fr(@) = fn(@)| < [ fa(@0) = fin(mo)| + [(z — 20) (f(€) — i (&)
<e(l+(b—a))

for any n, m > N. Since this N depends only on ¢ this assertion
is true for all z € [a,b] and we have verified that the sequence of
continuous functions {f,} is uniformly Cauchy on [a,b] and hence
converges uniformly to a continuous function f on [a, b].
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Let us now show that f'(zg) is the limit of the derivatives f; (o).
Again, for any £ > 0, equation (16) implies that
[fn(x) = fm (@) = [fa(z0) = fm(z0)]| < |z — z0le (17)
for all n,,m > N and any z # z( in the interval [a,b]. In this
inequality let m — oo and, remembering that f,,(z) — f(z) and
fm(zo) = f(xp), we obtain
[fn(z) = fnlzo) — [f (z) — f(20)]] < & — zole (18)
if n > N. Let C be the limit of the sequence of numbers {f; (z¢)}.
Thus there exists M > N such that
|far(mo) — O <. (19)
Since the function fjs is differentiable at x¢ there exists § > 0 such
that if 0 < |z — zg| < ¢ then

fu(x) — fu(zo)

pra— — fur(wo)

From Equation (18) and the fact that M > N we have that
fu(x) — fu(zo)  f(z) — f(z0)

<e. (20)

- <eg
r — X r — Xy
This, together with the inequalities (19) and (20) shows that
F@) — f@o) |
r — Iy

for 0 < |z —xo| < ¢. This proves that f'(z) exists and is the number
C, which we recall is lim,,_,, f} (z0)-

In this argument zo may be taken as any point inside the interval
[a, b] and so the theorem is proved. [ |

For infinite series Theorem 9.37 takes the following form:
Corollary 9.38 Let {fr} be a sequence of differentiable functions
on an interval [a,b]. Suppose that the series Y o fr converges uni-
formly on [a,b]. Suppose also that there ezxists xoy € [a,b] such that

the series Y o fi(zo) converges. Then the series Y oo o fr(z) con-
verges uniformly on [a,b] to a function F, F is differentiable and

Fl(z) =) fil)
k=0
foralla <z <b.

Note. In the statement of Theorem 9.37 we hypothesized the existence
of a single point zo at which the sequence {f,(z¢)} converges. It then
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followed that the sequence {f,} converges on all of the interval I. If we
drop that requirement, but retain the requirement that the sequence {f/}
converges uniformly to a function g on I , we cannot conclude that {f,}
converges on I (e.g. let f,(z) = n), but we can still conclude that there
exists f such that f' = g = lim, f], on I. (To see this, fix o € I, let
F, = fn — fn(zo) and apply Theorem 9.37 to the sequence {F,}.) Thus,
the uniform limit of a sequence of derivatives {f}} is a derivative even if
the sequence of primitives {f,} does not converge.

Exercises
. sin nx . .
9:6.1 Can the sequence of functions f,(z) = —5— be differentiated term-
> sin ka:l
by-term? How about the series Z 5 ?
1
9:6.2 Verify that the function
2 4 6 8

1.2 x x x
y(w)— +ﬁ+E+E+Z+...

is a solution of the differential equation y' = 22y on (—o0, 00) without

first finding an explicit formula for y(x).

9.7 Pompeiu’s Function

By the end of the nineteenth century analysts had developed enough
tools to begin constructing examples of functions that challenged the
then prevailing views. One famous mathematician, Henri Poincaré,
complained that

Before when one would invent a new function it was to
some practical end; today they are invented to demon-
strate the errors in the reasoning of our fathers ... .

Many mathematicians were both shocked and appalled that func-
tions could be constructed which possessed, to them, bizarre and
unnatural properties. The beautiful and elegant theories of the nine-
teenth century were being torn to pieces by pathological examples.

Perhaps the earliest shock was the construction by Weierstrass
and others of continuous functions that had derivatives at no points.
This did indeed demonstrate some earlier errors because not a few
mathematicians thought they had succeeded in proving that contin-
uous functions could not be like this. Another famous example is
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due to Vito Volterra who produced a differentiable function F with
a bounded derivative F’ that was not Riemann integrable.

In this section we present an example due to D. Pompeiu in 1906.
This function A is differentiable and has the remarkable property that
k' is discontinuous on a dense set and A’ is zero on another dense set.
In particular then A is a differentiable function which, like Volterra’s
example, has a derivative that is not Riemann integrable. In fact it
is integrable on no interval while Volterra’s example is integrable on
many subintervals.

The example makes use of many theorems that we have estab-
lished to this point and so offers an excellent review of our techniques.
We present the example in a series of steps, each of which is left as a
relatively easy exercise for the reader. (Exercise 9:7.4 is plausible but
messy to verify, and the reader may prefer not to check the details.)

To begin the example we observe that the function

f@) = YV —a

has an infinite derivative at £ = a and a finite derivative elsewhere.
Let g1,492,¢3,-.. be an enumeration of QN [0, 1]. Let

Vg
Z 10k

The Pompeiu function is the inverse of this function, h = f~!.

The details appear in the exercises. Note especially that our
main goal is to prove that h is differentiable, A’ is bounded, b’ = 0
on a dense set and h' is positive and discontinuous on another dense
set, and A’ is not Riemann integrable.

For comparisons let us recall that in Exercise 7:4.2, we provided
an example of a differentiable function g with ¢’ bounded but discon-
tinuous on a nowhere-dense perfect set P. Because of Section 8.6.3
we know that if P does not have measure zero, such a function ¢’
will not be integrable, so we cannot write

(@) - (o) = [ (0 dt,

i.e., the Fundamental Theorem of Calculus does not hold for the
function g and its derivative g’. This is essentially how Volterra
constructed his example, by ensuring that the set P does not have
measure zero.

We also mentioned in Section 7.4 that it is possible for a differ-
entiable function f to have f’ discontinuous on a dense set and so
Pompeiu’s function justifies this comment.
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Exercises

9:7.1 Show that the function f(z) = (z — a)% has an infinite derivative at
z = a and a finite derivative elsewhere.

9:7.2 Let ¢1, 492,43, .. be an enumeration of QN[0,1]. For each k € IN let
1
fr(@) = (z —q)®. Let

Z 10k'

Show that the series defining f converges uniformly.
9:7.3 Show that f is continuous on [0,1].
9:7.4 Check that, for all z € R,

oo _2
(z—qr)”3
Z 10’“ Z 3 x 107

1

(This part is messy to prove. Indicate why it is that we cannot simply
apply Corollary 9.38 and differentiate term by term.)

9:7.5 Show that f'(z) = oo for all z € QN [0,1]. (There are also other
points at which f' is infinite; see Exercise 9:7.17.)

9:7.6 Show that f([0,1]) is an interval. Call it [a, b].
9:7.7 Let S = f(QnN[0,1]). Show that S is dense in [a, b].
9:7.8 Show that f has an inverse.

9:7.9 Let h = f~!. Show that h is continuous and strictly increasing on
[a, b].

9:7.10 Show that A’ = 0 on the dense set S.

9:7.11 Show that there exists v > 0 such that f'(z) >« for all z € [0,1].
9:7.12 Show that h is differentiable, and A’ is bounded.

9:7.13 Show that A’ > 0 on a dense subset of [a, b].

9:7.14 Show that A’ is discontinuous on a dense subset of [a, b].

9:7.15 Thus far we know that h is differentiable, has a bounded derivative,
h' = 0 on a dense set and h' is positive and discontinuous on another
dense set. Show that A’ is not Riemann integrable.

9:7.16 Show that {z : h'(z) # 0} does not have measure zero.

9:7.17 Show that there exists ¢ S such that h'(z) = 0 and that there
exists ¢t ¢ Q such that f'(t) = oc.
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9.8 Continuity and Pointwise Limits

Much of this chapter focused on the concept of uniform convergence
because of its role in providing affirmative answers to the questions
we raised in Section 9.1. In particular, we saw in Section 9.2 that
a pointwise limit of a sequence of continuous functions need not be
continuous. On the other hand, these problems will not occur if the
convergence is uniform.

There are, however, many situations in which pointwise conver-
gence arises naturally, but uniform convergence doesn’t. Consider,
for example, a function F' that is differentiable on IR. Then for
z € R,

Fz+i)-F
F'(z) = lim T nl) (@)
n—o00 -
If we define functions f, by
F(z+ 1) - F(z)
falz) = nl ’

then each of the functions f, is continuous on IR and f, — F’
pointwise.

Now, we have seen examples of derivatives that are discontin-
uous at many points. For example, the function A’ in Section 9.7
is discontinuous on a set that is dense in [0,1] and does not have
measure zero. Similarly, Exercise 7:4.2 provides an example of a dif-
ferentiable function g whose derivative ¢’ is discontinuous at every
point of a Cantor set that does not have measure zero. One might
ask the question, “Can the derivative of a differentiable function be
discontinuous everywhere?” We shall see that the answer is “no”.
In fact, the set of points of continuity must be large in the sense of
category—this set must be dense and of type G4, therefore residual
(Theorem 6.17).

We actually prove a more general theorem.

Theorem 9.39 Let {g,} be a sequence of continuous functions de-
fined on an interval I and converging pointwise to a function g on
1. Then the set of points of continuity of g forms a dense set of type
Gsin 1.

Proof. Let us first outline the idea of the proof, leaving the formal
proof for a moment. In Section 6.7 we defined the oscillation wy(zo)
of a funcion f at a point zy and showed (Theorem 6.25) that f is
continuous at o if and only if ws(zg) = 0. We now show that under
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the hypotheses of Theorem 9.39, wy(z) will be zero on a dense set.
That will imply that g is continuous on a dense set. This set must
be of type G5 (by Theorem 6.28).

We will argue by contradiction. We suppose that g is discontinu-
ous at every point of some subinterval J. We will then use the Baire
Category theorem (Theorem 6.11) to show that there exists n € IN
and an interval H C J such that wy(z) > 1/n at every point of
H. (This argument is valid for any function discontinuous at every
point of an interval J). We then use our hypotheses on g to show this
is impossible. We do this by applying the Baire Category theorem
once again to obtain a subinterval K of H which g maps onto a set
of diameter less than 1/n. This imples that w¢(z) < 1/n for every
z € K, a contradiction.

Now we can begin a formal proof of Theorem 9.39.

In order to obtain a contradiction we suppose that g is discon-
tinuous everywhere on some interval J C I. For each n € IN, let

E,={z € J:wy(z) >1/n}.
Each of the sets E,, is closed (by Theorem 6.27)and J = ;2| E,.

By the Baire Category theorem there exists n € IN and an in-
terval H C J such that E, is dense in H. The interval H has the
property that g maps every subinterval of H onto a set of diameter
at least 1/n. We now show this not possible for g, a pointwise limit
of continuous functions.

Let {I; = (ak,bx)} be a sequence of intervals, each of length less
than 1/n, such that

g(H) C |J I
k=1

For each k, let Hy = g~ '(Ix) N H. Then H = |J;o, H, but none of
the sets Hj can contain an interval ( since each Hj has length less
than 1/n, but wy(z) > 1/n for all z € H).

Now

Hy={z:g9(z) <bg}N{z:g(x) > ar}.
By Exercise 9:8.4, each of these sets is of type F,, thus Hp =
U;’;l Hy;, with each of the sets Hy; closed. It follows that

o o o
H=JH,=J | H-
k=1 k=1j=1

We have expressed the interval H as a countable union of closed
sets. It follows from the Baire Category theorem that at least one
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of these sets, say H;;, is dense in some interval K C H. Since H;;
is closed, H;; O K. But this implies that H; O K, which we have
seen is not possible (since each of the sets Hj, contains no intervals).
This contradiction completes the proof. |

Corollary 9.40 Let f be differentiable on an interval (a,b). Then
1! is continuous on a residual subset of (a,b). Thus the set of points
of continuity of f' must be dense in (a,b).

Note. Theorem 9.39 and Exercise 9:8.4 describe two important properties
of functions that are pointwise limits of sequences of continuous functions.
Each such function f is continuous on a residual set, and every set of the
form {z : f(z) > a} or {z: f(z) < a} is of type F,.

Theorem 9.39 can be generalized. If P is a nonempty closed subset of
the domain of f, then the function f|P is continuous on a dense G5 subset
of P.

The converses are also true®: A function f is a pointwise limit of a
sequence of continuous functions on an interval I if and only if for every
closed set P C I, f|P is continuous on a dense G5 in P, and this happens
if and only if every set of the form {z : f(z) > a} or {z : f(z) < a} is of
type Fs.

These theorems have many applications. Functions that are pointwise
limits of sequences of continuous functions are called Baire 1 functions. We
have seen that this class of functions contains the class of derivatives. It
also contains several other classes of functions we have encountered—the
monotonic functions and the semi-continuous functions.

3.

The exercises below may be instructive. You may need to use
one of the unproved statements in this section to work some of these
exercises.

Exercises

9:8.1 Give an example of a function F' that is differentiable on IR such
that the sequence

fa(@) = n(F(z+1/n) — F(z)),
converges pointwise but not uniformly to F”.
9:8.2 Give an example of a function f that is Baire 1 and a real number

a so that the sets {z : f(z) > a} and {z : f(z) < a} are not open.
Show that, for your example, these sets are of type F,.

3Proofs of these statements and many others can be found in Natanson, Theory
of Functions of a Real Variable, vol I, Chapter XV, Ungar (English translation).
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9:8.3 Give an example of a function f that is Baire 1 and a real number
a so that the sets {z : f(z) > a} and {z: f(z) < a} are not closed.
Show that, for your example, these sets are of type Gs.

9:8.4 Show that for any f that is Baire 1 and any real number a the sets
{z: f(z) > a} and {z : f(z) < a} are of type F,.

9:8.5 If f has only countably many discontinuities on an interval I, then f
is a Baire 1 function. In particular, this is true for every monotonic
function.

9:8.6 Let K be the Cantor set in [0,1]. Define
|1, ifzeK
(=) = { 0, elsewhere;

and

(z) = 1, if x is a one-sided limit point of K
g\ = 0, elsewhere.

(a) Show that f and g have exactly the same set of continuity
points.
(b) Show that f is a Baire 1 function, but g is not.

1, ifzeQ

9:8.7 Let f(z) = { 0, otherwise -

(a) Show that f is not a Baire 1 function.

(b) Show that f is a pointwise limit of a sequence of Baire 1 func-
tions. (Such functions are called functions of Baire class 2.)

9.9 Additional Problems for Chapter 9

9:9.1 Let f, : [0,1] = R be a sequence of continuous functions converging
pointwise to a function f. If the convergence is uniform, prove that
there is a finite number M so that |f,(z)| < M for all n and all
z € [0,1]. Even if the convergence is not uniform, show that there
must be a subinterval [a,b] C [0,1] and a finite number M so that
|fr(z)| < M for all n and all z € [a, b].

9:9.2 Let E be a set of real numbers, fixed throughout this exercise. For
any function f defined on E write

Iflloc = sup |f(z)].
z€eFE
Show that

(a) [|flleo =0 if and only if f is identically zero on E.
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(b) [leflloo = le|llf]loo for any real number c.

(©) [If +9lloo < [Iflloo + llglloc for any functions f and g.

(d) f. — f uniformly on E if and only if || f — fulloc = 0 as n — oo.
)

(e) fn converges uniformly on E if and only if || f, — frlloo = O as
n,m — oo.

(f) Using E = (0,1) and f,(z) = 2™ compute ||fn||cc and, hence,
show that {f,} is not converging uniformly to zero on (0,1).



