Chapter 4

SETS OF REAL
NUMBERS

4.1 Introduction

Modern set theory and the world it has opened to mathematics has
its origins in a problem in analysis. A young Georg Cantor in 1870
began to attack a problem given to him by his senior colleague Ed-
ward Heine who worked at the same university. (We shall see Heine
playing a key role in some ideas of this chapter too.)

The problem was to determine if the equation

o
Tag + Z (ak cos kx + by sinkz) =0 (1)
k=1
must imply that all the coefficients of the series, the {ax} and the
{bi} are zero. Cantor solved this using the methods of his time.
It was a good achievement, but not the one that was to make him
famous. What he did next was to ask, as any good mathematician
would, whether his result could be generalized. Suppose that the
series (1) converges to zero for all z except possibly for those in
a given set E. If this set E is very small then perhaps, still, the
coefficients of the series should also have to be all zero.

The nature of these exceptional sets (nowadays called sets of
uniqueness) required a language and techniques that were entirely
new. Previously a number of authors had needed a language to
describe sets that arose in various problems. What was used at
the time was very limited and few interesting examples of sets were
available. Cantor went beyond these, introducing a new collection

162



4.2. Points 163

of ideas that are now indispensable to analysis. We shall encounter
in this chapter many of the notions that arose then: accumulation
points, derived sets, countable sets, dense sets, nowhere dense sets.

Incidentally Cantor never did finish his problem of describing the
sets of uniqueness as the development of the new set theory was more
important and consumed his energies. In fact the problem remains
unsolved, although much interesting information about the nature
of sets of uniqueness has been discovered.

The theory of sets that Cantor initiated has proved to be fun-
damental to all of mathematics. Very quickly the most talented
analysts of that time began applying his ideas to the theory of func-
tions and by now this material is essential to an understanding of
the subject. This chapter contains the most basic material. Later in
Chapter 6 we will need some further concepts.

4.2 Points

In our studies of analysis we shall need very often to have a lan-
guage that describes sets of points and the points that belong to
them. That language did not develop until late in the nineteenth
century and was a reason for many of the difficulties that the early
mathematicians encountered in understanding some problems.

For example consider the set of solutions to an equation

flz) =0

where f is some well behaved function. In the simplest cases, e.g.,
if f is a polynomial function, the solution set could be empty or a
finite number of points. There is no difficulty there. But in more
general settings the solution set could be very complicated indeed.
It may have points that are “isolated”, points appearing in clusters,
it may contain intervals or merely fragments of intervals. You can
see that we even lack the words to describe the possibilities.

The ideas in this section are all very geometric. Try to draw
mental images that depict all of these ideas to get a feel for the
definition. The definitions themselves should be remembered, but
may prove hard to remember without some associated picture.

The simplest types of sets are intervals. We call

[a,b] ={z:a <z <b}
a closed interval, and

(a,b) ={z:a <z <b}
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Figure 4.1: Every point in (a,b) is an interior point.

an open interval. The other sets that we often consider are the sets
IN of natural numbers, QQ of rational numbers, and the set IR of all
real numbers. Use these in your pictures, as well as sets obtained by
combining them in many ways.

4.2.1 Interior Points

Every point inside an open interval I = (a,b) has the feature that
there is a smaller open interval centered at that point that is also
inside I. Thus if z € (a,b) then for any positive number c¢ that is
small enough

(z—c,z+c) C(a,b).
Indeed the arithmetic to show this is easy (and a picture makes it
transparent). Let ¢ be any positive number that is smaller than the

shortest distance from z to either a or b. Then (z—c,z+¢) C (a,b).
(See Figure 4.1.)

Note. Often one uses the following suggestive language. An open interval
that contains a point x is said to be a neighborhood of x. Thus each point
in (a,b) possesses a neighborhood, indeed many neighborhoods, that lie
entirely inside the set I. On occasion the point z itself is excluded from
the neighborhood: we say an interval (c,d) is a neighborhood of z if x
belongs to the interval and we say that the set (c,d) \ {z} is a deleted
neighborhood. This is just the interval with the point z removed.

We can distinguish between points that are merely in a set and
points that are more deeply inside the set. The word chosen to
convey this image of “inside” is interior.
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Definition 4.1 (Interior Point) Let E be a set of real numbers.
Any point z that belongs to FE is said to be an interior point of E
provided some interval

(x—c,x+c) CE.

Thus an interior point of the set E is not merely in the set E; it
is, so to speak, deep inside the set, at a positive distance ¢ at least
away from every point that does not belong to F.

Example 4.2 The following examples are immediate if a picture is
sketched. In each case, though, one should try to find the interval
(x — ¢,z + ¢) inside or explain why there can be no such interval.

1. Every point z of an open interval (a,b) is an interior point.

2. Every point z of a closed interval [a,b], except the two end-
points a and b, is an interior point.

3. The set of natural numbers IN has no interior points whatso-
ever.

4. Every point of IR is an interior point.

5. No point of the set of rational numbers QQ is an interior point.
(This is because any interval (z — ¢,z + ¢) must contain both
rational numbers and irrational numbers and, hence, can never
be a subset of Q.)

4.2.2 Isolated Points

Most sets that we consider will have infinitely many points. Certainly
any interval (a,b) or [a,b] has infinitely many points. The set IN
of natural numbers also has infinitely many points, but as we look
closely at any one of these points we see that each point is all alone,
at a certain distance away from every other point in the set. We call
these points isolated points of the set.

Definition 4.3 (Isolated Point) Let E be a set of real numbers.
Any point x that belongs to F is said to be an isolated point of E
provided for some interval (x — ¢,z + ¢), that

(x —c,z+c)NE = {z}.
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Thus an isolated point of the set E is in the set E but has no
close neighbors who are also in E. It is at some positive distance c
at least away from every other point that belongs to FE.

Example 4.4 As before, the examples are immediate if a picture is
sketched. In each case, though, one should try to find the interval
(z — ¢,z + ¢) that meets the set at no other point or show that there
is none.

1. No point z of an open interval (a,b) is an isolated point.
2. No point z of a closed interval [a, b] is an isolated point.

3. Every point belonging to the set of natural numbers IN is an
isolated point.

4. No point of IR is isolated.

5. No point of Q is isolated.

4.2.3 Points of Accumulation

Most sets that we consider will have infinitely many points. While
the isolated points are of interest on occasion, more than likely we
would be interested in points that are not isolated. These points have
the property that every containing interval contains many points of
the set. Indeed we are interested in any point z with the property
that the intervals (z — ¢,z 4 ¢) meet the set E at infinitely many
points. This could happen even if z itself does not belong to E. We
call these points accumulation points of the set. An accumulation
point need not itself belong to the set.

Definition 4.5 (Accumulation Point) Let E be a set of real
numbers. Any point z (not necessarily in F) is said to be an accu-
mulation point of E provided for every ¢ > 0 the interval (z—c,z+c)
contains points of the set E, in fact that the intersection

(z—cx+c)NE
contains infinitely many points.

Thus an accumulation point of E is a point that may or may not
itself belong to £ and that has very many close neighbors who are
in E.
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Note. The definition requires that for all ¢ > 0 the intersection
(z—c,z+c)NE

contains infinitely many points of E. In checking for an accumulation point
it may be preferable to merely check that there is at least one point in this
intersection (other than possibly z itself). If there is always at least one
point then there must be also infinitely many (Exercise 4:2.18.)

Example 4.6 Yet again, the examples are immediate if a picture is
sketched.

1. Every point of an open interval (a, b) is a an accumulation point
of (a,b). Moreover the two endpoints a and b are also accumu-
lation points of (a,b) (although they do not belong themselves
to (a,b)).

2. Every point of a closed interval [a, b] is an accumulation point
of (a,b). No point outside can be.

3. No point at all is an accumulation point of the set of natural
numbers IN.

4. Every point of IR is an accumulation point.

5. Every point on the real line, both rational and irrational, is an
accumulation point of the set Q.

4.2.4 Boundary Points

The intervals (a, b) and [a, b] have what appears to be an “edge”. The
points a and b mark the boundaries between the inside of the set (i.e.,
the interior points) and the “outside” of the set. This inside/outside
language with an idea of a boundary between them is most useful
but needs a precise definition.

Definition 4.7 (Boundary Point) Let E be a set of real numbers.
Any point z (not necessarily in F) is said to be a boundary point of
E provided every interval (z — ¢,z + ¢), contains at least one point
of E and also at least one point that does not belong to E.

This definition is easy to apply to the intervals (a,b) and [a, b]
but harder to imagine for general sets. For these intervals the only
points which are immediately seen to satisfy the definition are the
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two endpoints that we would have naturally said to be at the bound-

ary.

Example 4.8 The examples are not all transparent, but require
careful thinking about the definition.

1. The two endpoints a and b are the only boundary points of an
open interval (a,b).

2. The two endpoints a and b are the only boundary points of a
closed interval [a, b].

3. Every point in the set IN of natural numbers is a boundary
point.

4. No point at all is boundary point of the set IR.

5. Every point on the real line, both rational and irrational is a
boundary point of the set Q. (Think for a while about this
one!)

<
Exercises

4:2.1 Determine the set of interior points, points of accumulation, isolated

points and boundary points for each of the following sets:

(a) {1,1/2,1/3,1/4,1/5,...}.

(b) {0}U{1,1/2,1/3,1/4,1/5,...}.
(¢) (0,1)U(1,2)U(2,3)U(3,4)---U(n,n+1)U...
(d) (1/2,1)uU(1/4,1/2)uU(1/8,1/4)uU(1/16,1/8)U...
(e) {z:|z—7| <1}

() {z:2% <2}

)

(h) R\ Q

4:2.2 Give an example of each of the following or explain why you think

such a set could not exist.
(a) A nonempty set with no accumulation points and no isolated
points.
(b) A nonempty set with no interior points and no isolated points.

(¢) A nonempty set with no boundary points and no isolated points.
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4:2.3 Show that every interior point of a set must also be an accumulation
point of that set, but not conversely.

4:2.4 Show that no interior point of a set can be a boundary point, that
it is possible for an accumulation point to be a boundary point, and
that every isolated point must be a boundary point.

4:2.5 Let E be a nonempty set of real numbers that is bounded above
but has no maximum. Let z = sup E. Show that z is a point of
accumulation of E. Is it possible for = to also be an interior point of
E? Is x a boundary point of E?

4:2.6 State and solve the version of Exercise 4:2.5 that would use the
infimum in place of the supremum.

4:2.7 Let A be a set and B =1R\ A. Show that every boundary point of
A is also a boundary point of B.

4:2.8 Let A be a set and B =1R\ A. Show that every boundary point of
A is a point of accumulation of A or else a point of accumulation of
B, perhaps both.

4:2.9 Must every boundary point of a set be also an accumulation point
of that set?

4:2.10 Show that every accumulation point of a set that does not itself
belong to the set must be a boundary point of that set.

4:2.11 Show that a point z is not an interior point of a set E if and only
if there is a sequence of points {z,} converging to z and no point
T, € E.

4:2.12 Let A be a set and B = IR \ A. Show that every interior point of
A is not an accumulation point of B.

4:2.13 Let A be a set and B = IR\ A. Show that every accumulation
point of A is not an interior point of of B.

4:2.14 Give an example of a set that has the set IN as its set of accumu-
lation points.

4:2.15 Show that there is no set which has the interval (0,1) as its set of
accumulation points.

4:2.16 Show that there is no set which has the set QQ as its set of accumu-
lation points.

4:2.17 Give an example of a set that has the set
E={0}u{1,1/2,1/3,1/4,1/5,...}
as its set of accumulation points.

4:2.18 Show that a point z is an accumulation point of a set E if and only
if for every € > 0 there are at least two points belonging to the set
EN(z—e¢,xz+e¢).
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4:2.19 Suppose that {z,} is a convergent sequence converging to a number
L and that x,, # L for all n. Show that the set
{z:z =z, for somen }
has exactly one point of accumulation, namely L. Of what impor-
tance was the assumption that x,, # L for all n for this exercise?

4:2.20 Let E be a set and {z,} a sequence of distinct elements of E.
Suppose that lim,,_, ., , = z. Show that z is a point of accumulation
of E.

4:2.21 Let E be a set and {z,} a sequence of points, not necessarily
elements of E. Suppose that lim,,_, . z, = = and that x is an interior
point of E. Show that there is an integer N so that z, € E for all
n>N.

4:2.22 Let E be a set and {z,} a sequence of elements of E. Suppose
that lim,,_, T, = = and that z is an isolated point of E. Show that
there is an integer N so that x, = x for all n > N.

4:2.23 Let E be a set and {z,} a sequence of distinct points, not necessar-
ily elements of E. Suppose that lim, . , = = and that x5, € E
and zap+1 € E for all n. Show that z is a boundary point of E.

4:2.24 If FE is a set of real numbers then E’, called the derived set of E,
denotes the set of all points of accumulation of E. Give an example
of each of the following or explain why you think such a set could
not exist.

(a) A nonempty set E such that E' = E.
(b) A nonempty set E such that E' = §.

(¢) A nonempty set E such that E' # 0 but E" = 0.

(d) A nonempty set E such that E', E" # () but E"' = 0.

(e) A nonempty set E such that E', E", E"', ... are all different.

(f) A nonempty set E such that (EUE') # (EUE").

4:2.25 Show that there is no set with uncountably many isolated points.

4:2.26 Cantor, in 1885, defined a set E to be dense-in-itself if E C E'.
Develop some facts about such sets. Include illustrative examples.

4.3 Sets

We now begin a classification of sets of real numbers. Almost all of
the concepts of analysis (limits, derivatives, integrals, etc.) can be
better understood if a classification scheme for sets is in place. By
far the most important notions are those of closed sets and open sets.
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This is the basis for much advanced mathematics and leads to the
subject known as topology which is fundamental to an understanding
of many areas of mathematics. On the real line we can master open
and closed sets and describe precisely what they are.

4.3.1 Closed Sets

In many parts of mathematics the word “closed” is used to indicate
that some operation stays within a system. For example the set of
natural numbers IN is closed under addition and multiplication (any
sum or product of two of them is yet another) but not closed under
subtraction or division (2 and 3 are natural numbers, but 2 — 3 and
3/2 are not). This same word was employed originally to indicate
sets of real numbers that are “closed” under the operation of taking
points of accumulation. If all points of accumulation turn out to be
in the set then the set is said to be closed. This terminology has
survived and become, perhaps, the best known usage of the word
“closed”.

Definition 4.9 (Closed) Let E be a set of real numbers. The set E
is said to be closed provided every accumulation point of £ belongs
to the set E.

Thus a set E is not closed if there is some accumulation point of £
that does not belong to E. In particular a set with no accumulation
points would have to be closed since there is no point that needs to
be checked.

Example 4.10 The examples are immediate since we have already
described all of the accumulation points of these sets.

1. The empty set () is closed since it contains all of its accumula-
tion points (there are none).

2. The open interval is (a, b) not closed because the two endpoints
a and b are accumulation points of (a,b) and yet they do not
belong to the set.

3. The closed interval [a,b] is closed since only points that are
already in the set are accumulation points.

4. The set of natural numbers IN is closed because it has no points
of accumulation.

5. Thereal line IR is closed since it contains all of its accumulation
points, namely every point.
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6. The set of rational numbers Q is not closed. Every point on
the real line, both rational and irrational, is an accumulation
point of Q, but the set fails to contain any irrationals..

<

The closure of a set If a set is not closed it is because it neglects
to contain points that “should” be there since they are accumulation
points but not in the set. On occasions it is best to throw them in and
consider a larger set composed of the original set together with the
offending accumulation points that may not have belonged originally
to the set.

Definition 4.11 (Closure) Let E be any set of real numbers and
let E' denote the set of all accumulation points of E. Then the set
E=EUFE

is called the closure of the set E.

For example (a,b) = [a,b], [a,b] = [a,b], N = IN, and Q = RR.
Each of these is an easy observation since we know what the points
of accumulation of these sets are.

4.3.2 Open Sets

Originally the word “open” was used to indicate a set that was not
closed. In time it was realized that this is a waste of terminology,
since the class of “not closed sets” is not of much general interest.
Instead the word is now used to indicate a contrasting idea, an idea
that is not quite an opposite—just at a different extreme. This may
be a bit unfortunate since now a set that is not open need not be
closed. Indeed some sets can be both open and closed, and some sets
can be both not open and not closed.

Definition 4.12 (Open) Let E be a set of real numbers. Then E
is said to be open if every point of E is also an interior point of F.

Thus every point of F is not merely a point in the set E; it is, so
to speak, deep inside the set, at a fixed positive distance away from
every point that does not belong to E. Note that this means that
an open set cannot contain any of its boundary points.

Example 4.13 These examples are immediate since we have seen
them before in the context of interior points in Section 4.2.1.
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1. The empty set () is open since it contains no points that are
not interior points of the set. (This is the first example of a
set that is both open and closed.)

2. The open interval (a,b) is open since, every point z of an open
interval (a,b) is an interior point.

3. The closed interval [a, b] is not open since there are points in
the set (namely the two endpoints @ and b) that are in the set
and yet are not interior points.

4. The set of natural numbers IN has no interior points and so
this set is not open; all of its points fail to be interior points.

5. Every point of IR is an interior point and so IR is open. (Re-
member IR is also closed so it is both open and closed. Note
that IR and () are the only examples of sets that are both open
and closed.)

6. No point of the set of rational numbers Q is an interior point
and so Q definitely fails to be open.

<

The interior of a set If a set is not open it is because it contains
points that “shouldn’t” be there since they are not interior. On
occasions it is best to throw them away and consider a smaller set
composed entirely of the interior points.

Definition 4.14 (Interior) Let E be any set of real numbers. Then
the set

int(E)
denotes the set of all interior points of F and is called the interior
of the set E.

For example int((a,b)) = (a,b), int([a,b]) = (a,b), int(IN) = 0,
and int(Q) = (. Each of these is an easy observation since we know
what the interior points of these sets are.

Component Intervals of Open Sets Think of the most general
open set G that you can. A first feeble suggestion might be any open
interval G = (a,b). We can do a little better. How about the union
of two of these

G = (a,b) U (c,d).
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If these are disjoint then we would tend to think of G' as having two
“components”. It is easy to see that every point is an interior point.
We need not stop at two component intervals; any number would
work

G = (a1,b1) U (az,b2) U (a3,b3) U--- U (an, bn).
The argument is the same and elementary. If z is a point in this
set then z is an interior point. Indeed we can form the union of a
sequence of such open intervals and it is clear that we shall obtain
an open set. For a specific example consider
(—o0,—3)U(1/2,1)U(1/8,1/4) U(1/32,1/16) U (1/128,1/64) U....
At this point our imagination stalls and it is hard to come up with
any more examples that are not obtained by stringing together open
intervals in exactly this way. This suggests that, perhaps, all open
sets have this structure. They are either open intervals or else a
union of a sequence of open intervals. This theorem characterizes all
open sets of real numbers and reveals their exact structure.

Theorem 4.15 Let G be a nonempty open set of real numbers.
Then there is a unique sequence (finite or infinite) of disjoint, open
intervals
(al, bl), (CLQ, bg), (a3, b3), ey (a”, bn), e
called the component intervals of G such that
G = (a1,b1) U (a2,b2) U (ag,b3) U--- U (an,bp) U....

Proof. Take any point z € G. We know that there must be
some interval (a,b) containing the point z and contained in the set
G. This is because G is open and so every point in G is an interior
point. We need to take the largest such interval. The easiest way to
describe this is to write
a =inf{t: (t,z) C G}
and
B =sup{t: (z,t) C G}.
Note that @ < z < 8. Then I, = (a, ) is called the component of G
containing the point z. (It is possible here for « = —o0 or 8 = 00.)
One feature of components that we require is this: if z and y
belong to the same component then I, = I,. If z and y do not
belong to the same component then I, and I, have no points in
common. This is easily checked (Exercise 4:3.21).
There remains the task of listing the components as the theorem
requires. If the collection {I, : z € G} is finite then this presents no
difficulties. If it is infinite we need a clever strategy.
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Let r1, o, r3, ... be a listing of all the rational numbers contained
in the set G. We construct our list of components of G by writing
for the first step

(al,bl) = I,,-l.
The second component must be disjoint from this first component
so we cannot simply choose I, since if 5 belongs to (a1, b;) then in
fact (a1,b1) = I, = I,.

Instead we travel along the sequence 71, rg, 3, ... until we reach
the first one, say r,,, that does not already belong to the interval
(a1,b1). This then serves to define our next interval

(CI,Q, b2) =1

T‘m2'
If there is no such point then the process stops. This process is
continued inductively resulting in a sequence of open intervals.

(a1,b1) U (ag,b2) U (as,bz) U---U(ap,by) U...

which may be infinite or finite. At the kth stage a point r,,, is
selected so that r,,, does not belong to any component thus far
selected. If this cannot be done then the process stops and produces
only a finite list of components.

The proof is completed by checking that (i) every point of G is in
one of these intervals, (ii) every point in one of these interval belongs
to G, (iii) the intervals in the sequence must be disjoint.

For (i) note that if z € G then there must be rational numbers
in the component I. Indeed there is a first number r; in the list
that belongs to this component. But then z € I, and so we must
have chosen this interval I, at some stage. Thus z does belong to
one of these intervals.

For (ii) note that if z is in G then I, C G. Thus every point in
one of the intervals belongs to G.

For (iii) consider some pair of intervals in the sequence we have
constructed. The later one chosen was required to have a point 7,
that did not belong to any of the preceding choices. But that means
then that the new component chosen is disjoint from all the previous
ones.

This completes the checking of the details and so the proof is
done. |

Exercises

4:3.1 Is it true that a set, all of whose points are isolated, must be closed.

4:3.2 If a set has no isolated points must it be closed? Must it be open?
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4:3.3 Some students, when asked, remember that a set is closed “if all its
points are points of accumulation”. Must such a set be closed?

4:3.4 Some students, when asked, incorrectly remember that a set is open
“if it contains all of its interior points”. Is there an example of a set
that fails to have this property?

4:3.5 Determine which of the following sets are open, which closed and
which are neither open nor closed.

(a) (—00,0)U(0,00).

(b) {1,1/2,1/3,1/4,1/5,...}.

(c) {0yuU{1,1/2,1/3,1/4,1/5,...}.

(d) (0,H)U@,2)U(2,3)U(3,4)---U(n,n+1)U
(e) (1/2,1)U (1/4,1/2) U (1/8,1/4)U (1/16,1/8)U
) {z: |m—7r|<1}

(g) {z:2° <2}

(h) R\ IN.

(i) R\Q

4:3.6 Show that the closure operation has the following properties:

(a) If By C Es then E; C Es.
(b) E{UE, = E; UE,.
(c) EENE; CEINE;
(d) Give an example of two sets E; and FEs such that

EiNE, 75 E_1 n E_2
() E=E.
4:3.7 Show that the interior operation has the following properties:
( ) If E; C E5 then 1nt(E1) C lnt(Ez)
(b) 1nt(E1 n E2) 1nt(E1) n ll'lt(EQ)
(c) int(Ey U E») D int(E) Uint(Es).
(d) Give an example of two sets E; and Fs such that
int(Ey U Ep) # int(Ey) Uint(Es).
(e) int(int(F)) = int(E).
4:3.8 Show that if the set E’ of points of accumulation of E is empty then
the set E must be closed.

4:3.9 Show the set E’ of points of accumulation of any set E must be
closed.
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4:3.10 Show the set int(E) of interior points of any set E must be open.
4:3.11 Show that a set E is closed if and only if E = E.
4:3.12 Show that a set E is open if and only if int(E) = E.

4:3.13 If Ais open and B is closed what can you say about the sets A\ B
and B\ A?

4:3.14 If A and B are both open or both closed what can you say about
the sets A\ B and B\ A?

4:3.15 If E is a nonempty bounded, closed set show that max{E} and
min{E} both exist. If E is a bounded, open set show that neither
max{E} and min{E} exist (although sup{E} and inf{E} do).

4:3.16 Show that if a set of real numbers E has at least one point of
accumulation then for every € > 0 there exist points z, y € E so
that 0 < |z —y| <e.

4:3.17 Construct an example of a set of real numbers E that has no points
of accumulation and yet has the property that for every £ > 0 there
exist points z, y € E so that 0 < |z —y| < e.

4:3.18 Let {z,} be a sequence of real numbers. Let E denote the set of
all numbers z that have the property that there exists a subsequence
{zn, } convergent to z. Show that E is closed.

4:3.19 Determine the components of the open set IR \ IN.

4:3.20 Let F = {0} uU{1,1/2,1/3,1/4,1/5,...}. Show that F is closed
and determine the components of the open set R\ F.

4:3.21 In the proof of Theorem 4.15 show that if z and y belong to the
same component then I, = I, while if 2 and y do not belong to the
same component then I, and I, have no points in common.

4:3.22 In the proof of Theorem 4.15 after obtaining the collection of com-
ponents {I, : z € G} there remained the task of listing them. In
classroom discussions the following suggestions were made as to how
the components might be listed:

(a)
(b)
(©)

)

(d) List the components from right to left.

List the components from largest to smallest.
List the components from smallest to largest.

List the components from left to right.

For each of these give an example of an open set with infinitely many
components for which this strategy would work and also an example
where it would fail.
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4:3.23 In searching for interesting examples of open sets the reader may
have run out of ideas. Here is an example of a construction due
to Cantor and which has become the source for many important
examples in analysis. We describe the component intervals of an
open set G inside the interval (0,1). At each “stage” n we shall
describe 2"~! components.

At the first stage, stage one, take (1/3,2/3) and at stage 2 take
(1/9,2/9) and (7/9,8/9) and so on so that each stage we take all the
middle third intervals of the intervals remaining inside (0,1). The set
G is the open subset of (0,1) having these intervals as components.

(a) Describe exactly the collection of intervals forming the compo-
nents of G.

(b) What are the endpoints of the components. How do they relate
to ternary expansions of numbers in [0, 1]?

(c) What is the sum of the lengths of all components?

(d) Sketch a picture of the set G by illustrating the components at
the first three stages.

(e) Show that if z, y € G, x < y, but £ and y are not in the same
component then there are infinitely many components of G in
the interval (z,y).

] 4:3.24 One of Cantor’s early results in set theory is that for every closed
set E there is a set S with £ = S’. Attempt a proof.

4.4 Elementary Topology

The study of open and closed sets in any space is called topology.
Our goal now is to find relations between these ideas and examine
the properties of these sets. Much of this is a useful introduction to
topology in any space; some is very specific to the real line where
the topological ideas are easier to sort out.

The first theorem establishes the connection between the open
sets and the closed sets. They are not quite opposites. They are
better described as “complementary”.

Theorem 4.16 (Open vs. closed) Let A be a set of real numbers
and B = IR\ A its complement. Then A is open if and only if B is
closed.

Proof. If A is open and B fails to be closed then there is a point
z that is a point of accumulation of B and yet is not in B. Thus z
must be in A. But if z is a point in an open set it must be an interior
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point. Hence there is an interval (z — §,z + §) contained entirely in
A; such an interval contains no points of B. Hence z cannot be a
point of accumulation of B. This is a contradiction and so we have
proved that B must be closed if A is open.

Conversely if B is closed and A fails to be open then there is a
point z € A that is not an interior point of A. Hence every interval
(z — 8,z + ) must contain points outside of A, namely points in B.
By definition this means that z is a point of accumulation of B. But
B is closed and so z, which is a point in A, should really belong to
B. This is a contradiction and so we have proved that A must be
open if B is closed. |

Theorem 4.17 (Properties of open sets) The open subsets of the
real numbers have the following properties:

1. The sets O and IR are open.

2. Any intersection of a finite number of open sets is open.
3. Any union of an arbitrary collection of open sets is open.
4. The complement of an open set is closed.

Proof. The first assertion is immediate and the last we have
already proved. The third is easy. Thus it is enough for us to prove
the second assertion. Let us suppose that E; and Ey are open. To
show that E; N E5 is also open we need to show that every point is
an interior point. Let z € E1 N Ey. Then, since z is in both of the
sets F1 and Ey and both are open there are intervals

(z — 01,2+ 61) C By
and
(z — 09,2+ d2) C Es.
Let 6 = min{d1,d2}. We must then have
(z—0,z+0) C E1NEy

which shows that z is an interior point of E1 N Es. Since z is any
point this proves that F; N Es is open.

Having proved the theorem for two open sets, it now follows for
three open sets since

ElﬂEgﬂEgz(ElﬂEQ)ﬂEg.

That any intersection of an arbitrary finite number of open closed
sets is open now follows by induction. |



180 Chapter 4. Sets of Real Numbers

Theorem 4.18 (Properties of closed sets) The closed subsets of
the real numbers have the following properties:

1. The sets ) and IR are closed.
2. Any union of a finite number of closed sets is closed.

3. Any intersection of an arbitrary collection of closed sets is
closed.

4. The complement of a closed set is open.

Proof.  Except for the second assertion these are easy or have
already been proved. Let us prove the second one. Let us suppose
that F; and E5 are closed. To show that E; U E5 is also closed we
need to show that every accumulation point belongs to that set. Let
z be an accumulation point of E;UFE» that does not belong to the set.
Since z is in neither of the closed sets E; and F» this point z cannot
be a an accumulation point of either. Thus some interval (z—d, z+9)
contains no points of either E; or Es. Consequently that interval
contains no points of 1 U Ey and is not an accumulation point after
all, contradicting our assumption. Since z is any accumulation point
this proves that E; U F» is closed.

Having proved the theorem for two closed sets, it now follows for
three closed sets since

ElUEQUEP,:(ElLJEQ)UEg.

That any union of an arbitrary finite number of closed sets is closed
now follows by induction. |

Exercises
4:4.1 Explain why it is that the sets () and IR are open and also closed.
4:4.2 Show that a union of an arbitrary collection of open sets is open.

4:4.3 Show that an intersection of an arbitrary collection of closed sets is
closed.

4:4.4 Give an example of a sequence of open sets G1, G2, G3, ... whose
intersection is neither open nor closed. Why does this not contradict
Theorem 4.177

4:4.5 Give an example of a sequence of closed sets Fy, F5, F3, ... whose
union is neither open nor closed. Why does this not contradict The-
orem 4.187?
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4:4.6 Show that the set E can be described as the smallest closed set that
contains every point of E.

4:4.7 Show that the set int(F) can be described as the largest open set
that is contained inside E.

4:4.8 A function f: IR — IR is said to be bounded at a point xg provided
there are positive numbers ¢ and M so that |f(z)] < M for all
x € (xo — &,T0 + £). Show that the set of points at which a function
is bounded is open. Let E be an arbitrary closed set. Is it possible
to construct a function f : IR — IR so that the set of points at which
f is not bounded is precisely the set E?

4:4.9 This exercise continues Exercise 4:3.23. Define the Cantor ternary
set K to be the complement of the open set G of Exercise 4:3.23 in
the interval [0, 1].

(a) If all the open intervals up to the nth stage in the construction
of G are removed from the interval [0, 1] there remains a closed
set K, that is the union of a finite number of closed intervals.
How many intervals?

(b) What is the sum of the lengths of these closed intervals that
make up K,7

(c) Show that K =7, Kp.

(d) Sketch a picture of the set K by illustrating the sets K;, K,
and Kg.

(e) Show that if z, y € K, z < y, then there is an open subinterval
I C (z,y) containing no points of K.

(f) Give an example of a number z € K N (0,1) that is not an
endpoint of a component of G.

4:4.10 Express the closed interval [0, 1] as an intersection of a sequence of
open sets. Can it also be expressed as a union of a sequence of open
sets?

4:4.11 Express the open interval (0,1) as a union of a sequence of closed
sets. Can it also be expressed as an intersection of a sequence of
closed sets?

4:4.12 Can the closed interval [0, 1] be expressed as the union of a sequence
of disjoint closed subintervals each of length smaller than 17

4:4.13 In many applications of open sets and closed sets one wishes to work
just inside some other set A. It is convenient to have a language for
this. A set E C A is said to be open relative to Aif E = ANG
for some set G C IR that is open. A set E C A is said to be closed
relative to A if E = ANF for some set F' C IR that is closed. Answer
the following questions.
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(a) Let A = [0,1] describe, if possible, sets that are open relative
to A but not open as subsets of IR.

(b) Let A = [0,1] describe, if possible, sets that are closed relative
to A but not closed as subsets of IR.

(c) Let A = (0,1) describe, if possible, sets that are open relative
to A but not open as subsets of IR.

(d) Let A = (0,1) describe, if possible, sets that are closed relative
to A but not closed as subsets of IR.

(e) Let A = Q Give examples of sets that are neither open nor
closed but are both relative to Q.

(f) Show that all the subsets of IN are both open and closed relative
to IN.

4.5 Compactness Arguments

In analysis one frequently encounters the problem of arguing from
a set of “local” assumptions to a “global” conclusion. Let us focus
on just one problem of this type and see the kind of arguments that
can be used.

Local Boundedness of a Function Suppose that a function f
is locally bounded at each point of a set E. By this we mean that for
every point z € FE there is an interval (x — 4§, 2+ ) and f is bounded
on the points in £ that belong to that interval. Can we conclude
that f is bounded on the whole of the set E?

Thus we have been given a local condition at each point x in the
set E. There must be numbers §, and M, so that

|f(t)] < My for all t € E in the interval (z — 65,2 + 65).

The global condition we want, if possible, is to have some single
number M that works for all ¢ € E, i.e.,

|f(t)] < M for all t € E.

Two examples show that this depends on the nature of the set
E.

Example 4.19 The function f(z) = 1/z is locally bounded at each
point z in the set (0,1) but is not bounded on the set (0,1). It is
clear that f cannot be bounded on (0, 1) since the statement

1
ZSMforalltG(O,l)
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cannot be true for any M. But this function is locally bounded at
each point z here. Let z € (0,1). Take 6, = z/2 and M, = 2/z.
Then

if
z2=12— 0, <t < 1T+ 0,

What is wrong here? What is there about this set £ = (0,1) that
does not allow the conclusion? The point 0 is a point of accumulation
of (0,1) that does not belong to (0, 1), and so there is no assumption
that f is bounded at that point. We could avoid this difficulty if we
assume that F is closed. <

Example 4.20 The function f(z) = z is locally bounded at each
point z in the set [0,00) but is not bounded on the set [0,00). It is
clear that f cannot be bounded on [0, 00) since the statement

f(t) =t < M for all t € [0, 0)
cannot be true for any M. But this function is locally bounded at
each point = here. Let z € [0,00). Take d; = 1 and M, = z + 1.
Then

f(t):tS~'E+1:Mzc

fr—1<t<z+1.

What is wrong here? What is there about this set E = [0, 00)
that does not allow the conclusion. This set is closed and so contains
all of its accumulation points so that the difficulty we saw in the
preceding example does not arise. The difficulty is that the set is
too big, allowing larger and larger bounds as we move to the right.
We could avoid this difficulty if we assume that E is bounded. <«

Indeed, as we shall see, we have reached the correct hypotheses
now for solving our problem. The version of the theorem we were
searching for is this:

Theorem Suppose that a function f is locally bounded
at each point of a closed and bounded set E. Then [ is
bounded on the whole of the set E.

Arguments that exploit the special features of closed and bounded
sets of real numbers are called compactness arguments. Most often
they are used to prove that some local property has global impli-
cations, which is precisely the nature of our boundedness theorem.
We now solve our problem using various different compactness ar-
guments. Each of these arguments will become a formidable tool in
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proving theorems in analysis. Many situations will arise in which
some local property must be proved to hold globally and compact-
ness will play a huge role in these.

4.5.1 Bolzano—Weierstrass Property

A closed and bounded set has a special feature that can be used
to design compactness arguments. This property is a essentially a
repeat of a property about convergent subsequences that we saw
already in Section 2.11.

Theorem 4.21 (Bolzano—Weierstrass Property) A set of real
numbers E is closed and bounded if and only if every sequence of
points chosen from the set has a subsequence that converges to a
point that belongs to F.

Proof. Suppose that E is both closed and bounded and let {z,,} be
a sequence of points chosen from E. Since F is bounded this sequence
{zy} must be bounded too. We apply the Bolzano—Weierstrass the-
orem for sequences (Theorem 2.40) to obtain a subsequence {z,, }
that converges. If z,, — z then since all the points of the subse-
quence belong to E either the sequence is constant after some term
or else z is a point of accumulation of E. In either case we see that
z € E. This proves the theorem in one direction.

In the opposite direction we suppose that a set E, which we do
not know in advance to be either closed or bounded, has the Bolzano—
Weierstrass property. Then E cannot be unbounded. For example
if E is unbounded above then there is a sequence of points {z,} of
FE with z,, — 0o and no subsequence of that sequence will converge,
contradicting the assumption.

Also E must be closed. If not there is a point of accumulation
z that is not in E. This means that there is a sequence of points
{zn} in E converging to z. But any subsequence of {z,} would also
converge to z and, since z € F we again have a contradiction. B

This theorem can also be interpreted as a statement about accu-
mulation points.

Corollary 4.22 A set of real numbers E is closed and bounded if
and only if every infinite subset of E has a point of accumulation
that belongs to E.

Now we prove our theorem about local boundedness by using the
Bolzano—Weierstrass property to frame an argument.
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Theorem Suppose that a function f is locally bounded
at each point of a closed and bounded set E. Then f is
bounded on the whole of the set E.

Proof. (Bolzano—Weierstrass compactness argument). To
use this argument we will need to construct a sequence of points in
E that we can use. Our proof is a proof by contradiction. If f is not
bounded on E there must be a sequence of points {z,} chosen from
E so that |f(zy)| > n. (If such a sequence could not be chosen then
at some stage, N say, there are no more points with |f(zy)| > N
and N is an upper bound.)

By compactness (i.e., by Theorem 4.21) there is a convergent sub-
sequence {z,, } converging to a point z € E. By the local bounded-
ness assumption there is an open interval (z —d, z+d) and a number
M, so that |f(t)] < M, whenever t is in E and inside that interval.
But for all sufficiently large values of k, the point z,, must belong
to the interval (z — §,2z + ¢). The two statements

| (@n,)| > e and |f(zn, )| < M,

cannot both be true for all large k& and so we have reached a contra-
diction, proving the theorem. |

4.5.2 Cantor’s Intersection Property

A famous compactness argument, one that is used very often in
analysis, involves the intersection of a descending sequence of sets,

i.e., a sequence with 1 D FEy D FE3 D E4 D .... What conditions
on the sequence will imply that

o0

() Bn # 07

n=1

Example 4.23 An example shows that some conditions are needed.
Suppose for each n € IN we let E, = (0,1/n). Then Ey D Es D ...,
so {E,} is a descending sequence of sets with empty intersection.
The same is true of the sequence F;, = [n,00). Observe that the sets
in the sequence {E,} are bounded (but not closed) while the sets in
the sequence {F,} are closed (but not bounded). <

In a paper in 1879 Cantor described the following theorem and
the role it plays in analysis. He pointed out that variants on this idea
had been already used throughout most of that century, notably by
Lagrange, Legendre, Dirichlet, Cauchy, Bolzano and Weierstrass.
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Theorem 4.24 Let {E,} be a sequence of nonempty closed and
bounded subsets of real numbers such that E1 D Eo D E3 D ...
Let E =", En. Then E is not empty.

Proof. For each ¢ € IN choose z; € E;. The sequence {z;} is
bounded since every point lies inside the bounded set ;. Therefore,
because of Theorem 4.21, {z;} has a convergent subsequence {z;, }.
Let z denote that limit. Fix an integer m. Because the sets are
descending, z;, € E,, for all sufficiently large ¥ € IN. But E,,
is closed, from which it follows that z € E,,. This is true for all
m €N, so z € E. |

Corollary 4.25 (Cantor Intersection Theorem) Let {E,} be a
sequence of nonempty closed subsets of real numbers such that Eq D
EyDEsD.... If

diameter E, — 0,

then the intersection

o0
E = ﬂ E,
n=1

consists of a single point.

Proof. Here the diameter of a nonempty, closed bounded set E
would just be max £ — min £ which exists and is finite for such a
set (see Exercise 4:3.15). Since we are assuming that the diameters
shrink to zero it follows that, at least for all sufficiently large n, E,
must be bounded.

That E # () follows from Theorem 4.24. It remains to show that
E contains only one point. Let x € E and let y € IR, y # z. Since
diameter E,, — 0, there exists i € IN such that diameter E; < |z — y].
Since z € E;, y cannot be in E;. Thus y ¢ E and E = {z} as re-
quired. [ |

Now we prove our theorem about local boundedness by using the
Cantor Intersection property to frame an argument.

Theorem Suppose that a function f is locally bounded
at each point of a closed and bounded set E. Then f is
bounded on the whole of the set E.

Proof. (Cantor Intersection compactness argument). To
use this argument we will need to construct a sequence of closed and
bounded sets shrinking to a point. Our proof is again a proof by
contradiction. Suppose that f is not bounded on E.



4.5. Compactness Arguments 187

Since E is bounded we may assume that E is contained in some
interval [a,b]. Divide that interval in half, forming two subintervals
of the same length, namely (b — a)/2. At least one of these intervals
contains points of F and f is unbounded on that interval. Call it
[G,l, bl] .

Now do the same to the interval [a;,b;]. Divide that interval
in half, forming two subintervals of the same length, namely (b —
a)/4. At least one of these intervals contains points of E and f is
unbounded on that interval. Call it [ag,b2]. Continue this process
inductively producing a descending sequence of intervals {[an, by]}
so that the nth interval [a,, b, has length (b—a)/2", contains points
of E and f is unbounded on E N [ay, by].

By the Cantor Intersection property there is a single point z € E
contained in all of these intervals. But by our local boundedness
assumption there is an interval (z — ¢,z + ¢) so that f is bounded
on the points of £ in that interval. For any large enough value of n,
though, the interval [a,,b,] would be contained inside the interval
(z — ¢,z + ¢). This would be impossible and so we have reached a
contradiction, proving the theorem. |

4.5.3 Cousin’s Property

Another compactness argument dates back to Pierre Cousin in the
last years of the nineteenth century. This exploits the order of the
real line and considers how small intervals may be pieced together
to give larger intervals. The larger interval [a, b] is subdivided

o=z <x1<---<xTPp ="

and then expressed as a finite union of nonoverlapping subintervals

said to form a partition:
n

a,b] = U[ﬂfz'—l,wi]-
=1
This again provides us with a compactness argument since it allows
a way to argue from the local to the global.

Lemma 4.26 (Cousin) Let C be a collection of closed subintervals

of [a,b] with the property that for each x € [a,b] there exists § =

d(z) > 0 such that C contains all intervals [c,d] C [a,b] that contain

x and have length smaller than 6. Then there exists a partition
oa=xp<xT1<---<xTPp=>b

of [a,b] such that [z;—1,2;] €C fori=1,...,n.
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Observe that this lemma makes precise the statement that if a
collection of closed intervals contains all “sufficiently small” ones for
[a,b], then it contains a partition of [a,b]. We shall frequently see
the usefulness of such a partition. This is the most elementary of a
collection of tools called covering theorems. Roughly a cover of a set
is a family of intervals covering the set in the sense that each point
in the set is contained in one or more of the intervals. We formalize
the assumption in Cousin’s lemma in this language:

Definition 4.27 (Full Cover) A collection C of closed intervals
satisfying the hypothesis of Cousin’s lemma is called a full cover of

[a, b].

the fact that zg is sup S.

Proof. (Proof of Cousin’s lemma.) Let us, in order to obtain
a contradiction, suppose that C does not contain a partition of the
interval [a,b]. Let ¢ be the midpoint of that interval and consider
the two subintervals [a, ¢] and [c, b]. If C contains a partition of both
intervals [a, ¢| and [c, b] then by putting those partitions together we
can obtain a partition of [a, b], which we have supposed is impossible.

Let I) = [a,b] and let I be either [a,c| or [c,b] chosen so that
C contains no partition of I5. Inductively we can continue in this
fashion obtaining a shrinking sequence of intervals Iy D Io D I3 D ...
so that the length of I, is (b — a)/2" ! and C contains no partition
of I,,.

By the Cantor intersection theorem (Theorem 4.25) there is a
single point z in all of these intervals. The interval (z—4(2), z+4(2))
contains I, for all sufficiently large n and so, by definition, I,, € C. In
particular C does indeed contain a partition of that interval I,, since
the single interval {I,} is itself a partition. But this contradicts
the way in which the sequence was chosen and this contradiction
completes our proof. |

Now we reprove our theorem about local boundedness by using
Cousin’s property to frame an argument.

Theorem Suppose that a function f is locally bounded
at each point of a closed and bounded set E. Then f is
bounded on the whole of the set E.

Proof. (Cousin compactness argument). The set F is bounded
and so is contained in some interval [a, b]. Let us say that an interval
[c,d] C [a,b] is “black” if the following statement is true:
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There is a number M (which may depend on [c,d]) so
that |f(¢t)] < M for all t € E that are in the interval

[, d].

The collection of all black intervals is a full cover of [a,b]. This is
because of the local boundedness assumption on f. Consequently, by
Cousin’s Lemma, there is a partition of the interval [a, b] consisting
of black intervals. The function f is bounded in F on each of these
finitely many black intervals and so, since there are only finitely
many of them, f must be bounded on F in [a,b]. But [a,b] includes
all of £ and so the proof is complete. |

4.5.4 Heine—Borel Property

Another famous compactness property involves covers too, as in the
Cousin lemma, but this time covers consisting of open intervals. This
theorem has wide applications, including again extensions of local
properties to global ones. The student may find this compactness
argument more difficult to work with than the others. On the real
line all of the arguments here are equivalent and, in most cases, any
one will do the job. Why not use the simpler ones then? The answer
is that in more general spaces than the real line these other versions
may be more useful. Time spent learning them now will pay off in
later courses.
We begin with some definitions.

Definition 4.28 (Open Cover) Let A C IR and let U be a family
of open intervals. If for every z € A there exists at least one interval
U € U such that x € U, then U is called an open cover of A.

Definition 4.29 (Heine-Borel Property) A set A C IR is said
to have the Heine-Borel property if every open cover of A can be
reduced to a finite subcover. That is, if i is an open cover of A,
then there exists a finite subset of U, {Uy,Us,...,U,} such that
ACcU;UuUsU---UU,.

Example 4.30 Any finite set has the Heine-Borel property. Just
take one interval from the cover for each element in the finite set.
|

Example 4.31 The set IN does not have the Heine-Borel property.
Take, for example, the collection of open intervals

{(0,n) :n = 1,2,3,}:.
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While this forms an open cover of IN no finite subcollection could
also be an open cover. <

Example 4.32 The set A = {1/n : n € IN} does not have the
Heine-Borel property. Take, for example, the collection of open in-
tervals )

{(1/n,2) :n=1,2,3,}.
While this forms an open cover of A no finite subcollection could
also be an open cover. |

Observe in these examples that that IN is closed (but not bounded)
while A is bounded (but not closed). We shall prove, in Theo-
rem 4.33, that a set A has the Heine-Borel property if and only
if that set is both closed and bounded.

Theorem 4.33 (Heine-Borel) A set A C IR has the Heine-Borel
property if and only if A is both closed and bounded.

Proof. Suppose A C IR is both closed and bounded, and I/ is an
open cover for A. We may assume A # (), otherwise there is nothing
to prove. Let [a,b] be the smallest closed interval containing A: i.e.
a=inf{z :z € A} and b = sup{z : x € A}. Observe that a € A and
b € A. We shall apply Cousin’s lemma to the interval [a,b], so we
need to first define an appropriate full cover of [a, b].

For each £ € A, since U is an open cover of A, there exists an
open interval U, € U such that ¢ € U,. Since U, is open, there exists
d(z) > 0 for which (z—t,z+t) C U, for all ¢ € (0,0(z)). This defines
d(z) for points in A. Now consider points in V' = [a,b] \ A. We must
define 6(z) for points of V. Since A is closed and {a,b} C A, V is
open (why?); thus for each z € V there exists §(z) > 0 such that
(zx—t,z+t) CV forallt € (0,6(z)). We can therefore obtain a full
cover C of [a, b] as follows: An interval [c, d] is a member of C if there
exists = € [a, b] such that either

(i) z€ Aand z € [¢,d] C U, or
(i) z€eVand z € [c,d] C V.

Observe that an interval of type (i) can contain points of V,
but an interval of type (ii) cannot contain points of A. Figure 4.2
illustrates examples of both types of intervals. In that figure [c,d] C
U, is an interval of type (i) in C; [¢/,d'] C V is an interval of type
(ii) in C.

It is clear that C forms a full cover of [a, b]. From Cousin’s lemma
we infer the existence of a partitiona =29 < 21 < --- < z, = b with
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~

Figure 4.2: The two types of intervals.

[zi—1,2;] € Cfori=1,...,n. Each of the intervals [z;_1, z;] is either
contained in V' (in which case it is disjoint from A), or is contained
in some member U; € U. We now ‘throw away’ from the partition
those intervals which contain only points of V', and the union of the
remaining closed intervals covers all of A. Each interval of this finite
collection is contained in some open interval U from the cover U.
More precisely, let

S={i:1<i<nand [z; 1,z;] C U;}.
Then

AC U[:Ei_l,ivi] C U Us,
1€S 1€S
so {U; : i € S} is the required subcover of A.

To prove the converse, we must show that if A is not bounded,
or is not closed then there exists an open cover of A with no finite
subcover. Suppose first that A is not bounded. Then there must
exist either an increasing sequence of points {z,} contained in A so
that z, — oo or a decreasing sequence of points {z,} contained in
A so that z, — —oo. Let us suppose the former. For each i € IN
let Uy = (—oo,xl), Ui+1 = (l‘i,l‘i+1) and V; = (:Ez - 1,.’I,‘i+1). Finally
let U be the collection of all the intervals U;, V; for 1 = 1,2,3,....
Then U is an open cover of A. (Indeed it is an open cover of all of
IR). But it is clear that ¢ contains no finite subcover of A since, for
any integer N, the totality of all the sets U;, V; for i =1,2,3,... N
cannot cover all of A since no point z,, with n > N can belong to
any of these intervals.

Now suppose A is not closed. Then there is a point of accu-
mulation z of A that does not belong to A. Then there must exist
either an increasing sequence of points {z, } contained in A so that
Zn, — z or a decreasing sequence of points {z,} contained in A so
that x,, — 2. Suppose the former. For each i € IN let U; = (—o0, z1),
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Vi = (2,00), Uit1 = (x4, 7i41) and V; = (z; — 1,2;41). Then U is
an open cover of A. (Indeed, as before, it is an open cover of all of
IR). But it is clear that I contains no finite subcover of A since, for
any integer N, the totality of all the sets U;, V; for i = 1,2,3,... N
cannot cover all of A since no point z,, with n > N can belong to
any of these intervals.

[ |

Once again we return our sample theorem that shows how a local
property can be used to prove a global condition, this time using a
Heine—Borel compactness argument.

Theorem Suppose that a function f is locally bounded
at each point of a closed and bounded set E. Then f is
bounded on the whole of the set E.

Proof. (Heine—Borel compactness argument). Since f is
locally bounded at each point of E for every x € E there exists
an open interval U, containing x and a positive number M, such
that |f(t)] < My for allt € U, N E. Let Y ={U;: x € E}. Then
U is an open cover of E. By the Heine—Borel theorem there exists
{Us,,Usz,,-..,Us,} such that

EC Uy UUp U+ UU,,.

Let
M = max{M,,,M,,,..., M, }.

Let x € E. Then there exists 4, 1 < i < n, for which z € U;.
Since
we conclude that f is bounded on E. |

Our ability to reduce U to a finite subcover in the proof of this
theorem was crucial. The reader may wish to use the function f(z) =
1/x on (0,1] to appreciate this statement.

4.5.5 Compact Sets

We have seen now a wide range of techniques called compactness
arguments that can be applied to a set that is closed and bounded.
We now introduce the modern terminology for such sets.

Definition 4.34 A set of real numbers F is said to be compact if it
has any of the following equivalent properties:

1. F is closed and bounded.
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2. FE has the Bolzano—Weierstrass property.
3. FE has the Heine-Borel property.

In spaces more general than the real line there may be analogues
of the notions of closed, bounded, convergent sequences, and open
covers. Thus there can also be analogues of closed and bounded sets,
the Bolzano—Weierstrass property, and the Heine-Borel property. In
these more general spaces the three properties are not always equiv-
alent and it is the Heine-Borel property that is normally chosen as
the definition of compact sets there. Even so a thorough under-
standing of compactness arguments on the real line is an excellent
introduction to these advanced and very important ideas in other
settings.

If we return to our sample theorem we see that now, perhaps, it
should best be described in the language of compact sets:

Theorem Suppose that E is compact. Then every func-
tion f : E — IR that is locally bounded on E is bounded
on the whole of the set E. Conwversely if every function
f : E — IR that is locally bounded on E is bounded on
the whole of the set E, then E must be compact.

In real analysis there are many theorems of this type. The con-
cept of compact set captures exactly when many local conditions can
have global implications.

Exercises

4:5.1 Give an example of a function f : IR — IR that is not locally bounded
at any point.

4:5.2 Show directly that the interval [0, 00) does not have the Bolzano—
Weierstrass property.

4:5.3 Show directly that the interval [0, 00) does not have the Heine—Borel
property.

4:5.4 Show directly that the set [0,1] N Q does not have the Heine-Borel
property.

4:5.5 Develop the properties of compact sets. For example, is the union
of a pair of compact sets compact? The intersection. The union of
a family of compact sets?

4:5.6 Show directly that the union of two sets with the Bolzano—Weierstrass
property must have the Bolzano—Weierstrass property.
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4:5.7 Show directly that the union of two sets with the Heine—Borel prop-
erty must have the Heine—Borel property.

4:5.8 We defined an open cover of a set E to consist of open intervals
covering E. Let us change that definition to allow an open cover
to consist of any family of open sets covering E. What changes are
needed in the proof of Theorem 4.33 so that it remains valid in this
greater generality?

4:5.9 A function f : IR — IR is said to be locally increasing at a point zg
if there is a § > 0 so that

f(@) < f(zo) < f(y)
whenever

Tog—0<x <z <Y< Zo+ 0.

Show that a function that is locally increasing at every point in IR
must be increasing, i.e., that f(z) < f(y) for all z < y.

4:5.10 We have seen that the following four conditions on a set A C R
are equivalent:

(i) A is closed and bounded
(ii) Every infinite subset of A has a limit point in A.

(iii) Every sequence of points from A has a subsequence converging
to a point in A

(iv) Every open cover of A has a finite subcover.
Prove directly that (ii)=-(iii), (ii)=>(iv) and (iii)=(iv).
4:5.11 Prove the following variant of Lemma 4.26:

Let C be a collection of closed subintervals of [a, b] with the
property that for each = € [a, b] there exists 6 = d(z) > 0
such that C contains all intervals [¢, d] C [a, b] that contain
2 and have length smaller than §. Suppose that C has the
property that if [a, 8] and [3,+] both belong to C then so
too does [a,y]. Then [a,b] belongs to C.

4:5.12 Use the version of Cousin’s lemma, given in Exercise 4:5.11 to give
a rather simpler proof of the sample theorem on local boundedness.

4:5.13 Give an example of an open covering of the set QQ of rational num-
bers that does not reduce to a finite subcover.

4:5.14 Suppose that E is closed and K is compact. Show that E N K is
compact. Do this in two ways (using the definition and using the
Bolzano—-Weierstrass property).
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4:5.15 Prove that every function f : E — IR that is locally bounded on E
is bounded on the whole of the set E only if the set E is compact,
by supplying the following two constructions:

(a) Show that if E is not bounded then there is an unbounded
function f : F — IR so that f is locally bounded on E.

(b) Show that if E is not closed then there is an unbounded function
[+ E — IR so that f is locally bounded on E.

4:5.16 Suppose that E is closed and K is compact. Show that E N K is
compact using the Heine-Borel property.

4:5.17 Suppose that E is compact. Is the set of boundary points of E also
compact?

4:5.18 Prove Lindel6ff’s covering theorem:

Let C be a collection of open intervals such that every point
of a set E belongs to at least one of the intervals. Then
there is a sequence of intervals I, I, I3, ... chosen from
C that also covers E.

4:5.19 Describe briefly the distinction between the covering theorem of
Lindel6ff (Exercise 4:5.18) and that of Heine-Borel.

4:5.20 We have seen that the following four conditions on a set A C IR
are equivalent:

(a) A is closed and bounded
(b) Every infinite subset of A has a limit point in A.

(c) Every sequence of points from A has a subsequence converging
to a point in A

(d) Every open cover of A has a finite subcover.
Prove directly that (b)=-(c), (b)=(d) and (c)=(d).

4:5.21 Let f be a function that is locally bounded on a compact interval
[a,b]. Let

S={a<z<b: fisbounded on [a,z]}.
(a) Show that S # 0.
(b) Show that if 2 = sup S then a < z < b.
(c) Show that z € S.
(d) Show that z = b by showing that z < b is impossible.

Using these steps construct a proof of the sample theorem on local
boundedness.
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4.6 Countable sets

As part of our discussion of properties of sets in this chapter let us
review a special property of sets that relates, not to their topological
properties, but to their size. We can divide sets into finite sets and
infinite sets. How do we divide infinite sets into “large” and “larger”
infinite sets?

We did this in our discussion of sequences in Section 2.3. (If the
reader skipped over that section now is a good time to go back.) If
an infinite set £ has the property that the elements of E can be
written as a list (i.e., as a sequence)

€1,€2,€3,...,€Ep ...

then that set is said to be countable. Note that this property has
nothing particularly to do with the other properties of sets encoun-
tered in this chapter. It is yet another and different way of classifying
sets.

The following properties review our understanding of countable
sets. Remember that the empty set, any finite set and any infinite
set that can be listed are all said to be countable. An infinite set
that cannot be listed is said to be uncountable.

Theorem 4.35 Countable sets have the following properties:
1. Any subset of a countable set is countable.
2. Any union of a sequence of countable sets is countable.

3. No interval is countable.

Exercises

4:6.1 Give examples of closed sets that are countable and closed sets that
are uncountable.

4:6.2 Is there a nonempty open set that is countable?
4:6.3 If a set is countable what can you say about its complement?
4:6.4 Is the intersection of two uncountable sets uncountable?

4:6.5 Show that the Cantor set of Exercise 4:3.23 is infinite and uncount-
able.

4:6.6 Give (if possible) an example of a set with

(a) Countably many points of accumulation.

(b) Uncountably many points of accumulation.
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(¢) Countably many boundary points.
(d) Uncountably many boundary points.
(e)
)

(f) Uncountably many interior points.

Countably many interior points.

4:6.7 A set is said to be co-countable if it has a countable complement.
Show that the intersection of finitely many co-countable sets is itself
co-countable.

4:6.8 Let E be a set and f : R — IR be an increasing function (i.e., if
x < y then f(z) < f(y)). Show that E is countable if and only if the
image set f(F) is countable. (What property other than “increasing”
would work here?)

4:6.9 Show that every uncountable set of real numbers has a point of
accumulation.

4:6.10 Let F be a family of (nondegenerate) intervals, i.e., each member
of F is an interval (open, closed or neither) but is not a single point.
Suppose that any two intervals I and J in the family have no point
in common. Show that the family F can be arranged in a sequence
L, I, ....

4.7 Additional Problems for Chapter 4

4:7.1 Introduce for any set £ C IR the notation
OF = {z : z is a boundary point of E}.

a) Show for any set E that 0E = EN (R \ E).

b) Show that for any set E the set OF is closed.

c¢) For what sets E is it true that OF = (7
)
)

—~ ~

N~

d) Show that OF C E for any closed set E.

e) If E is closed show that 0F = F if and only if E has no interior
points.

—~

(f) If E is open show that OF can contain no interval.
4:7.2 Let E be a nonempty set of real numbers and define the function
f(z) =inf{|z —e| : e € E}.
(a) Show that f(z) =0 for all z € E.
(b) Show that f(z) = 0 if and only if z € E.

(¢) Show for any nonempty closed set E that
{r eR: f(z) >0} =(R\ E).
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4:7.3 Let f : IR — IR have this property: for every zy € IR thereisa d > 0
so that

|f(z) = f(zo)| < |z — o]
whenever 0 < |z — zg| < 6. Show that for all z, y € R, z # v,
[f(@) = fW)l < |z —yl.

4:7.4 Let f : E — IR have this property: for every e € E thereis ane > 0
so that
fz)>eifze EN(e—¢e,e+e).

Show that if the set E is compact then there is some positive number
¢ so that

fle)>c
for all e € E. Show that if E is not closed or is not bounded then
this conclusion may not be valid.
4:7.5 (Separation of Compact Sets) Let A and B be nonempty sets
of real numbers and let
0(A,B) =inf{la—b|:a € A,b€ B}.
0(A, B) is often called the “distance” between the sets A and B.

(a) Prove 6(A,B) =0if ANB =4.

(b) Give an example of two closed, disjoint sets in IR for which
6(A,B) =0.

(c) Prove that if A is compact, B is closed and AN B = (), then
0(A,B) > 0.

4:7.6 Show that every closed set can be expressed as the intersection of a
sequence of open sets.

4:7.7 Show that every open set can be expressed as the union of a sequence
of closed sets.

4:7.8 A collection of sets {S,, : @ € A} is said to have the finite intersection
property if every finite subfamily has a nonempty intersection.

(a) Show that if {S, : @ € A} is a family of compact sets that has
the finite intersection property then

() Sa #0.

a€A

(b) Give an example of a collection of closed sets {S, : @ € A}
that has the finite intersection property and yet

() Sa =0.

a€A
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4:7.9 A set S C IR is said to be disconnected if there exist two disjoint
open sets U and V each containing a point of S so that SC UUV.
A set that is not disconnected is said to be connected.

(a) Give an example of a disconnected set.
(
(¢) Show that IR is connected.

(d) Show that every nonempty connected set is an interval.

b) Show that every compact interval [a, b] is connected.

4:7.10 Show that the only subsets of IR that are both open and closed are
0 and IR.

4:7.11 Given any uncountable set of real numbers E show that it is pos-
sible to extract a sequence {ay} of distinct terms of E so that the
series > o, ay/k diverges.



