Chapter 6

MORE ON
CONTINUOUS
FUNCTIONS AND SETS

6.1 Introduction

In this chapter’ we go much more deeply into the analysis of contin-
uous functions. For this we need some new set theoretic ideas and
methods.

6.2 Dense Sets

Consider? the set Q of rational numbers and let (a,b) be an open
interval in IR. How do we show that there is a member of Q in the
interval (a,b), i.e., that (a,b) NQ # 07

Suppose first that 0 < a. Since b — a > 0, the Archimedean
Property (Theorem 1.9) implies the existence of a positive integer
g such that ¢(b —a) > 1, so that ¢gb > 1 + ga. The Archimedean
Property also implies that {m € IN : m > ga} is non-empty, thus
according to the well-ordering principle, there exists p € IN such that
p—1<gqa < p. It follows that ga < p < 1+ ga < ¢gb, which implies
a< g < b. We have shown that, under the assumption a > 0, there
exists a rational number r = p/q in the interval (a, b).

!This chapter may be skipped and the reader can proceed directly to the study
of derivatives and integrals in Chapters 7 and 8.
2This section reviews material from Section 1.9.
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6.2. Dense Sets 263

The same is true under the assumption a < 0. To see this observe
first that if a < 0 < b, we can take » = 0. If a < b < 0, then
0 < —b < —a, so the argument of the previous paragraph shows that
there exists r € Q such that —b < r < —a. In this case a < —r < b.

The preceding discussion proves that every open interval contains
a rational number. One often expresses this fact by saying that the
set of rational numbets is a dense set.

Definition 6.1 A set of real numbers A is said to be dense (in IR)
if for each open interval (a,b) the set AN (a,b) is nonempty.

It is important to have a more general concept, that of a set A
being dense in a set B.

Definition 6.2 Let A and B be subsets of IR. If every open interval
that intersects B also intersects A, we say that A is dense in B.

Thus Definition 6.1 states the special case of Definition 6.2 that
occurs when B = IR. We should note that some authors require that
A C B in their version of Definition 6.2. We find it more convenient
not to impose this restriction. Thus, for example, in our language Q
is dense in R \ Q.

It is easy to verify that A is dense in B if and only if A D B
(Exercise 6:2.1).

Exercises

6:2.1 Verify that A is dense in B if and only if A D B.

6:2.2 Prove that every set A is dense in its closure A.

6:2.3 Prove that if A is dense in B and C' C B then A is dense in C.

6:2.4 Prove that if A C B and A is dense in B then A = B. Is the
statement correct without the assumption that A C B?

6:2.5 Is R \ Q dense in Q7

6:2.6 Below are several pairs (A4, B) of sets. In each case determine whether
A is dense in B.

a) A=NN,B=1N.
A=N,B=7Z.

d A={z:2=2,meZneN},B=Q.

6:2.7 Let A and B be subsets of IR. Prove that A is dense in B if and
only if for every b € B there exists a sequence {a,} of points from A
such that lim,,_, ., a, = b.
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6:2.8 Let B be the set of all irrational numbers. Prove that the set A =
{qg+Vv/2:q € Q} is a countable subset of B that is dense in B.

6:2.9 Prove that every subset B of IR has a countable subset A that is
dense in B.

6:2.10 Let f : IR — IR be a strictly increasing continuous function. Does
f map dense sets to dense sets, i.e., is it true that f(E) = {f(z) :
x € E} is dense if E is dense?

6.3 Nowhere Dense Sets

One might view a set A that is dense in IR as being somehow large—
inside every interval, no matter how small, one finds points of A.
There is an opposite extreme to this situation: a set is said to be
nowhere dense, and hence is in some sense very small, if it is not
dense in any interval at all. The precise definition of this important
concept of smallness follows.

Definition 6.3 The set A C IR is said to be nowhere dense in IR
provided every open interval I contains an open subinterval J such
that AnJ = 0.

We can state this another way: A is nowhere dense provided A
contains no open intervals. (See Exercise 6:3.4.)

Example 6.4 It is easy to construct examples of nowhere dense
sets. Each of the sets below is nowhere dense as the reader can
verify.

1. Any finite set.
2. IN.
3. {1/n:n € IN}.

<

Each of the sets in Example 6.4 is countable and hence also small
in the sense of cardinality. It is hard to imagine an uncountable set
that is nowhere dense but, as we shall see in Section 6.5, such sets
do exist.

We establish a simple result showing that any finite union of
nowhere dense sets is again nowhere dense. It is not true that a
countable union of nowhere dense sets is again nowhere dense. In-
deed countable unions of nowhere dense sets will be very important
in our subsequent study.
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Theorem 6.5 Let A1, As,... , A, be nowhere dense in IR. Then
A U---UA, is also nowhere dense in IR.

Proof. Let I be any open interval in IR. We seek an open interval
JCIsuchthat JNA;=0fori=1,2,...,n.

Since A; is nowhere dense, there exists an open interval I; C [
such that I; N A1 = (). Now A, is also nowhere dense in IR, so there
exists an open interval Iy C I; such that A, N I = (). Proceeding
in this way we obtain open intervals Iy D Iy D I3 --- D I, such that
fori =1,...,n, A;NI; = (. It follows from the fact that I, C I; for
1=1,...,nthat A,NI,=0fori=1,...,n. Thus

(CJAZ) ﬂIn:LnJ(AiﬂIn):LnJ@:Q),

=1

as was to be proved. |

Exercises

6:3.1 Give an example of a sequence of nowhere dense sets whose union is
not nowhere dense.

6:3.2 Which of the following statements are true?

(a) Every subset of a nowhere dense set is nowhere dense.

(b) If Ais nowhere dense then so toois A+c={t+c:t € A} for
every number c.

(c) If Ais nowhere dense then so too is cA = {ct : t € A} for every
positive number c.

(d) If A is nowhere dense then so too is A’, the set of derived points
of A.

A nowhere dense set can have no interior points.
A set that has no no interior points must be nowhere dense.

Every point in a nowhere dense set must be isolated.

—_ o~

If every point in a set is isolated then that set must be nowhere
dense.

6:3.3 If A is nowhere dense what can you say about R \ A? If A is dense
what can you say about IR\ A?

6:3.4$ Prove that a set A C IR is nowhere dense if and only if A contains
no intervals; equivalently, the interior of A is empty.

6:3.5 What should the statement “A is nowhere dense in the interval I”
mean? Give an example of a set that is nowhere dense in [0,1] but
is not nowhere dense in IR.
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6:3.6 Let A and B be subsets of IR. What should the statement “A is
nowhere dense in the B” mean? Is IN nowhere dense in [0,10]? Is IN
nowhere dense in Z? Is {4} nowhere dense in IN?

6:3.7 Prove that the complement of a dense open subset of IR is nowhere
dense in IR.

6:3.8 Let f: R — IR be a strictly increasing continuous function. Show
that f maps nowhere dense sets to nowhere dense sets, i.e., that
f(E) ={f(z) : z € E} is nowhere dense if E is nowhere dense.

6.4 The Baire Category Theorem

In this section we shall establish the Baire Category theorem, that
gives a sense in which nowhere dense sets can be viewed as “small”:
a union of a sequence of nowhere dense sets cannot fill up an inter-
val. This can be considered an important generalization of Cantor’s
theorem which could be interpreted as asserting that a union of a
sequence of finite sets cannot fill up an interval.

We motivate this important theorem by way of a game idea that
is due to Stefan Banach (1892-1945) and Stanislaw Mazur (1905
1981). Although the origins of the theorem are due to René Baire
after whom the theorem is named, the game approach helps us see
why the Baire Category theorem might be true. This Banach-Mazur
game is just one of many mathematical games that are used through-
out mathematics to develop interesting concepts.

6.4.1 A Two-player Game

We introduce the Baire Category theorem via a game between two
players (A) and (B).

Player (A) is given a subset A of IR, and player (B) is given the
complementary set B = IR\ A. Player (A) first selects a closed
interval I; C IR, then player (B) chooses a closed interval Iy C I.
The players alternate moves, a move counsisting of selecting a closed
interval inside the previously chosen interval.

The play of the game thus determines a descending sequence of
closed intervals

ILLODIb,>I3D---DI,D...

where player (A) chooses those with odd index and player (B) those
with even index. If

Aﬂﬁfwé@,

n=1
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then player (A) wins; otherwise player (B) wins.

The goal of player (A) is evidently to make sure that the intersec-
tion contains a point of A; the goal of player (B) is to ensure that the
intersection is empty or contains only points of B. One expects that
player (A) should win if his set A is large while player (B) should
win if his set is large. It is not, however, immediately clear what
“large” might mean for this game.

Example 6.6 If the set A given to player (A) contains an open
interval J, then (A) should choose any interval I; C J. No matter
how the game continues, player (A) wins. Another way to say this:
if the set given to player (B) is not dense, he loses. <

Example 6.7 For a more interesting example let player (A) be dealt
the “large” set of all irrational numbers, so that player (B) is dealt
the rationals. (Both players have been dealt dense sets now.) Let A
consist of the irrational numbers. Player (A) can win by following
the strategy we now describe. Let q1, g2, q3, - .. be a listing of all of
the rational numbers, that is

Q = {q13q25q37"'}'

Player (A) chooses the first interval I; as any closed interval such
that {g1} ¢ I,. Inductively, suppose I1, I, ..., I, have been chosen
according to the rules of the game so that it is now time for player (A)
to choose Io,+1. The set {q1,q2,...,¢,} is finite, so there exists a
closed interval Is, 1 C I3, such that

I2n—|—1 n {CIh q2,- - - ’QTL}
is empty. Player (A) chooses such an interval.
Since for each n € N, ¢, ¢ Iopt1, the set ()o- I, contains no

rational numbers, but, as a descending sequence of closed intervals,
N2 In#0. Thus AN2, I # 0, and (A) wins. <

In these two examples, using informal language, we can say that
player (A) has a strategy to win: no matter how player (B) proceeds,
player (A) can “answer” each move and win the game.

In both examples player (A) had a clear advantage: the set A
was larger than the set B. But in what sense is it larger? It is not
the fact that A is uncountable while B is countable that matters
here. It is something else—the fact that given an interval Is,, player
(A) can choose Iy, inside Iy, in such a way that I5,11 misses the
set {qla q2,--- 7QR}

Let us try to see in the second example a general strategy that
should work for player (A) in some cases. The set B was the union
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of the singleton sets {g, }. Suppose instead that B is the union of a
sequence of “small” sets (Q,. Then the same “strategy” will prevail
if given any interval J and given any n € IN, there exists an interval
I C J such that

IN(@UQU---UQy) =0

The set (.~ I, will be nonempty, and will miss the set (J;2 | Qn.
Thus, if B = (J;7; Qn, player (A) has a winning strategy. It is in
this sense that the set B is “small”. The set A is “large” because
the set B is “small”. If we look carefully at the requirement on the
sets Q, we see it is just that each of these sets is nowhere dense in
R.

Thus the key to player (A) winning rests on the concept of a
nowhere dense set. But note that it rests on the set B being the
union of a sequence of nowhere dense sets.

6.4.2 The Baire Category Theorem

We can formulate our result from our discussion of the game in
several ways:

1. IR cannot be expressed as a countable union of nowhere dense
sets.

2. The complement of a countable union of nowhere dense sets is
dense.

The second of these provides a sense in which countable unions of
nowhere dense sets are “small”’: no matter which countable collection
of nowhere dense sets one chooses, their union leaves a dense set
uncovered.

To formulate the Baire Category theorem we need some defini-
tions.

Definition 6.8 Let A be a set of real numbers.

1. A is said to be of the first category if it can be expressed as a
countable union of nowhere dense sets.

2. A is said to be of the second category if it is not of the first
category.

3. Ais said to be residual in IR if the complement IR \ A is of the
first category.
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The following properties of first category sets and their comple-
ments, the residual sets, are easily proved and left as exercises.

Lemma 6.9 A union of any sequence of first category sets is again
a first category set.

Lemma 6.10 An intersection of any sequence of residual sets is
again a residual set.

Theorem 6.11 (Baire Category Theorem) A residual subset of
IR is dense in IR.

Proof. The discussion in Section 6.4.1 constitutes a proof. Suppose
that player (A) is dealt a set A = X N[a,b] where X is residual, i.e.,

X=R\{JQn
n=1

with each @, nowhere dense. Then player (A) wins by choosing
any interval I1 C [a,b] that avoids 1 and continues following the
strategy of Section 6.4.1. In particular X must contain a point of
the interval [a, b], and hence a point of any interval. [ |

Theorem 6.11 provides a sense of largeness of sets that is not
shared by dense sets in general. The intersection of two dense sets
might be empty but the intersection of two, or even countably many,
residual sets must still be dense.

Exercises

6:4.1 Show that the union of any sequence of first category sets is again a
first category set.

6:4.2 Show that the intersection of any sequence of residual sets is again
a residual set.

6:4.3 Rewrite the proof of Theorem 6.11 without using the games lan-
guage.

6:4.4 Give an example of two dense sets whose intersection is not dense.
Does this contradict Theorem 6.117

6:4.5 Suppose that [ J;~; A, contains some interval (¢, d). Show that there
is a set, say An,, and a subinterval (¢'d’) C (¢, d) so that A, is dense
in ('d").



270 Chapter 6. More on Continuous Functions and Sets

6.4.3 Uniform Boundedness

There are many applications of the Baire Category Theorem in anal-
ysis. For now, we present just one application, dealing with the
concept of uniform boundedness. Suppose we have a collection F
of functions defined on IR with the property that for each z € IR,
{|f(z)| - f € F} is bounded. This means that for each € IR there
exists a number M, > 0 such that |f(z)] < M, for all f € F. We
can describe this situation by saying that F is pointwise bounded.
Does this imply that the collection is uniformly bounded, i.e., that
there is a single number M so that |f(z)| < M for all f € F and
every € IR?

Example 6.12 Let ¢1,¢2,q3,... be an enumeration of Q. For each
n € IN we define a function f, by fn(qx) = k if n < k, fo(z) =0
for all other values z. Let F = {f, : n € N}. Then if z € R\ Q,
f(z)=0forall f € F,and if z = g, |f(z)| <k for all f € F. Thus,
for each z € R, the set {|f(z)| : f € F} is bounded. The bounds
can be taken to be 0 if z € R\ Q (M; = 0if z € IR\ Q) and we
can take M, = k. But since Q is dense in IR, none of the functions
fn is bounded on any interval. (Verify this.) Thus a collection of
functions may be pointwise bounded but not uniformly bounded on
any interval. |

The functions f, in Example 6.12 are everywhere discontinuous.
Our next theorem shows that if we had taken a collection F of con-
tinuous functions, then not only would each f € F be bounded on
closed intervals (as Theorem 5.44 guarantees), but there would be
an interval I on which the entire collection is uniformly bounded ,
i.e. there exists a constant M such that |f(z)] < M for all f € F
and each z € 1.

Theorem 6.13 Let F be a collection of continuous functions on IR
such that for each © € IR there exists a constant My > 0 such that
|f(z)] < My for each f € F. Then there exists an open interval I
and a constant M > 0 such that |f(z)| < M for each f € F and
zel.

Proof. For each n € N, let A, = {z : |f(z)| <n for all f € F}.
By hypothesis, R = (J,~; An. Also by hypothesis, each f € F is
continuous and so it is easy to check that each of the sets

{z:|f(z)] <n}
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must be closed (e.g., Exercise 5:4.31). Thus

A= {z: 1f (@) <n)
feF

is an intersection of closed sets and is therefore itself closed. Since
R = ;2 An, at least one of the sets, say Ap,, must be dense
in some open interval I. (This follows immediately from the Baire
Category Theorem.)

Since A, is closed and dense in the interval I, A,, must contain
I. This means that |f(z)| <ng foreach f € Fandallz € I. N

Exercises

6:4.6 Let {f,} be a sequence of continuous functions on an interval [a, b]
such that lim,,_, fn(z) = f(z) exists at every point = € [a, b]. Show
that f need not be continuous nor even bounded, but that f must
be bounded on some subinterval of [a, b].

6:4.7 Let {f,} be a sequence of continuous functions on [0, 1] such that
lim,, 00 fn(z) = 0 for all 0 < 2z < 1. Show that there must be an
interval [c,d] C [0,1] so that, for all sufficiently large n, |fn(z) <1
for all z € [e,d].

6:4.8 Give an example of a sequence of functions on [0, 1] with the property
that lim,,« fn(z) = 0 for all 0 < 2 < 1 and yet for every interval
[c,d] C [0,1] and every N there is some = € [¢,d] and n > N with
fu(z) > 1.

6.5 Cantor Sets

We say that a set is perfect if it is a nonempty closed set with no
isolated points. The only examples that might come to mind are sets
that are finite unions of intervals. It might be difficult to imagine a
perfect subset of IR that is also nowhere dense. In this section we
obtain such a set, the very important classical Cantor set. We also
discuss some of its variants. Such sets have historical significance and
are of importance in a number of areas of mathematical analysis.

6.5.1 Construction of the Cantor Ternary Set

We begin with the closed interval [0,1]. From this interval we shall
remove a dense open set G. The remaining set K = [0,1] \ G will
then be closed and nowhere dense in [0,1]. We construct G is such
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K,
K,

0 1/9 2/9 1/3 23 7/9 8/ 1

Figure 6.1: Construction of the Cantor Ternary set.

a way that K has no isolated points and is nonempty. Thus K will
be a nonempty, nowhere dense perfect subset of [0,1].

It is easiest to understand the set G if we construct it in stages.
Let Gy = (%, %), and let K1 = [0,1]\ G;. Thus K; = [0, %] U [%, 1] is
what remains when the middle third of the interval [0,1] is removed.
This is the first stage of our construction.

We repeat this construction on each of the two component inter-
vals of K. Let G2 = (5,2) U (, %) and let Ky = [0,1]\ (G1 U Gy).

Thus
1 21 27 8
K=o, slu |2 21020081,
’ [O’g]u[9’3]u[3’9]u[9’]

This completes the second stage.
We continue inductively, obtaining two sequences of sets, {K,}
and {G} with the following properties: For each n € IN

1. G, is a union of 2" ! pairwise disjoint open intervals.
2. K, is a union of 2" pairwise disjoint closed intervals.
3. K, =[0,1]\ (G1UGaU---UGy).

4. Each component of G, is the “middle third” of some com-
ponent of K.

5. The length of each component of K, is 1/3".

Figure 6.5.1 shows K, Ko and K3.
Now let
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and let
o0
K =1[0,1]\G = [ Kn.
n=1

Then G is open and the set K (our Cantor set) is closed.

To see that K is nowhere dense, it is enough, since K is closed,
to show that K contains no open intervals (Exercise 6:3.4). Let J be
an open interval in [0,1] and let A be its length. Choose n € IN such
that 1/3" < A. By property 5, each component of K, has length
1/3™ < A, and by property 2 the components of K, are pairwise
disjoint. Thus K, cannot contain J, so neither can K = (;° Kp.
We have shown that the closed set K contains no intervals and is
therefore nowhere dense.

It remains to show that K has no isolated points. Let z¢ € K.
We show that zg is a limit point of K. To do this we show that for
every ¢ > 0 there exists 1 € K such that 0 < |z; — 2| < e. Choose
n such that 1/3" < e. There is a component L of K, that contains
zo. This component is a closed interval of length 1/3" < e. The set
K, +1 N L has two components Ly and L;, each of which contains
points of K. The point zy is in one of the components, say Lg. Let
z1 be any point of K N L;. Then 0 < |zg — z1| < €. This verifies
that zg is a limit point of K. Thus K has no isolated points.

The set K is called the Cantor set. Because of its contruction,
it is often called the Cantor middle third set. In a moment we
shall present a purely arithmetic description of the Cantor set that
suggests another common name for K — the “Cantor Ternary set”.
But first, let’s mention a few properties of K and of its complement
G that may help the reader visualize these sets.

First note that G is an open dense set in [0,1]. Write G =
U1 (ak, bk). (The component intervals (ag,by) of G can be called
the intervals complementary to K in (0,1). Each is a ‘middle third’
of a component interval of some K,,.) Observe that no two of these
component intervals can have a common endpoint — if, for example,
b = ay, then this point would be an isolated point of K, and K
has no isolated points.

Next observe that for each k& € IN, the points a; and by are points
of K. But there are other points of K as well (e.g. 0 € K). In fact, we
shall see presently that K is uncountable. These other points are all
limit points of the endpoints of the complementary intervals. The set
of endpoints is countable, but the closure of this set is uncountable
as we shall see. Thus, in the sense of cardinality, “most” points of
the Cantor set are not endpoints of intervals complementary to K.



274 Chapter 6. More on Continuous Functions and Sets

Each component interval of the set G, has length 1/3", thus the
sum of the lengths of these component intervals is

2n=t 1 /2\"

3n 2 (5) '
It follows that the lengths of all component intervals of G forms a
geometric series with sum

1 2\"
d.5l3) =1
n=1

(This also gives us a clue as to why K cannot contain an interval—
after removing from the unit interval a sequence of pairwise disjoint

intervals with length-sum one, no room exists for any intervals in the
set K that remains.)

Exercises

6:5.1 Let E be the set of endpoints of intervals complementary to the
Cantor set K. Prove £ = K.

6:5.2 Let G be a dense open subset of IR and let {(ax,br)} be its set of
component intervals. Prove H = IR \ G is perfect if and only if no
two of these intervals have common endpoints.

] 6:5.3 Let K be the Cantor set and let {(ax,bx)} be the sequence of in-
tervals complementary to K in [0,1]. For each k € IN, let ¢ =
(ar + bg)/2 (the midpoint of the interval (ag,by)) and let N = {c :
k € IN}. Prove each of the following:

(a) Every point of N is isolated.

(b) If ¢; # ¢, there exists k € IN such that ¢ is between ¢; and ¢;
(i.e., no point in N has an immediate “neighbor” in N).

(c) Show there is an order-preserving mapping ¢ : QN (0,1) - N
(i.e., if z <y € QN (0,1), then ¢(x) < ¢(y) € N. This may
seem surprising since Q N (0, 1) has no isolated points while N
has only isolated points.

6:5.4 It is common now to say that a set E of real numbers is a Cantor
set if it is nonempty, bounded, perfect, and nowhere dense. Show
that the union of a finite number of Cantor sets is also a Cantor set.

6:5.5 Show that every Cantor set is uncountable.

] 6:5.6 Let A and B be subsets of R. A function h that maps A onto
B, is one-to-one, and with both h and h~! continuous, is called a
homeomorphism between A and B. The sets A and B are said to be
homeomorphic. Prove that a set C is a Cantor set if and only if it is
homeomorphic to the Cantor ternary set K.
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6.5.2 An Arithmetic Construction of K

We turn now to a purely arithmetical construction for the Cantor
set. The reader will need some familiarity with ternary (base 3)
arithmetic here.

Each z € [0,1] can be expressed in base 3 as z = .a1a20a3...,
where a; = 0, 1 or 2, 2 = 1,2,3,... . Certain points have two
representations, one ending with a string of zeros, the other in a
string of twos. For example, .1000--- = .0222... both represent the
number 1/3 (base ten). Now, if z € (1/3,2/3), a; = 1, thus each
z € (G1 must have ‘1’ in the first position of its ternary expansion.

Similarly, if
1 2 7 8
TEG = (5’5) N (w)’

it must have a ‘1’ in the second position of its ternary expansion —
ag = 1. In general, each point in G,, must have a, = 1. It follows
that every point of G = |J7° G, must have a ‘1’ someplace in its
ternary expansion.

Now endpoints of intervals complementary to K have two repre-
sentations, one of which involves no ‘1’s. The remaining points of K
never fall in the middle third of a component of one of the sets K,
and so have ternary expansions of the form

z=.a1a2... a; =0 or 2.
We can therefore describe K arithmetically as the set
{z = .a1a2a3... (base three) :a; =0 or 2 for each 7 € IN}.

As an immediate result, we see that K is uncountable. In fact,
K can be put into 1-1 correspondence with [0,1]: for each

z = .ajaz2a3 ... (base 3),a; =0,2,
in the set K let there correspond the number
Yy = .b1b2b3 .. (base 2), bi = ai/2 .

This provides a 1-1 correspondence between K (minus endpoints
of complementary intervals) and [0,1] (minus the countable set of
numbers with two base two representations). By allowing these two
countable sets to correspond to each other, we obtain a 1-1 corre-
spondence between K and [0,1].

We end this section by mentioning that variations in the con-
structions of K can lead to interesting situations. For example, by
changing the construction slightly, we can remove intervals in such a
way that G’ = ;2 (a}, b)) with Y22, (b} —a}) = 1/2 (instead of 1),
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while still keeping K’ = [0,1] \ G’ nowhere dense and perfect. The
resulting set K’ created problems for late 19th century mathemati-
cians trying to develop a theory of measure. The “measure” of G’
should be 1/2, the “measure” of [0,1] should be 1. Intuition requires
that the measure of the nowhere dense set K’ should be 1 — % = %

How can this be, when K' is so “small”?

Exercises
6:5.7 Find a specific irrational number in the Cantor ternary set.

6:5.8 Show that the Cantor ternary set can be defined as

oo .
K:{a:e[0,1]:x:Z;—2f0rin:00r2}.

n=1

6:5.9 Let
(o] .
Jn

D:{me[O,l]:x: a
1

forjn:()orl}.
n—=

Show D+ D ={x+y:x,y € D} =[0,1]. From this deduce, for the
Cantor ternary set K, that K + K = [0, 2].

6:5.10 Criticize the following “argument” which is far too often seen:

“If G = (a,b) then G = [a, b]. Similarly, if G = ;2 (ai, bi)
is an open set, then G = |J;2,[ai, b;]. It follows that an

open set G and its closure G differ by at most a countable
set.” (7)

6.5.3 The Cantor Function

The Cantor set allows the construction of a rather bizarre function
that is continuous and increasing on the interval [0,1]. It has the
property that it is constant on every interval complementary to the
Cantor set and yet manages to increase from f(0) = 0 to f(1) =1 by
doing all of its increasing on the Cantor set itself. It has sometimes
been called “the devil’s staircase”.

Define the function f in the following way. On (1/3,2/3), let
f =1/2; on (1/9,2/9), let f = 1/4; on (7/9,8/9), let f = 3/4.
Proceed inductively. On the 27! — 1 open intervals appearing at
the nth stage, define f to satisfy the following conditions:

(1) f is constant on each of these intervals.
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(17) f takes the values
1 3 2" —1

2_71,’2_71’...’ 2n

on these intervals.

(19i) If z and y are members of different nth-stage intervals with
z <y, then f(z) < f(y).

This description defines f on G = [0,1] \ K. Extend f to all of [0, 1]
by defining f(0) =0 and, for 0 < z < 1, f(z) =sup{f(t) : t € G,t <
z}. In order to check that this defines the function that we want, we
need to check each of the following.

1. f(G) is dense in [0, 1].
f is nondecreasing on [0, 1]. .

f is continuous on [0, 1].

f(K) = 10,1].

These have been left as exercises.

Figure 6.2 illustrates the construction. The function f is called
the Cantor function. Observe that f “does all its rising” on the set
K.

The Cantor function allows a negative answer to many questions
that might be asked about functions and derivatives and, hence, has
become a popular counterexample. For example let us follow this
kind of reasoning. If f is a continuous function on [0,1] and f'(z) =0
for every z € (0,1) then f is constant. (This is proved in most
calculus courses based on the mean value theorem.) Now suppose
that we know less, that f'(z) = 0 for every z € (0,1) excepting a
“small” set E of points at which we know nothing. If F is finite it
is still easy to show that f must be constant. If E' is countable it is
possible, but a bit more difficult, to show that it is still true that f
must be constant. The question then arises, just how small a set F
can appear here, i.e., what would we have to know about a set £ so
that we could say f'(z) = 0 for every z € (0,1) \ E implies that f is
constant?

The Cantor function is an example of a function constant on
every interval complementary to the Cantor set K (and so with a
zero derivative at those points) and yet is not constant. The Cantor
set, since it is nowhere dense might be viewed as extremely small,
but even so it is not insignificant for this problem.

L
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Figure 6.2: The Cantor function.

Exercises

6:5.11 In the construction of the Cantor function complete the verification
of details.

(a) Show that f(QG) is dense in [0, 1].

(b) Show that f is nondecreasing on [0, 1]. .

(c) Infer from (a) and (b) that f is continuous on [0, 1].
)

(d) Show that f(K) = [0,1] and thus (again) conclude that K is
uncountable.

6:5.12 Find the calculus textbook proof for the statement that a continu-
ous function f on an interval [a, b] that has a zero derivative on (a, b)
must be constant. Improve the proof to allow a finite set of points
on which f is not known to have a zero derivative..

6.6 Borel Sets

In our study of continuous functions we have seen that the classes
of open sets and closed sets play a significant role. But the class
of sets that are of importance in analysis goes beyond merely the
open and closed sets. It was recognized by E. Borel (1871-1956)
that for many operations of analysis one needed to form countable
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intersections and countable unions of classes of sets. The collection
of Borel sets was introduced exactly to allow these operations. We
recall that a countable union of closed sets may not be closed (or
open) and that a countable intersection of open sets, also, may not
be open (or closed).

In this section we introduce two additional types of sets of im-
portance in analysis — sets of type Gs and sets of type F,. These
classes form just the beginning of the large class of Borel sets. We
shall find that they are precisely the right classes of sets to solve
some fundamental questions about real functions.

6.6.1 Sets of Type G,

Recall that the union of a collection of open sets is open (regardless
of how many sets are in the collection), but the intersection of a
collection of open sets need not be open if the collection has infinitely
many sets. For example,

A(52)-o

n=1
Similarly, if g1, g2, ¢3, ... is an enumeration of Q, then
[e.e]
N@®\{a}) =R\Q
k=1

the set of irrational numbers. The set {0} is closed (not open), and
R \ Q is neither open nor closed. The set IR \ Q is a countable
intersection of open sets. Such sets are of sufficient importance to
give them a name.

Definition 6.14 A subset H of R is said to be of type Gs (or a
Gs set) if it can be expressed as a countable intersection of open
sets, that is, if there exist open sets G1,G9,G3, ... such that H =

02021 Gk-

Example 6.15 A closed interval [a,b] or a half-open interval (a, b]
is of type G since
o
1 1
b = e
= (o0 7)

and
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<

Theorem 6.16 FEvery open set and every closed set in IR is of type
Gs.

Proof. Let G be an open set in IR. It is clear that G is of
type Gs. We also show that G can be expressed as a countable
union of closed sets. Express G in the form G = |J;~ , (ak, bx) where
the intervals (ag,by) are pairwise disjoint. Now for each k£ € IN,
there exist sequences {c; } and {dy,} such that the sequence {cy; }
decreases to ay, the sequence {bkj} increases to by and ¢, < di;
for each j € IN. Thus (ak, bx) = Uj2,[ck;, d;]. We have expressed
each component interval of G as a countable union of closed sets. It

follows that

[o e INe o] o

G= U U[ijadkj] = U [Ck;j,dkj]

k=1j=1 k=1
is also a countable union of closed sets. Now take complements.
This shows that IR \ G can be expressed as a countable intersection
of open sets (by using the de Morgan Laws). Since every closed set
F can be written F' = IR \ G for some open set G we have shown
that any closed set is of type Gs. |

We observed in Section 6.4 that a dense set can be small in the
sense of category. For example, QQ is a first category set. Our next
result shows that a dense set of type G5 must be large in the sense
of category.

Theorem 6.17 Let H be of type G5 and be dense in IR. Then H is
residual.

Proof. Write H = (32, G with each of the sets G} open. Since
H is dense by hypothesis and H C Gy, for each k € IN, each of the
open sets Gy, is also dense. Thus IR \ Gy, is nowhere dense for every
k € IN, and G is residual. The result now follows from Theorem 6.11
part (2). [ |

Exercises

6:6.1 Which of the sets below are of type G5?

(a) IN

(b) {%:ne]N}.
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(c) The set {C), : n € IN} of midpoints of intervals complementary
to the Cantor set.

(d) A finite union of intervals (that need not be open or closed).

6:6.2 Prove Theorem 6.17 for the interval [a, b] in place of IR.

6:6.3 Prove that a set E of type Gs in IR is either residual or else there is
an interval containing no points of E.

6.6.2 Sets of Type F;,

Just as the countable intersections of open sets form a larger class
of sets, the G4 sets, so also the countable unions of closed sets form
a larger class of sets.

The complements of open sets are closed. By dealing with com-

plements of G5 sets we arrive at the dual notion of a set of type
Fo-
Definition 6.18 A subset E of IR is said to be of type F, (or an F,

set) if it can be expressed as a countable union of closed sets — that
is, if there exist closed sets Fi, F, Fs,... such that E = |Jg, Fj.

Example 6.19 The set of rational numbers, Q is a set of type F,.
This is clear since it can be expressed as

Q= U{Tn}

where {r,} is any enumeration of the rationals. The singleton sets
{rn} are clearly closed. But note that Q is not of type Gs also.
It follows from Theorem 6.17 that a dense set of type Gs must be
uncountable (because a countable set is first category). In particular,
Q is not of type Gy, (and therefore IR\ Q is not of type F,.) <

Using the de Morgan laws, one verifies easily that the complement
of a G; set is an F, and vice-versa (Exercise 6:6.4). This is closely
related to the fact that a set is open if and only if its complement is
closed.

Theorem 6.20 A set is of type G if and only if its complement is
of type F.

Example 6.21 A half-open interval (a, b] is both of type G5 and of
type Fy:
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Remark. The only subsets of IR that are both open and closed
are the empty set and IR itself. There are however many sets that
are of type Gs and also of type F,. See Exercise 6:6.1.

We can now enlarge on Theorem 6.16. There we showed that all
open sets and all closed sets are in the class G5. We now show they
are also in the class F,.

Theorem 6.22 FEvery open set and every closed set in IR is both of
type F, and G;.

Proof. In the proof of Theorem 6.16 we showed explicitly how to
express any open set as an F,. Thus open sets are of type F, as well
as of type Gs (the latter being trivial). The part pertaining to closed
sets now follows by considering complements — the complement of

a closed set is open and the complement of an F, set is a G set.
[ |

Exercises

6:6.4 Verify that a subset A of R is an F, (Gs) if and only if R\ A is a
gd (‘7:0)'

6:6.5 Which of the sets below are of type F,?

(a) N

1
b — IN ;.
@ {>nen}
(¢) The set {Cy, : n € IN} of midpoints of intervals complementary
to the Cantor set.

(d) A finite union of intervals (that need not be open or closed).

[0 6:6.6 Prove that a set of type F, in IR is either first category or contains
an open interval.

0 6:6.7 Let {f,} be a sequence of real functions defined on IR and suppose
that fn(z) — f(z) at every point z. Show that

oo oo oo

{z: f(z) >a} = U U ﬂ{m:fn(m)2a+1/m}.

m=1r=1n=r

If each function f,, is continuous what can you assert about the set

{z: f(z) > a}?
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6.7 Oscillation and Continuity

In this section we return to a problem that we began investigating
in Section 5.9 about the nature of the set of discontinuity points of
a function. To discuss this set we shall need the notions of F, and
Gs sets and we need to introduce a new tool—the oscillation of a
function.

We begin with an example of a function f that is discontinuous
at every rational number and continuous at every irrational number.

Example 6.23 Let ¢1,¢2,q3,... be an enumeration of Q. Define a
function f by

— l, if z =gy
f(z) _{ 5, ifzeR\Q
Since IR \ Q is dense in IR, f can be continuous at a point z only if
f(z) =0 —1i.e. only if z € IR\ Q Thus f is discontinuous at every
z € Q. To check that f is continuous at each point of IR \ Q, let
zop € IR\ Q and let € > 0. Choose k € IN such that 1/k < e. Since
the set ¢g1,42,-.. ,qr is a finite set not containing z(, there exists
0 > 0 such that |¢; — z¢| > d for each s = 1,...,k. Thusif z € R
and |z — zo| < J, then either z € IR\ Q or z = ¢; for some j > k.
In either case |f(z) — f(z0)| < } < e. This verifies the continuity of

f at xo. Since zy was an arbitrary irrational point we see that f is
continuous at every irrational. |

Our example shows that it is possible for a function to be contin-
uous at every irrational number and discontinuous at every rational
number. Is it possible for the opposite to occur? Does there exist
a function f continuous on Q and discontinuous on IR\ Q? More
generally, what sets can be the set of points of continuity of some
function f defined on an interval.

We answer this question in this section. The principle tool is
that of oscillation of a function at a point.

6.7.1 Oscillation of a Function

In order to describe a point of discontinuity we need a way of measur-
ing that discontinuity. For monotonic functions the jump was used
previously for such a measure. For general, nonmonotonic, functions
a different tool is used.

Definition 6.24 Let f be defined on a non-degenerate interval 1.
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We define the oscillation of f on I as the quantity
wf(I) = sup |f(z) — f(y)l-

zyel

Let’s see how oscillation relates to continuity. Suppose f is de-
fined in a neighborhood of z(, and f is continuous at zy. Then

(i5r>1(f)wf((:v0 — 4,20+ 6)) =0, (1)
To see this, let ¢ > 0. Since f is continuous at xg, there exists §o > 0
such that |f(z) — f(zo)| < €/2 if |z — zo| < bp. If
o — Iy < x1 < 9 < x9 + b,
then
|f (1) = f@2)| < |f(21) — f@o)| + | f(zo) — flz2)| < % +

e _,
5 = €

(2)
Since (2) is valid for all z1,z2 € (xo — do, o + dp), we have

sup{|f(z1) — f(z2)| txz0—do <z1 < z2 <z + o} <e. (3)

But (3) implies that if 0 < § < dg, then wf([zg — 6,29 + §]) <e.
Since € was arbitrary, the result follows.

The converse is also valid. Suppose (1) holds. Let € > 0. Choose
d > 0 such that wf(zg — d,z¢9 + 6) < e. Then

sup{|f(z) — f(zo)| : 2 € (0 — b,20 + 0)} <&,

so |f(z) — f(zo)| < € whenever |x — zy| < d. This implies continuity
of f at xg.

We summarize the preceding as a theorem.

Theorem 6.25 Let f be defined on an interval I and let zg € I.
Then f is continuous at xg if and only if

inf —d,z0+6)) =0.
infwf((zo = &, 20 +9))
The quantity in the statement of the theorem is sufficiently im-
portant to have a name.

Definition 6.26 Let f be defined in a neighborhood of zy. The
quantity

wi(zo) = inf wf((zo — 20 + 7))
is called the oscillation of f at xg.

Theorem 6.25 thus states that a function f is continuous at a
point zg if and only if wy(zg) = 0. Returning to the function that
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introduced this section, we see that
1k, ifzx =g
w(z) = { 0, ifzeR\Q
Let’s now see how the concept of oscillation relates to the set of
points of continuity of a function.

Theorem 6.27 Let f be defined on a closed interval I (which may
be all of IR). Let v > 0. Then the set

{z:ws(z) <7}
is open and the set

{z:wr(z) =7}
18 closed.

Proof. Let A= {z:ws(r) <~} and let zo € A. We wish to find
a neighborhood U of z such that U C A, i.e., such that wy(z) <~y
forall z € U.

Let wy(zg) = a < 7 and let 8 € (a,7y). From Definition 6.26 we
infer the existence of a number § > 0 such that |f(u) — f(v)| < § for
u,v € (zg — §, 29 +9). Let U = (zg — d, 29 + J) and let z € U. Since
U is open, there exists ;1 < d such that (z — é1,2 + 61) C U. Then

wi(zo) < sup{|f(t) = f(s)|:t,s € (z = 01,2+ 61)}
< sup{[f(v) = f(v)]: w0 €U} < B <,

so x € A. This proves A is open. It follows then that the complement
of A in I, the set

{z:wp(z) >~}
must be closed. [ |

We use the oscillation in the next subsection to answer a question
about the nature of the set of points of continuity of a function. We
shall encounter the oscillation concept again in Chapter 8 when we
study the integrability of functions.

Exercises

6:7.1 Suppose that f is bounded on an interval I. Prove that
wf(I) =sup f(z) — inf f(z).
zel zel

6:7.2 The statement below is false.
wg(xo) = limsup f(z) — liminf f(z).

T—To T—To

How can it fail, even for bounded functions?
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6:7.3 Prove that

wf(z) = Jlim wf((zo — 4,0 +9))-

6:7.4 Calculate wf(0) for each of the following functions.

w0 ={ 7§70
CRCE Rt
© 10 ={ § e
@ 1@ ={ g {270
CROR ]
0 0 ={ g™ §r20

6:7.5 In the proof of Theorem 6.27 we let wf(zg) = o < v and let B €
(a,v). Why was the § introduced? Would the proof have worked if
we had used g =~?

6.7.2 The Set of Points Where a Function is Continu-
O ous

Given an arbitrary function how can we describe the nature of the
set of points where f is continuous? Can it be any set? Given a set
FE how can we know whether there is a function which is continuous
at every point of ¥ and discontinuous at every point not in E7

We saw in Example 6.23 that a function exists whose set of con-
tinuity points is exactly the irrationals. Can a function exist whose
set of continuity points is exactly the rationals? By characterizing
the set of such points we can answer this and other questions about
the structure of functions.

We now prove the main result of this section using primarily the
notion of oscillation introduced in Section 6.7.1.

Theorem 6.28 Let f be defined on a closed interval I (which may
be all of IR). Then the set Cy of points of continuity of f is of type
Gs, and the set Dy of points of discontinuity of f is of type F.
Conversely, if H is a set of type G5, then there exists a function f
defined on IR such that Cy = H.



6.7. Oscillation and Continuity 287

Proof. To prove the first part, let f : I — IR. We show
that {z:wf(z) =0} is of type Gs. For each k € IN, let By =
{z:wf(z) > %} By Theorem 6.27, each of the sets By is closed.
Thus B = |J,2, By is of type F,. By Theorem 6.25, Dy = B.
Therefore Cy = I\ B. Since the complement of an F, is a G5, Cy is
a g(s.

To prove the converse, let H be any subset of IR of type Gj.
Then H can be expressed in the form H = ;2 ; G}, with each of the
sets G being open. We may assume without loss of generality that
G1 =R and that G; D G;41 for each i € IN. (Verify this.)

Let {ar} and {fk} be sequences of positive numbers, each con-
verging to zero, with ap > [ > ag41, for all £ € IN. Define a
function f:IR— 1R by

0 ifzeH
f(z)=q ar ifz€(Gr\Gry1)NQ

Br ifz € (Gp\ Grs1) N(R\ Q).
We show that f is continuous at each point of H and discontinuous
at each point of R\ H.

Let zyp € H and let ¢ > 0. Choose n such that «, < e. Since

g € H = ﬂzozl G, zo € G,. The set G, is open, so there exists
d > 0 such that (zg — d,z9 + &) C Gy,. From the definition of G,,, we
see that 0 < f(z) < a, < e for all z € (zg — §, 29 + §). Thus

| () = f(zo)| = |f(z) = O] = [f(2)| <&
if |z — zo| < 6, so f is continuous at zo.
Now let zp € IR\ H. Then there exists k¥ € IN such that zy €
Gk \ Gi+1, 50 f(z0) = a or f(zo) = i, say f(zo) = a.
If zy is an interior point of G \ Gg41, then zg is a limit point of

{z:2€(Gp\Gr1) N(R\Q } = {z: f(z) = B},
so f is discontinuous ar zg.
The argument is similar if zy is a boundary point of Gy, \ Gg1.
Again, assume f(xg) = ai. Arbitrarily close to z(y there are points
of R\ (Gk \ Gg+1). At these points, f takes on values in the set

S={rulJeuls;.
i#k 2k
The only limit point of this set is zero and so S is closed. In partic-
ular, oy is not a limit point of this set and does not belong to the
set. Let € be half the distance from the point oy to the closed set S,
i.e., in symbols let ¢ = 1d(ay,S). Arbitrarily close to zo there are
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points z such that f(z) € S. For such a point,
[f(z) = f(zo)| = | f(z) — ax| > ¢,

so f is discontinuous at z. |

Observe that Theorem 6.28 answers a question we asked earlier:
is there a function f continuous on Q and discontinuous at every
point of IR \ Q? The answer is negative, since Q is not of type Gs.

Exercises

6:7.6 In the second part of the proof of Theorem 6.28 we provided a con-
struction for a function f with Cy = H, where H is an arbitrary set
of type Gs. Exhibit explicitly sets G, that will give rise to a function
f such that Cy = IR\ Q. Can you do this in such a way that the
resulting function is the one we obtained at the beginning of this
section?

6:7.7 In the proof of the ‘converse part’ of Theorem 6.28 we took £ =
1d(ag, S). Show that this number equals

1
gfl.n;éi}cl {min{|a; — akl, |8; — Bel}} -

6.8 Sets of Measure Zero

In analysis there are a number of ways in which a set might be
considered as “small”. For example the Cantor set is not small in the
sense of counting: it is uncountable. It is small in another different
sense: it is nowhere dense, that is there is no interval at all in which
it is dense. Now we turn to another way in which the Cantor set can
be considered small: it has “zero length”.

Example 6.29 Suppose we wish to measure the “length” of the
Cantor set. Since the Cantor set is rather bizarre we might look
instead at the sequence of intervals that has been removed. There
is no difficulty in assigning a meaning of length to an interval; the
length of (a,b) is b — a. What is the total length of the intervals
removed in the construction of the Cantor set? From the interval
[0,1] we remove first a middle third interval of length 1/3, then two
middle third intervals of length 1/9, and so on so that at the nth
stage we remove 2" ! intervals each of length 3~™. The sum of the
lengths of all intervals so removed is

1/3+2(1/9) +4(1/27) +--- =
1/3(1+2/3+ (2/3) + (2/3)3 +...) = 1.
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From the interval [0, 1] we appear to have removed all of the length.
What is left over, the Cantor set, must have length zero.

This method of computing lengths has some merit but it is not
the one we wish to adopt here. Another approach to “measuring”
the length of the Cantor set is to consider the length that remains
at each stage. At the first stage the Cantor set is contained inside
the union

[0,1/3] U[2/3,1]
which has length 2(1/3). At the next stage it is contained inside a
union of four intervals, with total length 4(1/9). Similarly at the
nth stage the Cantor set is contained inside the union of 2" intervals
each of length 37". The sum of the lengths of all these intervals is
(2/3)™ and this tends to zero as n gets large. Thus, as before, it
seems we should assign zero length to the Cantor set. |

We convert the second method of the example into a definition
of what it means for a set to be of measure zero. “Measure” is the
technical term used to describe the “length” of sets that need not
be intervals. In the example we used closed intervals while in our
definition we have employed open intervals. There is no difference
(see Exercise 6:8.13). In the example we covered the Cantor set with
a finite sequence of intervals while in our defininition we have em-
ployed an infinite sequence. For the Cantor set there is no difference
but for other sets (sets that are not bounded or are not closed) there
is a difference.

Definition 6.30 Let E be a set of real numbers. Then FE is said
to have measure zero if for every € > 0 there is a finite or infinite
sequence

(a1,b1), (az,b2), (a3, b3), (as,bs),- ..

of open intervals covering the set E so that
[e.e]

Z(bk — ak) <e.

k=1

Note. In the definition of measure zero sets is there a change if we insist
on an infinite sequence of intervals, disallowing finite sequences? Suppose
that the sequence

(ala bl)a (a23 b2)’ (a3’ b3)a (a4a b4)a tee (G’Na bN)
of open intervals covers the set E so that
N

Z(bk —ag) < g/2.

k=1
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Then to satisfy the definition we could add in some further intervals that do
not amount in length to more than €/2. For example take (antp, bnip) =
(0,e/2P+1) for p=1,2,3,.... Then

N

ibk—ak Z(bk—ak)+§:e/2p+l<s.
k=1

k=1 p=1
Thus the definition would not be changed if we had required infinite cov-
erings.
Here are some examples of sets of measure zero.

Example 6.31 Every finite set has measure zero. The empty set is
easily handled. If

E ={z1,z9,...2N}
and ¢ > 0 then the sequence of intervals

; — 1 =1,2,3,...N
(ng mv’z+2N) 1=123,
covers the set £ and the sum of all the lengths is €. <

Example 6.32 Every infinite, countable set has measure zero. If
E = {:El,.TQ,...}
and ¢ > 0 then the sequence of intervals

€ .
(2= gromi+ 5rr) i=1.2.3
covers the set E and the sum of all the lengths is

o0
22 <2k+1) = 252% =
k=1 k=1

|

Example 6.33 The Cantor set has measure zero. Let € > 0. Choose
n so that (2/3)™ < e. Then the nth stage intervals in the construc-
tion of the Cantor set give us 2" closed intervals each of length
(1/3)™. This covers the Cantor set with 2" closed intervals of total
length (2/3)™ which is less than . If the closed intervals trouble you
(the definition requires open intervals) see Exercise 6:8.13 or argue
as follows. Since (2/3)" < € there is a positive number ¢ so that

2/3)"+d<e.
Enlarge each of the closed intervals to form a slightly larger open
interval, but change the length of each only enough so that the sum

of the lengths of all the 2" closed intervals does not increase by more
than §. The resulting collection of open intervals also covers the
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Cantor set and the sum of the length of these intervals is less than ¢.
<

One of the most fundamental of the properties of sets having
measure zero is how sequences of such sets combine. We recall that
the union of any sequence of countable sets is also countable. We
now prove that the union of any sequence of measure zero sets is also
a measure zero set.

Theorem 6.34 Let F, Ey, E3, ... be a sequence of sets of measure
zero. Then the set E formed by taking the union of all the sets in
the sequence is also of measure zero.

Proof. Let € > 0. We shall construct a cover of E consisting of a
sequence of open intervals of total length less than €. Since E; has
measure zero there is a sequence of open intervals

(a11,b11), (@12, b12), (a13, b13), (@14, b14), - - -
covering the set E; and so that the sum of the lengths of these
intervals is smaller than /2. Since E, has measure zero there is a
sequence of open intervals

(a21,b21), (a22,b22), (a23,b23), (a24, b24), - - -
covering the set Es and so that the sum of the lengths of these
intervals is smaller than ¢/4. In general for each k = 1,2,3,... there
is a sequence of open intervals

(a1, be1), (ak2, br2), (aks; br3), (aka, bra), - -
covering the set Ep and so that the sum of the lengths of these
intervals is smaller than £/2%. The totality of all these intervals can
be arranged into a single sequence of open intervals that covers every
point in the union of the sequence {Ej}. The sum of the lengths of
all the intervals in the large sequence is smaller than

ef24+¢e/d+e/8+ - =¢.
|

Let us return to the situation for the Cantor set once again. For
each € > 0 we were able to choose a finite cover of open intervals with
total length less than . This is not the case for all sets of measure
zero. For example the set of all rational numbers on the real line
is countable and hence also of measure zero. Any finite collection
of intervals must fail to cover that set, in fact cannot come close to
covering all rational numbers. For what sets is it possible to select
finite coverings of small length? The answer is that this is possible
for compact sets of measure zero.
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Theorem 6.35 Let E be a compact set of measure zero. Then for
every € > 0 there is a finite collection of open intervals

(a1,b1), (a2, b2), (as,b3), (as,b4), ... (an,bn)

that covers the set E and so that
N

Z(bk — ak) <eE.

k=1
Proof. Since E has measure zero it is certainly possible to select
a sequence of open intervals

(a1,b1), (a2, b2), (a3, b3), (as,bs),. ..
that covers the set E and so that

[e 0]

Z(bk — ak) <eE.

k=1
But how can we reduce this collection to a finite one that also cov-
ers the set E7 The reader who is already familiar the Heine-Borel
theorem (Theorem 4.33) knows precisely how.

For readers who have skipped over that section we shall present
here a proof that uses the Bolzano-Weierstrass theorem instead. We
claim that we can find an integer N so that all points of E are in
one of the intervals

(a1,b1), (a2, b2), (a3, b3), (a4, b4), - - - (an, by)-
This will prove the theorem.
We prove this by contradiction. If this is not so then for each
integer kK = 1,2,3,... we must be able to find a point x; € E but
Tk is not in any of the intervals

(a1,01), (az,b2), (a3, b3), (a4, ba), - - . (ar, bk)-
The sequence {zy} is bounded because E is bounded. By the Bolzano-
Weierstrass theorem the sequence has a convergent subsequence {z,; }.
Let z be the limit of the convergent subsequence. Since F is closed
z is in E. The original sequence of intervals covers all of E and so
there must be an interval (as, bys) that contains z. For large values
of j the points z,; also belong to (aas,brr). But this is impossible
since Tp; cannot belong to the interval (aaz, bys) for n; > M. Since
this is a contradiction the proof is done. |

Exercises

6:8.1 Show that every subset of a set of measure zero also has measure
Z€T0.



6.8. Sets of Measure Zero 293

6:8.2 If £ has measure zero show that the translated set
E+a={z+a:z€E}
also has measure zero.
6:8.3 If E has measure zero show that the expanded set
cE={cx:z € E}
also has measure zero for any ¢ > 0.
6:8.4 If E has measure zero show that the reflected set
—-E={-z:2€E}
also has measure zero.

6:8.5 Without referring to the proof of Theorem 6.34 show that the union
of any two sets of measure zero also has measure zero.

6:8.6 If £y C E5 and E; has measure zero but E» has not, what can you
say about the set Es \ E;?

6:8.7 Show that any interval (a,b) or [a,b] is not of measure zero.

6:8.8 Give an example of a set that is not of measure zero and does not
contain any interval [a, b].

6:8.9 If a set E has measure zero is it true that the closure E must also
have measure zero?

6:8.10 If a set E has measure zero what can you say about interior points
of that set?

6:8.11 Suppose that a set E has the property that E N [a,b] has measure
zero for every compact interval [a,b]. Must E also have measure
zero?

6:8.12 Show that the set of real numbers in the interval [0, 1] that do not
have a 7 in their infinite decimal expansion is of measure zero.

6:8.13 In Definition 6.30 show that closed intervals may be used without
changing the definition.

6:8.14 Describe completely the class of sets E with the following property:
for every € > 0 there is a finite collection of open intervals

(alﬂ bl)a (a27b2)5 (a37b3)7 ((14,1)4), v (G’Na bN)

that covers the set EZ and so that
N

Z(bk - ak) <e.

k=1
(These sets are said to have zero content.)
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6:8.15 Show that a set E has measure zero if and only if there is a sequence
of intervals

(a1,b1), (a2,b2), (a3, b3), (as, ba), - - .
so that every point in E belongs to infinitely many of the intervals
and )7, (br — ax) converges.

6:8.16 By altering the construction of the Cantor set construct a nowhere
dense closed subset of [0,1] so that the sum of the lengths of the
intervals removed is not equal to 1. Will this set have measure zero?

6.9 Additional Problems for Chapter 6

6:9.1 Let f : R — IR be a continuous function. Assume that for every
positive number ¢ the sequence {f(ne)} converges to zero as n — oo.
Prove that

lim f(z) =0.
T—r0o0

6:9.2 Let f, be a sequence of continuous functions defined on an interval
[a,b] such that lim,_,« fn(z) = 0 for each = € [a,b]. Show that for
any € > 0 there is an interval [c,d] C [a,b] and an integer N so that

(@)l <e
for every n > N and every z € [c,d]. Show that this need not be
true for [c,d] = [a, b].

6:9.3 Let f, be a sequence of continuous functions defined on an interval
[a,b] such that lim,,_, o fn(x) = oo for each z € [a,b]. Show that for
any M > 0 there is an interval [¢, d] C [a,b] and an integer N so that

folz) > M

for every n > N and every z € [¢,d]. Show that this need not be
true for [c,d] = [a, b].



