Chapter 8

THE INTEGRAL

8.1 Introduction

Calculus students learn two processes, both of which are described as
“integration”. The following two examples should be quite familiar:

/$3d:1: =z'/4+C
and )
/ ¥de =2"/4—1/4=16/4 —1/4 =15/4.
1

The first is called an indefinite integral or antiderivative and the
second a definite integral. The use of nearly identical notation, ter-
minology and methods of computation does a lot to confuse the un-
derlying meanings. Many calculus students would be hard pressed
to make a distinction.

Indeed even for many eighteenth century mathematicians these
two very different procedures were not much distinguished. It was a
great discovery that the computation of an area could be achieved
by finding an antiderivative. It is attributed to Newton but vague
ideas along this line can be found in the thinking of earlier authors.
For these mathematicians a definite integral was defined directly in
terms of the antiderivative.

This is most unfortunate for the development of a rigorous theory
and this was recognized by Cauchy. He saw clearly that it was vital
that the meaning of the definite integral be separated from the in-
definite integral and given a precise definition independent of it. For
this he turned to the geometry of the Greeks who had long ago de-
scribed a method for computing areas of regions enclosed by curves.
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Figure 8.1: Region bounded by z =1, z =2, y = 22, and y = 0.

This method, the so-called method of exhaustion, involves comput-
ing the areas of simpler figures (squares, triangles, rectangles) that
approximate the area of the region.

We return to the example ff z2 dz above interpreted as an area.
The region is that bounded on the left and right by the lines x =1
and = = 2, below by the line y = 0 and above by the curve y = z3.
(See Figure 8.1.)

Using the method of exhaustion we may place this figure inside
a collection of rectangles by dividing the interval [1,2] into n equal

sized subintervals each of length 1/n. This means selecting the points
1, 14+1/n, 14+2/n, ... 1+(n—1)/n

and constructing rectangles with vertices at these points. The total
area, of these rectangles exceeds the true area and is precisely
n
> (14 (k)/n)*(1/n).
k=1
The method of exhaustion requires a lower estimate as well and the
true area of the region must be greater than
n
D (1 + (k—1)/n)*(1/n).
k=1
(See Figure 8.2 for an illustration with n = 4.)

The method of exhaustion now requires us to show that as n
increases both approximations, the upper one and the lower one, ap-
proach the same number. Cauchy saw that because of the continuity
of the function f(z) = 3 these limits would be the same. More than
that any choice of points £ from the interval [14(k—1)/n, 1+ (k)/n]
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Figure 8.2: Method of exhaustion (n = 4).

would have the property that

would exist.
This procedure, borrowed very heavily from the Greeks, will work
for any continuous function and thus it offered to Cauchy a way to

define the integral
b
| t@ds

for any function f, continuous on an interval [a, b], without any ref-
erence whatsoever to notions of derivatives or antiderivatives. The
key ingredients here are first of all dividing the interval [a, b] into a
collection of nonoverlapping subintervals called a partition of [a, b],

[xoaxl]a [.’El,l‘Q], RS [wn—laxn]a

(it is not important that they have equal size, just that they get
small) and then forming the sums

> FE) (@ — zpa) (1)
k=1

with respect to this partition. The only constraint on the choice
of the points & is that each is taken from the appropriate interval
[zk—1, x] of the partition; these are often called the associated points.

It is an unfortunate trick of fate that the sums (1) which origi-
nated with Cauchy are called Riemann sums because of Riemann’s
later (much later) use of them in defining his integral.
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In this chapter we start with Cauchy’s methods of integration and
proceed to Riemann. The important thing for the student to keep
track of is how this theory develops in a manner that assigns meaning
to the integral of various classes of functions in a way quite distinct
from how we would compute an integral in a calculus course. It is of
course much easier to compute that f12 z3dz = 15/4 in the familiar
way, rather than as a limit of Riemann sums; but the meaning of
this statement is properly given in this more difficult way.

8.2 Cauchy’s First Method

Cauchy’s first goal in defining an integral was to give meaning to the
integral for continuous functions. The integral is defined as the limit
of Riemann sums. Before such a definition is valid one must show
that the limit exists. Thus the first step is the proof of the following
theorem.

Theorem 8.1 (Cauchy) Let f be a continuous function on an in-
terval [a,b]. Then there is a number I (called the definite integral of
f on [a,b]) such that for all € > 0 there is a § > 0 so that

n
S flr) e —zp1) —I| <e
k=1
whenever [z, z1], [T1,%2], - .. , [Tn—1,Zn], is a partition of the inter-
val [a, b] into subintervals of length less than § and each & is a point
in the interval [Tg_1, k)

Once the theorem is proved, then we can safely define the definite
integral of a continuous function as that number I guaranteed by the
theorem. Loosely speaking, we say that the integral is defined as a
limit of Riemann sums (1).

Definition 8.2 Let f be a continuous function on an interval [a, b].

Then we define
b
[ 1@ds
a

to be that number I whose existence is proved in Theorem 8.1.

Now we must prove Theorem 8.1.
Proof. For any particular partition (let us call it )

[.’120,.771], [.’131,.’1,‘2], LR [-Tn—IrTn]
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of the interval [a, b] write

M(m) = max{f(z): = € [zh_1,zk] Hzk — Tp_1)
k=1
and

m(m) =Y min{f(z) : z € [z 1,74}z — T4 1)
k=1

Here M(w) and m(w) depend on the partition 7. These are called
the upper sums and lower sums for the partition. Note that any
Riemann sum over this partition must lie somewhere between the
lower sum and the upper sum.

Since f is continuous on [a,b] it is uniformly continuous there
(Theorem 5.43). Thus for every € > 0 there is a 6 > 0 that depends

on € so that .

@)= fw)l <

if |z —y| < 6. Since we shall need to find a different ¢ for many
choices of € let us write it as d(e).

Thus if the partition we are using has the property that every
interval is shorter than §(¢) we must have

—a

£

max{f(a) : 2 € [or—1, 2]} — min{/(2) : 2 € [op-1,2)} <

It follows that for such partitions 0 < M(w) —m(7) < e.

Select a sequence of partitions {m,} each one containing all the
points of the previous partition and such that every interval in the
nth partition 7, is shorter than 6(1/n). If M(nr,) and m(m,) de-
note the corresponding sums for the nth partition of our sequence of
partitions as above then

0 < M(m,) —m(my,) < 1/n.

One more technical point needs to be raised. As we add points
to a partition the upper sums cannot increase nor can the lower
sums decrease. Thus M(m,) > M(wp+1) while m(m,) < m(mp41)-
(The details just require some inequality work and are left as Exer-
cise 8:2.17.)

Thus the intervals [m(m,), M (m,)] form a descending sequence
with lengths shrinking to zero. By Cantor’s intersection property
(see Section 4.5.2) there is a number I so that m(m,) — I and
M(m,) — I as n — o0o. We shall show that I has the property of
the theorem.
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Now let € > 0 and choose any partition = with the property that
every interval is shorter than §(e/2). By what we have seen above,
the interval [m(7), M ()] has length smaller than /2.

Any Riemann sum over the partition 7 must evidently belong to
the interval [m(w), M (rw)]. Let N > 2/e. Suppose for a moment that
the intervals [m(w), M ()] and [m(wy), M(7n)] intersect at some
point. In that case the Riemann sum over the partition 7 and the
value I (which is inside the interval [m(7n), M (7n )] must be closer
together than /2 +1/N which is smaller than e. As this is precisely
what we want to prove we are done.

It remains to check that the two intervals

[m(m), M(m)] and [m(mn), M(7n)]

intersect at some point. To find a point common to these two in-
tervals combine the two partitions 7 and wn to form a partition
containing all points in either partition. The Riemann sum over
such a partition belongs to the interval [m(w), M(w)] and also to
the interval [m(mx), M(nn)]. This completes the proof. (That the
number I here is unique is left as Exercise 8:2.2.) [

A special case of this definition and this theorem allows us to
compute an integral as a limit of a sequence. In practice this is
seldom the best way to compute it, but it is interesting and useful
in some parts of the theory.

Corollary 8.3 Let f be a continuous function on an interval [a,b]

Then )
b _n—
/af(x)dxznli_)rgobnaz:f(a—l—%(b—a)).

k=0

8.2.1 Scope of Cauchy’s First Method

It is natural to ask whether this method of Cauchy for describing
the integral of a continuous function would apply to a larger class
of functions. But Cauchy did not ask this question. His goal was to
assign a meaning for continuous functions, a class of functions that
was quite large enough for most applications. The only limitation he
might have seen was that this method would fail for functions having
infinite singularities (i.e., discontinuity points where the function is
unbounded). Thus he was led to the method we discuss in Section 8.4
as Cauchy’s second method. Cauchy and other mathematicians of
his time were sufficiently confused as to the meaning of the word
“function” that they might never have asked such a question.
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But we can. And many years later Riemann did too as we shall
see in Section 8.6. In the exercises you are asked to prove the fol-
lowing two statements:

The first method of Cauchy will fail if applied to an un-
bounded function f on an interval [a,b).

The first method of Cauchy succeeds if applied to any
function f that is bounded on an interval [a,b] and has
only finitely many discontinuities there.

The first statement shows that the method used here to define
an integral is severely limited. It can never be used for unbounded
functions. Since we have restricted it here to continuous functions
that is no problem; any function continuous on an interval [a,b] is
bounded there.

The second statement shows that the method is not, however,
limited only to continuous functions even though that was Cauchy’s
intention. Later on we will use the method to define Riemann’s inte-
gral which applies to a large class of (bounded) functions which are
permitted to have many, even infinitely many, points of discontinuity.

Exercises
8:2.1 To complete the computations in the introduction to this chapter
show that
n
lim Y (1+ (k)/n)*(1/n) = 15/4.

This computation alone should be enough to convince you that the
definition is intended theoretically and hardly ever used to compute
integrals.

8:2.2 Show that the number I in the statement of Theorem 8.1 is unique,
i.e., that there cannot be two numbers that would be assigned to the

symbol [ b f(z)dz
8:2.3 If f is constant and f(z) = « for all z in [a, b] show that

/ fz —a).

8:2.4 If f is continuous and f(z) > 0 for all z in [a, b] show that

/bf(a:)dw > 0.



8.2. Cauchy’s First Method 361

8:2.5 If f is continuous and m < f(z) < M for all z in [a, b] show that
b
m(b —a) < / f(@)dz < M(b—a).

8:2.6 Calculate fol 2P dx (for whatever values of p you can manage) by
partitioning [0, 1] into subintervals of equal length.

8:2.7 Calculate fab z? dzx (for whatever values of p you can manage) by par-
titioning [a, b] into subintervals [a, aq], [ag, ag?], . .. [ag™~!,b] where
aq™ = b. (Note that the subintervals are not of equal length, but
that the lengths form a geometric progression.)

8:2.8 Use the method of the preceding exercise to show that

2d;v_l
1 x2 2

and check it by the usual calculus method.
8:2.9 Compute the Riemann sums for the integral fab z=2dz (a > 0) taken
over a partition
[Zo, 1], [Z1,22], -, [Zn—1,Zn]
of the interval [a, b] and with associated points & = /Z;z;—1. What
can you conclude from this?
8:2.10 Compute the Riemann sums for the integral f: z=2dzx (a > 0)
taken over a partition
[-'L'O,-'El], [1'17 '1'2]7 tees [.’L’n_l,."l,'n]
of the interval [a,b] and with associated points

&= (L+2‘/‘H)2.

What can you conclude from this?

8:2.11 Show that

lim n 1 + 1 + 1 + 1 = 1
nsoo | (n+1)2 (0422 (n+3)2 (22 2
8:2.12 Calculate
el/n + 62/" 44 e(nfl)/n 4 en/n

lim
n—oo n
by expressing this limit as a definite integral of some continuous

function and then using calculus methods.

8:2.13 Express
1 & k
lim — —
ngn;on;f(n)

as a definite integral where f is continuous on [0, 1].
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8:2.14 Prove that the conclusion of Theorem 8.1 is false if f is not bounded.

8:2.15 Prove that the conclusion of Theorem 8.1 is true if f is continu-
ous at all but a finite number of points in the interval [a,b] and is
bounded.

8:2.16 Prove that the conclusion of Theorem 8.1 is true for the function
f defined on the interval [0, 1] as follows: f(0) = 0 and f(z) =27"
for each 27" 1 <2 < 27" (n =0,1,2,3,...). How many points of
discontinuity does f have in the interval [0,1]? What is the value of
the number [ in this case?

8:2.17 For a bounded function f and any partition 7

[x07m1]7 [x17$2]7 LR} [xnflaxn]

of the interval [a, b] write

M(fm) = 3 max{f(@) 2 € lox 1, 4]}k — 75 1)
and .

m(f,m) = kfjlmin{f@:) € [, o} ok — 0 1)

These are called the upper sums and lower sums for the partition for
the function f.

(a) Show that if 7y contains all of the points of the partition
then

m(faﬂ-l) Sm(faﬂ-2) < M(f7772) < M(f,ﬂ']_).

(b) Show that if m; and 7y are arbitrary partitions and f is any
bounded function then

m(f,7r1) S M(f, 7r2).

(c) Show that if 7 is any arbitrary partition and f is any bounded
function on [a, b] then

c(b—a) <m(f,m) < M(f,m) <C(b-a)
where C' = sup f and ¢ = inf f.
(d) Show that with any choice of associated points the Riemann
sum over a partition 7 is in the interval [m(f,7), M (f,x)].

(e) Show that, if f is continuous, every value in the interval be-
tween m(f,7) and M (f,n) is equal to some particular Riemann
sum over the partition 7« with an appropriate choice of associ-
ated points .

(f) Show that if f is not continuous the preceding assertion may
be false.
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8.3 Properties of the Integral

The integral has thus far been defined just for continuous functions.
We ask what properties it must have. Later on we shall have to
extend the scope of the integral to much broader classes of functions.
It will be important to us then that the collection of elementary
properties here will still be valid.

These properties exhibit the structure of the integral. They are

the most vital tools to use in handling integrals both for theoret-
ical and practical matters. Since we are restricted to continuous
functions in this section, the proofs are very simple. As we enlarge
the scope of the integral the proofs may become more difficult, and
subtle differences in assertions may arise.
Note. All functions f and g appearing in the statements are assumed to
be continuous on the intervals [a,b], [b,¢] , [a,¢] in the statements. Thus
the integrals all have meaning. This means we do not have to prove that
any of these integrals exist: they do. It is the stated identity that needs
to be proved in each case. To prove that we can consider a sequence of
partitions m,, chosen so that the points in the partition are closer together
than 1/n. Let us use the notation S(my,, f) to denote a Riemann sum taken
over this partition for the function f with associated points chosen (say)
at the left hand endpoint of the corresponding intervals. Then

b
lim S(mn, f) = / f(z) da.

n—oo

We shall use this idea in the proofs.
8.4 (Additive Property) Let f be continuous on [a,c]. Then

Lbf(x)dm+/bcf(x)dm: /:f(m)dx.

Proof. For our sequence of partitions we choose 7, to be a partition
of [a, | chosen so that the points in the partition are closer together
than 1/n and so that the point b is one of the points. Each partition
7, splits into two parts; «, and 7)) where the former is a partition
of [a,b] and where the latter is a partition of [b, c|. Note that

S(mn, f) = S(mn, ) + S(m, f)
by elementary arithmetic. If we let n — oo in this identity we obtain
immediately the identity in the statement we wish to prove. |

8.5 (Linear Property) Let f and g be continuous on [a,b].

/ab[af(x) + Bg(x)] dx = a/abf(x) dz +ﬂ/abg(x) dr
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for all a, B € IR.

Proof. Again consider a sequence of partitions of [a, b], 7, chosen
so that the points in the partition are closer together than 1/n. If
S(my, f) denotes a Riemann sum taken over this partition for the
function f then

Tim S(m, f) = /f

In the same way for ¢ we would have

b
Jim S(ru.g) = [ gla)da.
But it is easy to check that
S(mn, af + Bg) = aS(mn, f) + BS(Tn, 9)

and taking n — oo in this identity gives exactly the statement in the
property. Note that we do not have to prove that

b
S(mmraf + Bg) — / [of (z) + Bg()) d.

This we already know, by Theorem 8.1, because the integrand is
continuous. |

8.6 (Monotone Property) Let f and g be continuous on [a,b].

Then , ,
/ flz)dz < / g(z) dzx.
if f(z) < g(z) for alla <z <b.

Proof. Consider a sequence of partitions 7, chosen so that the
points in the partition are closer together than 1/n. If S(m,, f)
denotes a Riemann sum taken over this partition for the function f
then

Tim S(ma, f) = /f dz.

In the same way for g we would have

b

lim S(mp,9) :/ g(z) dz.

n—oo a

But since f(z) < g(z) for all z we must have
S(ﬂ'naf) < S(ﬂ'nag)'

Taking limits as n — oo in this inequality yields the property. B
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8.7 (Absolute Property) Let f be continuous on [a,b).

_/ab|f(x)|dxg/abf(x)dxs/ablf(w)ldw

or, equivalently,
b b
[ 1@as| < [(17(e) s
a a

Proof. This follows immediately from the monotone property

because —|f(z)| < f(z) < |f(2)]- u

Fundamental Theorem of the Calculus The next two proper-
ties are known together as the fundamental theorem of the calculus.
They establish the close relationship between differentiation and in-
tegration and offer, to the calculus student, a useful method for the
computation of integrals. This method reduces the computational
problem of integration (i.e., computing a limit of Riemann sums) to
the problem of finding an antiderivative.

8.8 (Differentiation of the Indefinite Integral) Let f be con-
tinuous on [a,b]. The function

/fdt

has a derivative on [a,b] and F'(z) = f(z) at each point.

Proof. Let h >0 and z € [a,b). We compute

z+h
Flo+h)~F@) = hfe) = [ (1)~ f(a)at
T
provided only that = + h < b. Thus, using Exercise 8:3.1, we have
[F(z+h) — F(z) — hf(z)| < hmax{|f(t) — f(z)| : t € [z,x + ]}
and hence that
Flx+h)—F(zx
D =Flo)
As f is continuous at x
max{|f(t) — f(z)|: t € [z,z+h]} =0
as h — 0+ and this inequality shows that the right hand derivative
of F at x € [a,b) is exactly f(z).

A similar argument would show that the left hand derivative of
F at z € (a,b] is exactly f(z). This proves the property. [ |

< max{|f(t) — f(z)|: t € [z, + h]}.
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8.9 (Integral of a Derivative) If the function F has a continuous
derivative on [a,b] then

b
/ F'(s)ds = F(b) — Fl(a).

a
Proof. Given any € > 0 there is a § > 0 so that any Riemann sum
for the continuous function F’ over a partition of [a, b] into intervals

of length less than § is within € of fab F'(z)dz. If

[0, z1], [z1,22], ..., [Tn—1,Zn]
is such a partition then observe that, if we choose the associated
points & € [zg_1, k] by the mean value theorem in such a way that

F(xy) — F(zp—1) = F' (&) (zr — zp-1)
then we will have
F(b) — F(a) ZZF(%) — F(zg-1) ZF &) (T — Th—1)-
k=1

Since the right hand side of the identity is within ¢ of f F'(z)dz so
too must be the value F(b) — F(a). But this is true for any e>0
and hence it follows that these must be equal, i.e., that

b
/ F'(z) dz = F(b) — F(a).

Exercises
8:3.1 If f is continuous on an interval [a, b] and
M = max{|f(z)| : 2 € [a, b]|}
show that

z)dz| < M(b—a).

8:3.2 (Mean Value Theorem for Integrals) If f is continuous show
that there is a point £ in (a,b) so that

b
/ f(@)dz = £(©)(b - a).

8:3.8 If f is continuous and m < f(z) < M for all = in [a, b] show that

/ d:z:</f d;c<M/

for any continuous, nonnegative function g.
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8:3.4 If f is continuous and nonnegative on an interval [a, b] and

b
/ f@)de =0
show that f is identically equal to zero there.

8:3.5 If f and g are continuous on an interval [a,b] show that there is a
number ¢ € (a,b) such that

b b
| f@e@do=1© [ g o
8:3.6 If f is continuous on an interval [a,b] and

b
/ f(@)g(z) dz =0

for every continuous function g on [a,b] show that f is identically
equal to zero there.

8:3.7 (Integration by parts) Suppose that f, g, f’ and ¢’ are continuous
on [a,b]. Establish the integration by parts formula

b b
/ f(w)g'(w)de[f(b)g(b)—f(a)g(a)]—/ f'(@)g() da.

8:3.8 (Integration by substitution)

State conditions on f and g so that the integration by substitution

formula
g(b)

b
/ Flo(@))d' (@) de = / f(s)ds
a .9(‘1)

is valid.

8:3.9 State conditions on f, g and h so that the integration by substitution
formula

g(h(b))

b
/ Fa(h(2)))g (h(@))H (z) do = / f(s)ds
a g(h(a))

is valid.

8:3.10 If f and g are continuous on an interval [a, b] show that

bf(:v)g(w)dw 25 b[f(w)]zdx b[g(w)]Qdﬂf
J J J

This is called the Cauchy-Schwartz inequality and is the analog for
integrals of that inequality in Exercise 3:5.12
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8.4 Cauchy’s Second Method

Defining an integral only for continuous functions, as we did in the
preceding section, is far too limiting. Even in the early nineteenth
century the need for considering more general functions was appar-
ent. For Cauchy this meant handling functions that have discontinu-
ities. But Cauchy would not have felt any need to handle badly dis-
continuous functions, indeed he may not even have considered such
objects as functions. In our terminology we could say that Cauchy
was interested in extending his integral from continuous functions to
functions possessing isolated discontinuities (i.e., the set of disconti-
nuity points contains only isolated points).

We have already noted in Section 8.2.1 that bounded functions
with isolated discontinuities present no difficulties. Cauchy’s first
method can be applied to them. It is the case of unbounded functions
that offers real resistance. What should we mean by the integral

/1d_x?
0 VT

While the integral has only one discontinuity (at z = 0) the function
is unbounded and Cauchy’s first method cannot be applied. If the
integral did make sense then we would expect that the function
Udx

5 VT
would be defined and continuous everywhere on the interval [0, 1] and
the value F'(0) would equal our integral. But here F'(x) is not defined
at z = 0 although it is defined for all z in (0, 1] since the integrand
is continuous on any interval [z,1] for z > 0. If we compute it we
see that

F(é)

Udx

F(6) = — =2—-2V4.

©) 5 Ve Vo
While we cannot take F'(0) itself (it is not defined), we can take the

limit,
1

lim F(6) = lim d
50+ -0+ Js VT

as a perfectly reasonable value for the integral.

Indeed if we consider this as a problem in determining the area
of the unbounded region in Figure 8.3 we should likely come up with
the same value 2 as our answer.

This is precisely Cauchy’s second method. If you understand this
example, you understand the method. Any general write up of the

=2
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0 1

—-1/2

Figure 8.3: Integral fol x dz considered as an area.

method might obscure this very simple idea. We need some language,
however. The procedure of taking a limit to obtain the final value
of the integral may or may not work. If the limit does exist we say
that the integral conwverges or is a convergent integral. Otherwise
the integral is said to be divergent. We say that the function f
is integrable by Cauchy’s second method or simply integrable if the
context is clear.

We give a formal definition valid just in the case that the function
has one point of unboundedness and that point occurs at the left
hand endpoint of the interval. For more than one point or for a point
not at an endpoint the definition is best generalized by splitting the
integral into separate integrals each of which can be handled one at
a time in this fashion. (See Exercise 8:4.3.)

Definition 8.10 Let f be a continuous function on an interval (a, b]
that is unbounded in every interval (a,a + ¢). Then we define

/abf(m)dx

b
li d
(5—1)%1-1- atd f (z) o

to be

if this limit exists, and in this case the integral is said to be conwver-
gent. If both integrals

/abf(w)dac and /ab|f(ac)|d:c

converge the integral is said to be absolutely convergent.

The role of the extra condition of absolute convergence is much
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like its role in the study of infinite series. You will recall that abso-
lutely convergent series are more “robust” in the sense that they can
be rather freely manipulated, unlike the nonabsolutely convergent
series that are rather fragile. The same is true here of absolutely
convergent integrals. Note that the integral fol z~Y2 dz considered
above is convergent and absolutely convergent merely because the
integrand is nonnegative.

Exercises

8:4.1 Formulate a definition of the integral f: f(z) dz for a function con-
tinuous on [a, b) and unbounded at the right hand endpoint. Supply
an example.

8:4.2 Formulate a definition of the integral f: f(x) dzx for a function con-
tinuous on [a,c¢) and on (¢, b] and unbounded in every interval con-
taining c¢. Supply an example.

8:4.3 How would an integral of the form
/ ? /(=)
o Vlz(@—1)(z - 2)(z - 3)|

be interpreted, where f is continuous?

dx

8:4.4 Let f and g be continuous on (a,b] and such that |f(z)| < |g(z)|
for all a < z < b. If the integral f; g(x) dz is absolutely convergent,
show that so also is the integral fab f(z)dz.

8:4.5 For what continuous functions f must the integral
[ e,
-1V 1-— .’E2
converge?

8:4.6 Let f be a bounded function, continuous on (a,b] and that is dis-
continuous at the endpoint a. Show that if the second method of
Cauchy is applied to f then the result is the same as applying the
first method to the entire interval [a,b] (regardless of the value as-
signed to f(a)).

8:4.7 Suppose that f is continuous on [—1,1] except for an isolated dis-
continuity at = 0. If the limit

-5 1
51—i>%1+< B f(x) dx+/6 f(x)dm)

exists does it follow that f is integrable on [—1,1]?
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8:4.8 As a project determine which of the properties of the integral in
Section 8.3 (which apply only to continuous functions on an interval
[a,b]) can be extended to functions that are integrable by Cauchy’s
second method on [a, b]. Give proofs.

8.5 Cauchy’s Second Method (continued)

The same idea that Cauchy used to assign meaning to the integral of
unbounded functions he also used to handle functions on unbounded
intervals. How should we interpret the integral

(e o]
dz,
1 z?

We might try first to form a partition of the unbounded interval
[1,00) and seek some kind of limit of Riemann sums. A much simpler
idea is to adapt Cauchy’s second method to this in the obvious way.

00 X
1
/ d—leim d—ﬂ;:lim (1——)21.
1 A X—o0 1 A X—00 X

This is precisely Cauchy’s second method applied to unbounded
intervals. Again, if you understand this example, you understand
the method.

We give a formal definition valid just for an infinite interval of
the form [a, 00). The case (—o0, ] is similar. The case (—o0, +00) is
best split up into the sum of two integrals, from (—o00,a] and [a, 00)
each of which can be handled in this fashion. (See Exercise 8:5.2.)

Definition 8.11 Let f be a continuous function on an interval [a, 00).

Then we define -
/ f(x)dx
a

lim / Y o) de

X—00

to be

if this limit exists, and in this case the integral is said to be conver-
gent. If both integrals

/aoof(a:)d:c and /aoo|f(a:)|da:

converge the integral is said to be absolutely convergent.

Again, the role of the extra condition of absolute convergence is
much like its role in the study of infinite series. Note that the in-
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tegral floo z~ 2 dz considered above is convergent and also absolutely
convergent merely because the integrand is nonnegative.

Exercises

8:5.1 Formulate a definition of the integral ffoo f(z)dz for a function

continuous on (—o0, b]. Supply examples of convergent and divergent
integrals of this type.

8:5.2 Formulate a definition of the integral ffooo f(z) dz for a function con-

tinuous on (—o0,00). Supply examples of convergent and divergent
integrals of this type.

8:5.3 For what values of p is the integral floo P dx convergent?

o0
/ e % dx = nl.
0

8:5.5 Let f be a continuous functlon on [1,00) such that lim, . f(z) = a.
Show that if the integral f1 x) dz converges then a must be 0.

8:5.4 Show that

8:5.6 Let f be a continuous function on [1,00) such that the integral
[;° f(z) dz converges. Can you conclude that lim,_,o f(z) = 07

8:5.7 Let f be a contmuous decreasing function on [1, oo) Show that
the integral fl z) dz converges if and only if the series >, f(n)
converges.

8:5.8 Give an example of a function f continuous on [1,00) so that the
integral [~ f(z)dz converges but the series > oo | f(n) diverges.

)

c

=1
8:5.9 Give an example of a function f continuous on [1,00) so that the
integral fl z) dz diverges but the series Y - | f(n) converges.

o
sinz
dz
0 T

is convergent but not absolutely convergent. (Note it may seem to
require special handling at the left hand endpoint but it does not.)

8:5.10 Show that

8:5.11 (Cauchy Criterion for Convergence) Let f : [a,00) = IR be a
continuous function. Show that the integral f f(z) dx converges if
and only if for every € > 0 there is a number M so that

/Cdf(x) dz

<eg

for all M < ¢ < d.
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8:5.12 (Cauchy Criterion for Absolute Convergence) Let f : [a,00) —
R be a continuous function. Show that the integral faoo f(z) dz con-
verges absolutely if and only if for every ¢ > 0 there is a number M
so that

d
/ 1f(2)] dz <
for all M < ¢ < d.

8:5.13 As a project determine which of the properties of the integral in
Section 8.3 (which apply only to continuous functions on a finite
interval) can be extended to integrals on an infinite interval [a, 0o].
Give proofs.

8.6 The Riemann Integral

Thus far in our discussion of the integral we have defined the meaning

of the symbol
b
[ 1@
a

first for all continuous functions, by Cauchy’s first method, and then
for functions that may have a finite number of discontinuities at
which the function is unbounded, by Cauchy’s second method.

Let us return to Cauchy’s first method, but this time with rather
more ambition. We ask just how far this method can be applied.
It can be applied to all continuous functions; that was the content
of Theorem 8.1. It can be applied to all bounded functions with
finitely many discontinuities (Exercise 8:2.15). It can be applied to
some bounded functions with infinitely many discontinuities (Exer-
cise 8:2.16).

Rather than search for broader classes of functions to which this
method applies we adopt the viewpoint that was taken by Riemann.
We simply define the class of all functions to which Cauchy’s first
method can be applied and then seek to characterize that class. This
represents a much more modern point of view than Cauchy would
have taken with his much more limited idea of what a function is.
Note that we need only turn Theorem 8.1 into a definition.

Definition 8.12 Let f be a function on an interval [a,b]. Suppose
that there is a number I such that for all € > 0 there is a § > 0 so
that

Zf(&c)(wk —xp_1) —I|<e

k=1
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whenever [zg, z1], [£1,%2], ... , [Zn_1, Tn], is a partition of the inter-
val [a, b] into subintervals of length less than § and each & is a point
in the interval [zy_1,zg]- Then f is said to be Riemann integrable

on [a,b] and we write
b
/ f(z)dz

We can call the set of points

for that number I.

= {0, T1,%2, -, Tp_1,Tn}
the partition of the interval [a, b] or equivalently, if it is more conve-
nient, the set of intervals

[‘Toa wl]a [151, ‘TZ]a IRRN [xn—la ‘Tn]
can be called the partition. The points & that are chosen from each
interval [zy_1,x] are called the associated points of the partition.
Notice that in the definition the associated points can be freely cho-
sen inside the intervals of the partition.

Loosely a function f is Riemann integrable if the limit of the
Riemann sums for f exists over that interval. The program now is
to determine what classes of functions are Riemann integrable and
to obtain characterizations of Riemann integrability. This we shall
investigate in the remainder of this section.

We need also to find out whether the properties of the integral
that hold for continuous functions now continue to hold for all Rie-
mann integrable functions. We shall consider that in the next sec-
tion.

Two observations are immediate from our earlier work and also
very important:

All continuous functions are Riemann integrable.
All Riemann integrable functions are bounded.

In light of this last statement we see that the Riemann inte-
gral is somewhat limited in that it will not do anything to handle
unbounded functions. For that we must still return to Cauchy’s
second method. But, as we shall see, the Riemann integral will han-
dle many bounded functions that are quite badly discontinuous (but
not too badly). As research progressed in the nineteenth century the
Riemann integral became the standard tool for discussing integrals
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of bounded functions. For unbounded functions Cauchy’s second
method continued to be employed although other methods emerged.

By the early twentieth century the Riemann integral was aban-
doned by all serious analysts in favor of Lebesgue’s integral. The
Riemann integral survives in texts such as this mainly because of the
technical difficulties of Lebesgue’s better, but more difficult, meth-
ods.

8.6.1 Some Examples

All Riemann integrable functions are bounded. All continuous func-
tions are Riemann integrable. In order to obtain some insight into
the question as to what functions are Riemann integrable we present
some examples, first of a bounded function which is not and then,
second, of a quite badly discontinuous function which is integrable.

Example 8.13 Here is an example of a function that is bounded
but “too discontinuous” to be Riemann integrable. On the interval
[0,1] let f be the function equal to 1 for z rational and to 0 for x
irrational. Let

[zo,z1], [z1,22], ..., [Tn_1,2n]

be any partition. If we choose associated points & € [zy_1, k]| so
that & is rational then the Riemann sum

n n

> FE) @k — zho1) =D (T — Tp—1) =1 (2)

k=1 k=1
while if we choose associated points 7y € [zg_1,zk] so that 7 is
irrational

> )@k — z—1) = 0. (3)
k=1

Because of (2) and (3) the integral fol f(z) dz cannot exist. <

Example 8.14 Recall the Dirichlet function (Section 5.2.6) that
provides an example of a function that is discontinuous at every
rational number and continuous at every irrational. We show that
this function is Riemann integrable. On the interval [0, 1] let f be
the function equal to 1/q for x = p/q rational (assuming that p/q
has been expressed in its lowest terms) and to 0 for z irrational.
Let ¢ > 0. Let go be any positive integer larger than 2/c. We
count the number of points z in [0, 1] at which f(z) > 1/go. There
are finitely many of these, say M of them. Choose §; sufficiently



376 Chapter 8. The Integral

small so that any two of these points are further apart than 24;.
Choose § < ¢ so that (for reasons which become clear only after all
our computations are done) M§ < /2. This will allow us to use the
inequality

M +1/qo <e. (4)
Let

[1‘07 ml]a [Ila 1‘2]7 R ['/Enfla -’L‘n]

be any partition chosen so that each of the intervals is shorter than
J.

For any choice of associated points & € [zg_1, zx] we note that
either (i) f(&) = 0 if & is irrational, or (ii) f(&) > 1/qo if & is one
of the M points counted above, or (iii) 0 < f(&) < 1/qp is any other
rational point. We can estimate the Riemann sum

n

Z f (&) (zk — zp—1)

k=1
by considering separately these three cases. Case (i) evidently con-
tributes nothing to this sum. Case (ii) can contribute at most M4 to
this sum since each interval in the partition can contain at most one
of the points of type (ii) and there are only M such points. Finally
case (iii) can contribute in total no more than 1/gy. Thus, using the
inequality (4), we have

0< Zf(&c)(ﬂck — 1) S M6 +1/q <e.
k=1

This proves that the integral fol f(z)dx = 0. Considering just how
discontinuous this function is (it has a dense set of discontinuities)
it is quite startling that it is nonetheless integrable. |

8.6.2 Riemann’s Criteria

What bounded functions then are Riemann integrable? The answer
is that such functions must be “mostly” continuous. The example
of the very discontinuous function in Example 8.13 suggests this.
On the other hand Example 8.14 shows that the discontinuities of
a Riemann integrable function might even be dense. Riemann first
analyzed this by using the oscillation of the function f on an interval.
We recall (Definition 6.24) that this is defined as
wf([e,d]) = sup f(z)— inf f(x).
z€[c,d]

z€[e,d



8.6. The Riemann Integral 377

This measures how much the function f changes in the interval [c, d].
For a continuous function this is just the difference between the
maximum and minimum values of f on [c, d] and will be small if the
interval [c, d] is small enough.

Theorem 8.15 (Riemann) A function f defined on an interval
[a,b] is Riemann integrable if and only if for every € > 0 there is a
0 >0 so that
n

wa([xk—laxk])(-Tk —zk-1) <€

k=1
whenever [z, 1], [£1,%2], ... , [Tn_1,%x], i a partition of the inter-
val [a,b] into subintervals of length less than 4.

Proof. If f is Riemann integrable on [a,b] with integral I then
then for any € > 0 there must be a § > 0 so that any two Riemann
sums taken over a partition with intervals smaller than § are both
within /4 of I. In particular then we have

D F &)k — zho1) =D f () (wx — wp1)| < e/2
k=1 k=1
whenever [zg, z1], [£1,%2], .- . , [Zn—1,Zn], is a partition of the inter-

val [a,b] into subintervals of length less than §. Here & and 7 are
any choices from [zy_1,zx]. We rewrite this as

<eg/2<e. (5)

D 1) = )@k — zx)
k=1

Now notice that

sup (£(6) ~ I (0) = wf (s, ).

N,€€ [Tk—1,Tk]
Thus we see that the criterion follows immediately on taking sups
over these choices of ; and 7y in the inequality 5.

The other direction of the theorem can be interpreted as a “Cauchy
criterion” and proved in a manner similar to all our other Cauchy
criteria so far in the text (indeed very like the proof of Theorem 8.1).
We omit the details. |

Theorem 8.15 offers an interesting necessary and sufficient con-
dition for integrability. It is rather awkward to use the sufficiency
criterion here since it demands we check that all small partitions
have a certain property. The following variant is a little easier to
apply since we need find only one partition for each positive €.
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Theorem 8.16 A function f on an interval [a,b] is Riemann inte-
grable if and only if for every € > 0 there is at least one partition
[zo,z1], [z1,22], -.- , [Tn—1,2n], of the interval [a,b] so that

n

wa([mkfl,xk])(xk — T 1) <E.

k=1
Proof. By Theorem 8.15 we see that if f is Riemann integrable
there would have to exist such a partition.

In the opposite direction we must show that the condition here
implies integrability. Certainly this condition implies that f is bounded
(or else this sum would be infinite) and so we may assume that
|f(z)| < M for all z. This gives us a useful, if crude, estimate on
the size of the oscillation on any interval [c, d]:

wi(fe,d]) < 2M.
Let ¢ > 0. We shall find a number § so that the criterion of
Theorem 8.15 is satisfied. Let [zg, z1], [z1, 2], - .. , [Tn—1,2Zn] be the

partition whose existence is given. We use that to find our §. Choose
¢ sufficiently small so that
2Mné < e.
Now let
[yOa yl]a [yla y2]7 RN [ym—laym]a

be any partition of the interval [a, b] into subintervals of length less
than §. These intervals are of two types: type (i) are those that are
contained entirely inside intervals of our original partition, and type
(ii) are those that include as interior points one of the points zj, for
k=1,2,...,n—1. In any case there are only n — 1 of these intervals
and each is of length less than . Thus, using just a crude estimate
on each of these terms, the intervals of type (ii) contribute to the

sum
m

> wf(lye—1,ue)) (e — vr1)

k=1
no more than (2M)nd. The sum taken over all the type (i) intervals
must be smaller than

wa([wk_l,wk])(wk —xzp_1) < €.
k=1

Thus the total sum

m

> wf([ye—1,ve) (U — yr—1) < 2Mnd + ¢ < 2.
k=1
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It follows by the criterion in Theorem 8.15 that f is Riemann inte-
grable as required. |

8.6.3 Lebesgue’s Criterion

Theorem 8.15 is very beautiful and seemingly characterizes the class
of Riemann integrable functions in a meaningful way. But at the time
of Riemann there was only an imperfect understanding of sets of real
numbers and so it did not occur to Riemann that the property of
Riemann integrability for a bounded function f depended exclusively
on the nature of the set of points of discontinuity of f. Indeed the

condition
n

wa([iﬂk—l,ivk])(wk —Tp1) <€

k=1
on the oscillation of the function suggests that something more subtle
than just this is happening.

In 1901 Henri Lebesgue completed this theorem by using the no-
tion of a set of measure zero. Recall (from Section 6.8) that a set
E of real numbers is of measure zero if for every € > 0 there is a
sequence of intervals {(¢;, d;)} covering all points of E and with total
length >, (d; —¢;) < e. The exact characterization of Riemann in-
tegrable functions is precisely this: they are bounded (as we already
well know) and they are continuous at all points except perhaps at
the points of a set of measure zero. (In modern language they are
said to be continuous almost everywhere.)

Theorem 8.17 (Riemann—Lebesgue) A function f on an inter-
val [a,b] is Riemann integrable if and only if f is bounded and the
set of points in [a,b] at which f is not continuous is a set of measure
zero.

Proof. The necessity is not difficult to prove, but is the least
important part for us. The sufficiency is more important and harder
to prove. Throughout the proof we require a familiarity with the
notion of the oscillation w¢(x) of a function f at a point z as discussed
in Section 6.7. Recall that this value is positive if and only if f is
discontinuous at z.

Let us suppose that f is Riemann integrable. Certainly f is
bounded. Fix e > 0 and consider the set N(e) of points z such that
the oscillation of f at z is greater than e, i.e., so that

wr(z) > e.
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Any interval (c,d) that contains a point z € N(e) will certainly have

wf([e,d]) > e.

Let € > 0 and use Theorem 8.15 to find intervals

[zo,z1], [T1,22], -+ [Tn-1,2Zn],
forming a partition of the interval [a, b] and such that
n

wa([:z:k,l, zp|(z) — T—1) < €€/2.

k=1
Select from this collection just those intervals that contain a point
from N (e) in their interior. The total length of these intervals cannot
exceed (e€)/(2e) since for each such interval [zj_1, z;] we must have
wf([zk-1,zk]) > €.

Thus we have succeeded in covering the set N(e) by a sequence
of open intervals (zy_1,zg) of total length less than £/2, except for
an oversight. One or more of the points {z;} might be in the set
N(e) and we have neglected to cover it. Since there are only finitely
many such points we can add a few sufficiently short intervals to our
collection.

Thus we have proved that for any € > 0 the set N(e) can be
covered by a collection of open intervals of total length less than
e. It follows that N(e) has measure zero. But the set of points of
discontinuity of f is the union of the sets N (1), N(1/2), N(1/4),
N(1/8), ... . Since each of these is measure zero it follows from
Theorem 6.34 that the set of points of discontinuity of f has measure
zero too as required.

This proves the theorem in one direction. In the other suppose
that f is bounded, say that |f(z)| < M for all z and that the set E of
points in [a, b] at which f is not continuous is a set of measure zero.
Let € > 0. By Theorem 8.16 we need to find at least one partition

[3707551]7 [‘(Bla ‘Z‘Q]’ SRR [xn—la xn]a
of the interval [a, b] so that

n
wa([wk_l,wk])(wk —zp-1) <E.
k=1
Let E; denote the set of points z in [a, b] at which the oscillation
is greater than or equal to €/(2(b — a)), i.e., for which

w(z) > e/(2(b—a)).
This set is closed (see Theorem 6.27) and, being a subset of E, it
must have measure zero. Now closed sets of measure zero can be
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covered by a finite number of small open intervals of total length
smaller than

e/(4M + 1).

(See Theorem 6.35.) We can assume that these open intervals do not
have endpoints in common. Note that, at points in the intervals that
remain, the oscillation of f is smaller than €/(2(b—a)). Consequently
these intervals may be subdivided into smaller intervals on which the
oscillation is at least that small (Exercise 8:6.6).

Thus we may construct a partition

[0, z1], [z1,22], ---, [Tn-1,Tn],
of the interval [a, b] consisting of two kinds of closed intervals: (i) the
first kind cover all the points of F; and have total length smaller
than €/(4M + 1) and (ii) the remaining kind contain no points of
FE4 and the oscillation of f on each of these intervals is smaller than
e/(2(b — a)), ie.,
wf([ze-1,zk]) <e/(2(b— a)).

The sum
n

> wf([#e-1,2x)) (2 — 2x1)

k=1
splits into two sums depending on the intervals of type (i) or type (ii).
The former sum contributes no more than

(2M) xe/(AM +1) < e/2

while the latter sum contributes no more than

e/(2(b—a)) x (b—a) <e/2.
Altogether then

> wf([zr—1, ze]) (@ — zp-1) <€
k=1
and the proof is complete. |

8.6.4 'What functions are Riemann integrable?

Theorem 8.17 exactly characterizes those functions that are Riemann
integrable as the class of bounded functions that do not have too
many points of discontinuity. We should recognize immediately that
certain types of functions that we are used to working with are also
integrable. We express these as corollaries to our theorem. (Recall
that step functions were defined in Section 5.2.6.)
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Corollary 8.18 FEwvery step function on an interval is Riemann in-
tegrable there.

Proof. A step function is bounded and has only finitely many
discontinuities. Thus the set of discontinuities has measure zero.
Consequently the corollary follows from Theorem 8.17. ]

Corollary 8.19 FEwvery bounded function with only countably many
points of discontinuity in an interval is Riemann integrable there.

Proof.  The corollary follows directly from Theorem 8.17 since
countable sets have measure zero. |

Corollary 8.20 FEvery function monotonic on an interval is Rie-
mann integrable there.

Proof. A monotonic function is bounded and has only countably
many discontinuities. Consequently this corollary follows from the
preceding corollary. [ |

Corollary 8.21 If a function f is Riemann integrable on an interval
[a, b] then so too is the function |f| on that interval.

Proof. The corollary follows directly from Theorem 8.17 since if f
is Riemann integrable on [a,b] it must be bounded and continuous
at every point except a set of measure zero. FExercise 8:6.7 shows
that | f| has precisely the same properties. [ |

Exercises

8:6.1 Show directly from Theorem 8.16 that the characteristic function of
the rationals is not Riemann integrable on any interval.

8:6.2 Show that the product of two Riemann integrable functions is itself
Riemann integrable.

8:6.3 If f is Riemann integrable on an interval and f is never zero does it
follow that 1/f is Riemann integrable there? What extra hypothesis
could we invoke to make this so?

8:6.4 If f is Riemann integrable on an interval [a,b] show that for every
€ > 0 there are a pair of step functions L(z) < f(z) < U(z) so that

[(U@) - L(z)) dz < e.

8:6.5 Let f be a function on an interval [a,b] with the property that for
every € > 0 there are a pair of step functions L(z) < f(z) < U(zx) so
that f:(U (z) — L(z)) dz < €. Show that f is Riemann integrable.
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8:6.6 Suppose that the oscillation wy(z) of a function f is smaller than 7
at each point z of an interval [c,d]. Show that there must be a par-
tition [zg, 21], [#1, Z2], - - - , [Tn—1, Tn], Of [¢,d] so that the oscillation
wf([zk—1,2k]) < n on each member of the partition.

8:6.7 Show that the set of points at which a function F' is discontinuous
includes all points at which |F| is discontinuous but not conversely.
Deduce Corollary 8.21 as a result of this observation from Theo-
rem 8.17.

8:6.8 Deduce Corollary 8.18 directly from Theorem 8.15 rather than from
Theorem 8.17.

8:6.9 Deduce Corollary 8.19 directly from Theorem 8.15 rather than from
Theorem 8.17.

8:6.10 Deduce Corollary 8.20 directly from Theorem 8.15 rather than from
Theorem 8.17.

8:6.11 Show that the converse of Corollary 8.21 does not hold.

8:6.12 This Exercise develops the theory of the Darboux integral which is
equivalent to Riemann’s integral but defined using inf’s and sup’s of
“Darboux sums” rather than limits of Riemann sums. In preparation
Exercise 8:2.17 should be consulted. We use the notation m(f,n) and
M (f,n) to denote the upper and lower sums over a partition 7 for an
arbitrary bounded function f. Define the upper and lower integrals
as

/bf(a:)dx =inf M(f,n)
and ’

b
/ f(x)dz = inf m(f,n)

where the inf and sup are taken over all possible partitions 7 of the
interval [a,b]. We say f is Darbouz integrable if the upper and lower
integrals are equal.

(a) Show that o
b b
/ f(@)de < / /() de.

(b) Show that every Riemann integrable function is Darboux inte-
grable.

(¢) Show that every Darboux integrable function is Riemann inte-
grable.

(d) Show that if f is Riemann integrable then

ff(m)dx:ﬁf(m)dw:/abf(m)dx.
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(e) Show that

b b b
/ (f(2) + g(2)) do < / f(z) dz + / o(z) de

with strict inequality possible.

8.7 Properties of the Riemann Integral

The Riemann integral! is an extension of Cauchy’s first integral from
continuous functions to a larger class of bounded functions—those
that are bounded and continuous except at the points of a very small
set (a set of measure zero). We have enlarged the class of functions
to which the notion of an integral may be applied. Have we lost any
of our crucial properties of Section 8.37

These properties express how we expect integration to behave;
it would be distressing to lose any of them. In some cases they
remain completely unchanged. In some cases they need to be mod-
ified slightly. But our goal was never simply to integrate as many
functions as possible; it is to preserve the theory of the integral and
to apply that theory sufficiently broadly to handle all necessary ap-
plications. If we lose our basic properties we have lost too much.
Fortunately the Riemann integral keeps all of the basic properties of
the integral of continuous functions. The few differences should be
carefully noted. Note especially how some of the properties must be
rephrased.

8.22 (Additive Property) If f is Riemann integrable on both
intervals [a,b] and [b, c] then it is Riemann integrable on [a,c| and

/f m+/f M_/f

Proof. The proof of the identity need not change from the way
we handled it for continuous functions (check this). It is the first
assertion in the statement that must be verified. We prove that f is
Riemann integrable on [a, c].

By Theorem 8.17 if f is Riemann integrable on both of these
intervals it is bounded on both and the set of points of discontinuity
in each interval has measure zero. It follows that f is bounded on
[a,c]. Also its set of points of discontinuity in [a,c| is the union

!The proofs in this section make use of the Lebesgue criterion for integrability.
The reader may skip the proofs and just see how the properties are essentially
unchanged from Section 8.3 for Cauchy’s original integral.
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of the set of points of discontinuity in [a,b] and [b, c] together with
(possibly) the point b itself. Thus the set of points of discontinuity
in [a, ] is also of measure zero. Consequently, by Theorem 8.17, f
is Riemann integrable. |

8.23 (Linear Property) If f and g are both Riemann integrable
on [a,b] then so too is any linear combination af + Bg and

/ab[af(w) + Bg(z)] dz = a/abf(x) dz +ﬁ/abg($) de.

Proof. Again the proof of the identity does not change from the
way we handled it for continuous functions (check this). It is the
first assertion in the statement that needs to be verified. We must
prove that af + (g is Riemann integrable on on [a, b].

The points of discontinuity of the function function af + Bg are
either points of discontinuity of f or else they are points of discon-
tinuity of ¢g. If both functions f and g are Riemann integrable then
then they are both bounded and continuous except at the points
of a set of measure zero. It follows that af + B¢ is bounded and
continuous except at the points of a set of measure zero. Hence, by
Theorem 8.17, af + (g is Riemann integrable. |

8.24 (Monotone Property) If f and g are both Riemann inte-

grable on [a,b] then
b b
/ f(z)dz S/ g(x) dz.

if f(z) < g(x) foralla <z <b.

Proof. The proof for continuous functions works equally well here.
[ |

8.25 (Absolute Property) If f is Riemann integrable on [a,b]
then so too is |f| and

—/ab|f(:c)|d:cé/abf(x)de/abV(x”dx

or, equivalently,
b b
[ 1@as| < [ 1@
a a

Proof. The proof for continuous functions works equally well
here because we have already shown, in Corollary 8.21 that if f is
Riemann integrable on [a, b] then so too is | f]. [ |
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Fundamental Theorem of Calculus The next two properties,
8.26 and 8.27, are very important. They show how the processes of
integration and differentiation are inverses of each other. Together
they are known as the fundamental theorem of the calculus for the
Riemann integral. The reader should note, however, a weakness
in this theory. If we compute F' we cannot immediately conclude
from 8.27 that f F'(z)dx = F(b) — F(a). We need first to check
that F' is Riemann 1ntegrable. This may not always be easy. Worse
yet, it may be false, even for bounded derivatives: see the discussion
in Section 9.7. It was this failure of the Riemann integral to integrate
all derivatives that Lebesgue claimed was his motivation to look for
a more general theory of integration.

8.26 (Differentiation of the Indefinite Integral) If f is Rie-
mann integrable on [a,b] then the function

/fdt

is continuous on [a,b] and F'( = f(z) at each point x at which the
function f is continuous.

Proof. Once again the proof for continuous functions works equally
well here. Note, however, that we are no longer trying to prove that
F'(z) = f(z) at every point z, only at those points z where f is
continuous.

It is left to the reader to check that proof and verify that it works
here, unchanged. |

8.27 (Integral of a Derivative) Suppose that the function F is
differentiable on [a,b]. Provided it is also true that F' is Riemann
integrable on [a,b], then

b
/ F'(s)dz = F(b) — Fla).

Proof. Yet again the proof for continuous functions works equally
well here. [

Exercises

8:7.1 Give a set of conditions under which the integration by substitution

formula
b o(b)
/ £ (8) dt = / f(2) da
a ¢(‘1)
holds.
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8:7.2 Give a set of conditions under which the integration by parts formula

b b
/ f(t)g'(t)dt = f(b)g(b) — f(a)(g(a) — / f'(t)g(t) dt
holds.

8:7.3 Suppose that f is Riemann integrable on [a,b] and define the func-
tion

Fz) = / " r) a.

(a) Show that F satisfies a Lipschitz condition on [a,b], i.e., that
there exists M > 0 such that for every z,y € [a, b],

|F(y) — F(z)| < Mly — 2.
(b) If x is a point at which f is not continuous is it still possible
that F'(z) = f(z)?
(¢) Is it possible that F'(x) exists but is not equal to f(x)?
(d) Is it possible that F'(z) fails to exist?

8:7.4 The function .
Fz) = / sin(1/4) dt
0

has a derivative at every point where the integrand is continuous.
Does it also have a derivative at z = 07

8:7.5 Improve Property 8.27 by assuming that F' is continuous on [a, b]
and allowing that F” exists at all points of [a, b] with finitely many
exceptions.

8:7.6 Do much better than the preceding exercise and improve Prop-
erty 8.27 by assuming that F is continuous on [a,b] and allowing
that F' exists at all points of [a,b] with countably many exceptions.

8:7.7 (More on the Fundamental Theorem of Calculus.) Let f be
bounded on [a,b] and continuous a.e. on [a,b]. Suppose that F is
defined on [a,b] and that F' = f a.e.. (Recall that “a.e.” means
everywhere except at the points of some set of measure zero.)

xz
(a) Is it necessarily true that F'(z) — F(a) = / f(t) dt for every
z € [a,b]? ‘
(b) Same question as in (a) but assume also that F' is continuous.

(c) Same question, but this time assume that F is a Lipschitz func-
tion. You may assume the non-elementary fact that a Lipschitz
function H with H' = 0 a.e. must be constant.

(d) Give an example of a Lipschitz function F' such that F is dif-
ferentiable, F' is bounded, but F” is not integrable.
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8:7.8 If f and g are Riemann integrable on an interval [a, b] show that

b f(z)g(z) dz 2 < b[f(:v)]2 dx b[g(x)]2 dz | .
/ / /

This extends the Cauchy-Schwartz inequality of Exercise 8:3.10.

8:7.9 Show that the integration by parts formula of Exercise 8:3.7 extends
to the case where f and g are continuous and f’ and ¢g' are Riemann
integrable.

8.8 The Improper Riemann Integral

The Riemann integral applies only to bounded functions. What
should we mean by the integral

/ld_x?
0 VT

Since the integrand is unbounded on [0,1] it is not Riemann inte-
grable even though the integrand is continuous at all but one point.
There is not much else for us to do but to back track by several
decades and return to Cauchy’s second method, namely we compute

1

lim F(6) = lim dr _

50+ =0+ J5 Vx
What we should probably do now is to create a new hybrid
integral by combining the Riemann integral with Cauchy’s second
method. This is often called the improper Riemann integral. As
before we give a definition that considers only one point of unbound-
edness (at the left endpoint of the interval) with the understanding

that the ideas can be applied to any finite number of such points.

Definition 8.28 Let f be a function on an interval (a,b] that is
Riemann integrable on [a+ 4, b] and that is unbounded in the interval
(a,a + 6) for every 0 < § < b— a. Then we define

/ ' f(a) de

b
li d
5—l>%l+ a+é f (:I;) o

2.

to be

if this limit exists, and in this case the integral is said to be conver-
gent. If both integrals

/abf(x) dz and /ab|f(x)|dx
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converge the integral is said to be absolutely convergent.

In the same way we also extend the Riemann integral from bounded
intervals to unbounded ones. How should we interpret the integral

o0
d_x?
1 x?

This cannot exist as a Riemann integral since the definition is very
clearly restricted to finite intervals and would not allow any easy
interpretation for infinite intervals. As before we use Cauchy’s second
method to obtain

o] X

/ d—gzlim d—leiml—izl.
1 T X—=oo J1 T X—00 X
We give a formal definition valid just for an infinite interval of

the form [a, 00). The case (—o0, ] is similar. The case (—o0, +00) is
best split up into the sum of two integrals, from (—o0,a] and [a, co)
each of which can be handled in this fashion.

Definition 8.29 Let f be a function on an interval [a,00) that is
Riemann integrable on every interval [a, b] for a < b < co. Then we

define ©
/ f(z)dx

lim / o) de

X—o00

to be

if this limit exists, and in this case the integral is said to be conver-
gent. If both integrals

/aoof(a:)d:c and /aoo|f(a:)|da:

converge the integral is said to be absolutely convergent.

Both of these definitions extend the Riemann integral to a more
general concept. Note that in any applications using an improper
Riemann integral of either type, we are obliged to announce whether
the integral is convergent or divergent, and frequently whether it is
absolutely or nonabsolutely convergent.

It might seem that this theory would be very important to master
and represents the final word on the subject of integration. By the
end of the nineteenth century it had become increasingly clear that
this theory of the Riemann integral itself was completely inadequate
to handle the bounded functions that were arising in many applica-
tions. The extra step here, using Cauchy’s second method, designed
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to handle unbounded functions also proved far too restrictive. The
modern theory of integration was developed in the first decades of
the twentieth century. The methods are very much different and
even the language needs many changes.

Thus, the material in these last few sections has largely an his-
torical interest. Some mathematicians claim it has only that, others
that learning this material is a good preparation for learning the
more advanced material.

Exercises

8:8.1 For what values of p, q are the integrals

1 1 . q
/ sing od / (sinz) da
0 0 £

P

ordinary Riemann integrals, convergent improper Riemann integrals,
or divergent improper Riemann integrals?

8.9 More on the Fundamental Theorem of
the Calculus

The Riemann integral does not integrate all bounded derivatives and
so the fundamental theorem of the calculus for this integral assumes
the awkward form

b
/ F'(z)dz = F(b) — F(a)

provided F is differentiable on [a, b] and the derivative F' is Riemann
integrable there.

The emphasized phrase is unfortunate. It means we have a lim-
ited theory and it also means that, in practice, we must always check
to be sure that a derivative F” is integrable before proceeding to inte-
grate it. In Section 9.7 we shall show how to construct a function F
that is everywhere differentiable on an interval and whose derivative
F' is bounded but not itself Riemann integrable on any subinterval.

Let us take another look at the integrability of derivatives so see
if we can discover what goes wrong. We take a completely naive
approach and start with the definition of the derivative itself. If
F' = f everywhere, then, at each point £ and for every € > 0, there
is a d > 0 so that

|F(z") = F(a') = () (=" — )| <e(a” — ) (6)
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for ' <& <z"and 0 < z" —2' < 6.

We shall attempt to recover F(b) — F(a) as a limit of Riemann
sums for f, even though this is a misguided attempt, since we know
that the Riemann integral must fail in general to accomplish this.
Even so, let us see where the attempt takes us.

Let

a=x) <21 <To...Tp, =0b
be a partition of [a,b], and let &; € [z;_1,z;]. Then
n n

F(b) = F(a) = 3 (Floin1) — F(:) = 3 £(&) (@i —mii1) + R

i=1 =1

R=Y " (F(z:) = F(zio1) — f(&)(mi — zi1)).
=1

Thus F'(b) — F(a) has been given as a Riemann sum for f plus some
error term R. But it appears now that, if the partition is finer than
the number ¢ so that (6) may be used, we have

n
Bl < YO|F(wi) — Floi1) - £(6) (@i — i)
znl
< Zs(wz —zi—1) =¢(b—a).
i=1
Evidently, then, if there are no mistakes here we have just proved
that f is Riemann integrable and that fab f(t)dt = F(b) — F(a).
This is false as we have mentioned above. The error is that the
choice of § depends on the point £ considered and so is not a constant.
This is an error the reader has doubtless made in other contexts:
a local condition that holds for each point x is misinterpreted as
holding uniformly for all x.
But, instead of abandoning the argument, one can change the
definition of the Riemann integral to allow a variable §. The defini-
tion then changes to look like this.

Definition 8.30 A function f is generalized Riemann integrable on
[a, b] with value I if for every e there is a positive function § on [a, b]
so that

Zf(fz)(xz —zi)— I <e
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whenever
a=xp<r1<T9< - <zxp=>

is a partition of [a,b] with &; € [z;_1,z;] and 0 < z; — zi—1 < 6(&;).

The integral f: f(z)dz is taken as this number I that exists.
It is easy to check that if f is Riemann integrable it is also gen-
eralized Riemann integrable and the integrals have the same value.
Thus this new integral is an extension of the old one. To justify the
definition requires knowing that such partitions actually exist for
any such positive function J; this is supplied by the Cousin theorem
(Lemma 4.26).

This defines a Riemann-type integral that includes the usual
Riemann integral and integrates all derivatives. The generalized
Riemann integral was discovered in the 1950s, independently, by
R. Henstock and J. Kurzweil, and these ideas have led to a number
of other integration theories that exploit the geometry of the under-
lying space in the same way that this integral exploits the geometry
of derivatives on the real line.

We shall not carry these ideas any further but refer the reader
to the recent monographs of Pfeffer? or Gordon.3

Exercises

8:9.1 Develop the elementary properties of the generalized Riemann inte-
gral directly from its definition (e.g., the integral of a sum f + g, the

integral formula [’ + [ = [¢, etc.).

8:9.2 Show directly from the definition that the characteristic function of
the rationals is not Riemann integrable, but is generalized Riemann

integrable on any interval, and that fol f(z)dz =0.

8:9.3 Show that the generalized Riemann integral is closed under the ex-
tension procedure of Cauchy from Section 8.4.

*W. F. Pfeffer, The Riemann Approach to Integration: Local Geometric The-
ory. Cambridge (1993).

3R. A. Gordon, The Integrals of Lebesque, Denjoy, Perron and Henstock.
Grad. Studies in Math, Vol. 4, Amer. Math. Soc. (1994).
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8.10 Additional Problems for Chapter 8

8:10.1 Let f:[0,1] —> R be a differentiable function such that | f'(z)| < M
for all z € (0,1). Show that

\/f e () <5

M




