Chapter 3

INFINITE SUMS

3.1 Introduction

The use of infinite sums' goes back in time much further, apparently,
than the study of sequences. The sum
ppl 111 11 _,
tstite Tttt
has been long known. It is quite easy to convince oneself that this
must be valid by arithmetic or geometric “reasoning”. After all, just

start adding and keeping track of the sum as you progress:

1 3 7 15
1, 13,13, 1%, 18 .

Figure 3.1 makes this seem transparent.

But there is a serious problem of meaning here. A finite sum is
well defined, an infinite sum is not. Neither humans nor computers
can add an infinite column of numbers.

The meaning that is commonly assigned to the above sum ap-
pears in the following computations:
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:nlg{)lo{2 — W} =2.
This reduces the computation of an infinite sum to that of a finite
sum followed by a limit operation. Indeed this is exactly what we
were doing above when we computed 1, 1%, 1%, 1%, 182 ... and felt

16°
that this was a compelling reason for thinking of the sum as 2.

!This chapter on infinite sums and series may be skipped over in designing a
course. It should be studied, in any case, before attempting Chapter 9.

80
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F

Figure 3.1: 14+1/2+1/4+1/8+1/16 +--- =2

In terms of the development of the theory of this textbook this
seems entirely natural and hardly surprising. We have mastered se-
quences in Chapter 2 and now pass to infinite sums in Chapter 3
using the methods of sequences. Historically this was not the case.
Infinite summations appear to have been studied and used long be-
fore any development of sequences and sequence limits. Indeed even
to form the notion of an infinite sum as above, it would seem that
we should already have some concept of sequences, but this is not
the way things developed.

It was only by the time of Cauchy that the modern theory of
infinite summation was developed using sequence limits as a basis
for the theory. We can transfer a great deal of our expertise in
sequential limits to the problem of infinite sums. Even so the study
in this chapter has its own character and charm—in many ways
infinite sums are much more interesting and important to analysis
than sequences.

3.2 Finite Sums

We should begin our discussion of infinite sums with finite sums.
There is not much to say about finite sums. Any finite collection of
real numbers may be summed in any order and any grouping. That
is not to say that we shall not encounter practical problems in this.
For example, what is the sum of the first 10°° prime numbers? No
computer or human could find this within the time remaining in this
universe. But there is no mathematical problem is saying that it is
defined; it is a sum of a finite number of real numbers.

There are a number of notations and a number of skills that we
shall need to develop in order to succeed at the study of infinite sums
which is to come. The notation of such summations may be novel.
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How best to write out a symbol indicating that some set of numbers
{al, a2,as, ... ,an}
has been summed? Certainly
a1 t+azx+az+---+ay

is too cumbersome a way of writing such sums. The following have
proved to communicate much better:

>

i€l
where I is the set {1,2,3,...,n} or

n
Z a; or Z a;.
1<i<n i=1
Here the Greek letter 3, corresponding to an upper case “S”, is used
to indicate a “sum”.

The usual rules of elementary arithmetic apply to finite sums.
The commutative, associative and distributive rules assume a differ-
ent look when written in this notation:

Zai—l—Zbi:Z(ai—l—bi),

i€l icl icl
E ca; = ¢ E a;,
el el

and

(Z ai) X (Z bj) = Z Zaibj = Z (Z aibj> .

el ieJ i€l \jeJ jeJ \€l

Each of these can be checked mainly by determining the meanings

and seeing that the notation produces the correct result.
Occasionally in applications of these ideas one would like a simpli-

fied expression for a summation. The best known example is perhaps

n(n+1)

n
d k=1+42+43+--+n= 5

k=1
which is easily proved. When a sum of n terms for a general n has
a simpler expression such as this it is usual to say that it has been
expressed in closed form. Novices, seeing this, usually assume that
any summation with some degree of regularity should allow a closed
form expression and that it is always important to get a closed form
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expressioni. If not, what can you do with a sum that cannot be
simplified?

One of the simplest of sums

N RS By

does not allow any convenient formula, expressing the sum as some
simple function of n. This is typical. It is only the rarest of sum-
mations that will allow simple formulas. Our work is mostly in esti-
mating such expressions; we hardly ever succeed in computing them
exactly.

Even so there are a few special cases that should be remembered
and which make our task in some cases much easier.

Telescoping sums. If a sum can be rewritten in the special form
below, a simple computation (canceling s1, s2, etc.) gives the fol-
lowing closed form:

(s1—s0)+(s2—s1)+(s3—s2) +(s2—s83)++ -+ (Sn —8n—1) = Sn—S0.

It is convenient to call such a sum “telescoping” as an indication of
the method that can be used to compute it.

Example 3.1 For a specific example of a sum that can be handled
by considering it as telescoping, consider the sum

2”:1_1+1+1+1m+1
kzlk(k+1)_1-2 2:3 3:-4 4-5 (n—1)-n
A closed form is available since, using partial fractions, each term

can be expressed as
1 1 1

k(k+1) k k+1
Thus

= 1
2 k1)
3] (R P,
= k k+1 n+1
The exercises contain a number of other examples of the type. <«

Geometric progressions. If the terms of a sum are in a geomet-
ric progression (i.e., if each term is some constant factor times the
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previous term) then a closed form for any such sum is available:

1 —pntl

e e R (1)
-T

This assumes that r # 1; if 7 = 1 the sum is easily seen to be
just n + 1. This formula in (1) can be proved by converting to a
telescoping sum. Consider instead (1 — r) times the above sum:

A-=r)A+r+ri4- ) = Q=1+ (r—r2) +... (r" =",
Now add this up as a telescoping sum to obtain the formula stated

above.
Any geometric progression assumes the form

A+ Ar+ AP 4+ A=Al +r 472+ 41"

and the above formula (1) (which should be memorized) is then
applied.

Summation by parts. Sums are frequently given in a form such

as
n
D> kb
k=1

for sequences {ay} and {bx}. If a formula happens to be available
for s, = a1 + a2 + ...a, then there is a frequently useful way of
rewriting this sum (using so = 0 for convenience):

n

Z apby = Z(Sk — 5p—1)bk
k=1

k=1
= 51(by — b2) + s2(by — b3) -+ + sp—1(bp—1 — by) + spbn.

Usually some extra knowledge about the sequences {s;} and {b;}
can then be used to advantage. The computation is trivial (it is all
contained in the above equation which is easily checked). Sometimes
this summation formula is referred to as Abel’s transformation after
the Norwegian mathematician Niels Abel (1802-1829), who was one
of the founders of the rigorous theory of infinite sums. It is the analog
for finite sums of the integration by parts formula of the calculus.

Exercises

3:2.1 Prove the formula
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3:2.2 Give a formal definition of ), ;a; for any finite set I and any
function a : I — IR that uses induction on the number of elements
of I.

Your definition should be able to handle the case I = §.
3:2.3 Check the validity of the formulas given in this section for manip-

ulating finite sums. Are there any other formulas you can propose
and verify?

3:2.4 Is the formula
> a= Yo+ Lo
ieIuJ iel ied
valid.

3:2.5 Let I = {(i,j): 1 <i<m, 1< j<n}. Show that

m n
IR B e

(i.4)€l i=1 j=1
3:2.6 Give a formula for the sum of n terms of an arithmetic progression.
(An arithmetic progression is a list of numbers, each of which is
obtained by adding a fixed constant to the previous one in the list.)
For the purposes of infinite sums (our concern in this chapter) such

a formula will be of little use. Explain why.

3:2.7 Obtain formulas (or find a source for such formulas) for the sums

n
SR =174+2" 43+ 40P
k=1
of the pth powers of the natural numbers where p =1, 2, 3, 4, ... .
Again, for the purposes of infinite sums such formulas will be of little
use.

3:2.8 Explain the (vague) connection between integration by parts and
summation by parts.

3:2.9 Obtain a formula for °;_ (—1).
3:2.10 Obtain a formula for
24+ 2V2+4+4V2+8+8V2+ - + 2™
3:2.11 Obtain the formula
cosf/2 — cos(2n + 1)6/2
25in6/2

How should the formula be interpreted if the denominator of the
fraction is zero?

3:2.12 Obtain the formula

sin @+ sin 26 +sin 30+ sin46+ - - - +sinnf =

sin 2n6

cosf + cos30 + cos 50 + cos 70 + - - - +cos(2n — 1) = ———
2sinf



86 Chapter 3. Infinite Sums

3:2.13 If L1 )
=l—c- 4 - =4 (-1
Sn +3 1 +...(-1) -
show that 1/2 < s, <1 for all n.
3:2.14 If
—1+1+1+1 + +1
= ATH T3y n

show that san > 1+ n/2 for all n.

3:2.15 Obtain a closed form for
1
— k(k+2)(k+4)

3:2.16 Obtain a closed form for

ar—}—ﬁ
kk+1 k+2)

3:2.17 Let {ar} and {by} be sequences with {b;} decreasing and
la +ag +---+ap| <K
for all k. Show that

‘iakbk S Kb1

k=1

for all n.

3:2.18 If r is the interest rate (e.g., r = .06) over a period of years then
Pl+r) '+ PA+7)24+...P(1+r)™"

is the present value of an annuity of P dollars paid every year, start-
ing next year and for n years. Give a shorter formula for this. (A
perpetuity has nearly the same formula but the payments continue
forever. See Exercise 3:4.12.)

3:2.19 Define a finite product (product of a finite set of real numbers) by

writing
n
H ap = 10203 --.0p
k=1

What elementary properties can you determine for products?

3:2.20 Find a closed form expression for

k*—1
Hk3+1
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0 3.3 Infinite Unordered sums

We now pass to the study of infinite sums. We wish to interpret

S
i€l

for an index set I that is infinite. The study of finite sums involves

no analysis, no limits, no €’s—mnone of the processes that are special

to analysis. To define and study infinite sums requires many of our

skills in analysis.

To begin our study imagine that we are given a collection of
numbers a; indexed over an infinite set I (i.e., there is a function
a: I — IR) and we wish the sum of the totality of these numbers. If
the set I has some structure, then we can use that structure to decide
how to start adding the numbers. For example if a is a sequence so
that I = IN then we should likely start adding at the beginning of
the sequence:

aj, a1+a2, a1+a2+a3, a1+a2+a3+a4,...

and so defining the sum as the limit of this sequence of “partial
sums”.

Another set I would suggest a different order. For example if
I = Z (the set of all integers) then a popular method of adding these
up would be to start off:

ap, a_1 + ag +aq,
a_o+a_1+ap+ar + ag,

a_3+a—9+a_1+ay+a +ag+as, ...

and once again defining the sum as the limit of this sequence.
It seems that the method of summation and hence defining the
meaning of the expression
>

i€l
for infinite sets I must depend on the nature of the set I and hence
on the particular problems of the subject one is studying. This is
true to some extent. But it does not stop us from inventing a method
that will apply to all infinite sets I. We must make a definition that
takes account of no extra structure or ordering for the set I and just
treats it as a set. This is called the unordered sum and the notation
Y icr @i is always meant to indicate that an unordered sum is being
considered. The key is just how to pass from finite sums to infinite
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sums. Both of the examples above used the idea of taking some finite
sums (in a systematic way) and then passing to a limit.

Definition 3.2 Let I be an infinite set and a a function a : I — IR.
Then we write
Sai=e

i€l
and say that the sum converges if for every € > 0 there is a finite set
Iy C I so that
Saic

i€J
for every finite set J, Iy C J C I. If the sum does not converge it is
said to be divergent.

<eg

Note that we never form a sum of infinitely many terms. The
definition always computes finite sums.

Example 3.3 Let us show, directly from the definition, that

»olil=3,

1€EZ

Z 91l

—N<i<N

If we first sum

by rearranging the terms into the sum
1+2027 4272 4...27N)
we can see why the sum is likely to be 3. Let € > 0 and choose N

so that 27V < ¢/4. Then, using the formula for a finite geometric
progression, we have

o2l =2(@ 272+ 27N) — 1] < 2277) <e/2.
~N<i<N
Also if J C Z with J finite and j > N for all § € J then
D ol <227N) < g2
jeg
again from the formula for a finite geometric progression.

Let Iy ={i € Z: —N < i< N}. If [y C J C Z with J finite
then

Yol 3

1€J

| Y abioge 3 2

~N<i<N i€\l
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as required. |

3.3.1 Cauchy Criterion

In most theories of convergence one asks for a necessary and sufficient
condition for convergence. We saw in studying sequences that the
Cauchy criterion provided such a condition for the convergence of
a sequence. There is usually in any theory of this kind a type of
Cauchy criterion. Here is the Cauchy criterion for sums.

Theorem 3.4 A necessary and sufficient condition that the sum
Y icr @i converges is that for every e > 0 there is a finite set I

so that
>

i€

<eg

for every finite set J C I that contains no elements of Iy (i.e., for
all finite sets J C I\ I).

Proof. As usual in Cauchy criterion proofs one direction is easy to
prove. Suppose that ), ;a; = C converges. Then for every ¢ > 0
there is a finite set Iy so that

Zai—C’

teK
for every finite set Iy C K C I. Let J C I\ Iy and consider taking
a sum over K = Iy U J. Then

<ef2

Z a; —C| <¢g/2

i€IoUJT
and

Z a; — C| <¢/2.
1€l
By subtracting these two inequalities and remembering that

Z aizzaﬁ—zai

i€loUJ ieJ 1€lp
(since Iy and J are disjoint) we obtain

S

ieJ

< E€.
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This is exactly the Cauchy criterion.

Conversely suppose that the sum does satisfy the Cauchy crite-
rion. Then, applying that criterion to ¢ = 1, 1/2, 1/3, ... we can
choose a sequence of finite sets {I,,} so that

S

1€J

<1/n

for every finite set J C I\ I,. We can arrange our choices to make
I; C I, C I3 C ... so that the sequence of sets is increasing.

Let ¢n = D ;7 ai- Then for any m > n,

len — em| = Z a;| < 1/n.
i€\ Iy
It follows from this that {c,} is a Cauchy sequence of real numbers
and hence converges to some real number c. Let € > 0 and choose
N so that N > 2/e. Then for any n > N and any finite set J with
InCcJcCI

E a; —c¢

i€J

< Zai—cN +len — ¢l + Z a;| <0+2/N <e.
ely i€J\Iy

By definition then ) ;.; a; = c and the theorem is proved. |

All but countably many terms in a convergent sum are
nonzero. Our next theorem shows that having “too many” num-
bers to add up causes problems. If the set I is not countable then
most of the a; that we are to add up should be zero if the sum is
to exist. This shows too that the theory of sums is in an essential
way limited to taking sums over countable sets. It is notationally
possible to have a sum
> f@

z€[0,1]
but that sum cannot be defined unless f(z) is mostly zero with only
countably many exceptions.

Theorem 3.5 Suppose that ), ;a; converges. Then a; =0 for all
1 € I except for a countable subset of I.



3.3. Infinite Unordered sums 91

Proof. We shall use Exercise 3:3.2 where it is proved that for any
convergent sum there is a positive integer M so that all the sums

Z a; < M

i€lp
for any finite set Iy C I. Let m be an integer. We ask how many
elements a; are there such that a; > 1/m? It is easy to see that
there are at most Mm of them since if there were any more our sum
would exceed M. Similarly there are at most Mm terms such that
—a; > 1/m. Thus each element of {a; : 1 € I} that is not zero can
be given a “rank” m depending on whether

I/m<a;<1/(m—1)or 1/m < —a; <1/(m —1).
As there are only finitely many elements at each rank this gives us

a method for listing all of the nonzero elements in {a; : 4 € I} and
so this set is countable. |

The elementary properties of unordered sums are developed in
the exercises. These sums play a small role in analysis, a much
smaller role than the ordered sums we shall consider in the next
sections. The methods of proof, however, are well worth studying
since they are used in some form or other in many parts of analysis.
These exercises offer an interesting setting in which to test your skills
in analysis, skills which will play a role in all of your subsequent
study.

Exercises
3:3.1 Show that if ), ; a; converges then the sum is unique.

3:3.2 Show that if ), ;a; converges then there is a positive number M
so that all the sums
>_ai

i€ly

<M

for any finite set Iy C I.

3:3.3 Suppose that all the terms in the sum )., a; are nonnegative and
that there is a positive number M so that all the sums

Z a; S M
i€ly

for any finite set Iy C I. Show that ). _;a; must converge.

i€l
3:3.4 Show that if ), ; a; converges so too does ), a; for every subset
Jcl.
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3:3.5 Show that if Zie 7 a; converges and each a; > 0 then

Zai =sup{2a,~: J Cl1, Jﬁnite}.

iel iceJ

3:3.6 Each of the rules for manipulation of the finite sums of Section 3.2
can be considered for infinite unordered sums. Formulate the cor-
rect statement and prove what you think to be the analog of these
statements that we know hold for finite sums:

Zai+2bi :Z(ai+bi)

iel iel iel
E ca; =c¢ E a;
iel i€l
E a; X E bj: E E aib]‘: E E aibj.
iel ieJ i€l jeJ jeJ iel
3:3.7 Prove that
doa+ Y w=) a+) o
ieluJ ielnJ i€l ieJ

under appropriate convergence assumptions.

3:3.8 Let 0 : I — J one-one and onto. Establish that

D ai=> a0

JjEJ el
under appropriate convergence assumptions.

3:3.9 Find the sum

1
> 5

ieIN

>3
ieﬂqz
diverges. Are there any infinite subsets J C IN such that
>3
i

i€J

3:3.10 Show that

converges?

3:3.11 Show that Eiej a; converges if and only if both Ziel[ai]Jr and
Eie rla;]™ converge and that

doai=) [a]t =Y lai]”

iel iel iel
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and

D lail =) et + D laid"

i€l i€l i€l
Here use [X]T = max{X, 0} and [X]~ = max{—X, 0} and note that
X = [X]* - [X]” and |X| = [X]* +[X]".

3:3.12 If the index set is I = IN x IN then we can study unordered sums
of double sequences {a;;} in the form

E Qjj-

(4,7)eINxIN

o2

(i,5)eINxIN

Compute

What kind of ordered sum would seem natural here (in the way that
ordered sums over IN and Z were considered in this section)?

3.4 Ordered Sums: Series

For the vast majority of applications one wishes to sum, not an
arbitrary collection of numbers, but most commonly some sequence
of numbers:

a1 +ag+az+....

The set IN of natural numbers has an order structure and it is not
in our best interests to ignore that order since that is the order in
which the sequence is presented to us.

The most compelling way to add up a sequence of numbers is to
begin accumulating;:

a1, a1 +ag, a1 +az+az, a1 +az+az+ay,...

and to define the sum as the limit of this sequence. This is what we
shall do.

For readers who studied Section 3.3 on unordered summation it
will be necessary to compare this “ordered” method with the un-
ordered method and to develop the theory separately. The ordered
sum of a sequence is called a series and the notation

oo
D
k=1

is used exclusively for this notion.
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Definition 3.6 Let {ax} be a sequence of real numbers. Then we

write
o0

o=
k=1
and say that the series conwverges if the sequence

n
Sp = Z ag
k=1

(called the sequence of partial sums of the series) converges to c. If
the series does not converge it is said to be divergent.

This definition reduces the study of series to the study of se-
quences. We already have a highly developed theory of convergent
sequences in Chapter 2 which we can apply to develop a theory of se-
ries. Thus we can rapidly produce a fairly deep theory of series from
what we already know. As the theory develops, however, we shall
see that it begins to take a character of its own and stops looking
like a mere application of sequence ideas.

3.4.1 Properties

The following short harvest of theorems we obtain directly from our
sequence theory. The convergence or divergence of a series Y oo | a
depends on the convergence or divergence of the sequence of partial

sums
n
Sp = E ag
k=1

and the value of the series is the limit of the sequence. To prove each
of the theorems we now list requires only to find the correct theorem
on sequences from Chapter 2. This is left as Exercise 3:4.2.

Theorem 3.7 If a series Y oo | a), converges then the sum is unique.

Theorem 3.8 If both series Y oo i ax and Y p 4 by converge then so
too does the series Y oo (ak + bg) and

00 00 o0
(ak —f—bk) = Zak +Zbk'
k=1 k=1

Theorem 3.9 If the series Y ;- | aj converges then so too does the

k=1
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series oo cag for any real number ¢ and

o0 o.¢]
S eay =Y ap.

Theorem 3.10 If both series Y poqar and Y ooy by converge and

each ap < by then
o o
Su<3h

Theorem 3.11 Let M > 1 be any integer. Then the series

[e.e]
Zak =ay1+a2+as+as+ ...
k=1
converges if and only if the series
[ee]
Z aM+k = O0M+1 +ap+2 +ap43 + Apgg + - -
k=1
converges.

Note. If we call 3°° a; a “tail” for the series 3 7" a; then we can say that
this last theorem asserts that it is the behavior of the tail that determines
the convergence or divergence of the series. Thus in questions of conver-
gence we can easily ignore the first part of the series—however many terms
we like. Naturally the actual sum of the series will depend on having all
the terms.

3.4.2 Special Series

Telescoping series Any series for which we can find a closed form
for the partial sums we should probably be able to handle by se-
quence methods. Telescoping series are the easiest to deal with.

If the sequence of partial sums of a series can be computed in
some closed form {s,} then the series can be rewritten in the tele-
scoping form

(s1) + (s2 —s1) +(s3—s2) +(s4—s3) + -+ (S — Sp—1) - - -
and the series studied by means of the sequence {sy}.

Example 3.12 Consider the series

= —_ — = m — =
= k(k+1) =k k41 n00 n+1

with an easily computable sequence of partial sums. |
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Do not be too encouraged by the apparent ease of the method
illustrated by the example. In practice we can hardly ever do any-
thing but make a crude estimate on the size of the partial sums. An
exact expression, as we have here, would be rarely available. Even
S0 it is entertaining and instructive to handle a number of series by
such a method (as we do in the Exercises).

Geometric series Geometric series form another particularly con-
venient class of series that we can handle simply by sequence meth-
ods. From the elementary formula
1— ,rn-l—l

1—r
we see immediately that the study of such a series reduces to the
computation of the limit

Lhr+r? 4" 4™ =

which is valid for —1 < 7 < 1 (which is usually expressed as |r| < 1)
and invalid for all other values of r. Thus, for |r| < 1 the series

> 1
Zrk_1=1+r+r2+---=
paet 1—r

(2)

and is convergent and for |r| > 1 the series diverges. It is well
worthwhile committing this fact and the formula (2) for the sum of
the series to memory.

Harmonic series As a first taste of an elementary looking series
that presents a new challenge to our methods, consider the series

=1 R

Z E =1+ 5 + 5 + ...

k=1
which is called the harmonic series. Let us show that this series
diverges!

This series has no closed form for the sequence of partial sums
{sn} and so there seems no hope of merely computing lim,_, sy,
to obtain convergence/divergence of the harmonic series. But we
can make estimates on the size of s, even if we cannot compute it
directly. The sequence of partial sums increases at each step and if
we watch only at the steps 1, 2, 4, 8, ... and make a rough lower
estimate of s1, s2, s4, Ss, ... we see that son > 1+n/2 for all n (see
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Exercise 3:2.14). From this we see that lim, , s, = oo and so the
series diverges.

Alternating Harmonic series A variant on the harmonic series
presents immediately a new challenge. Consider the series
[e.e]
pil 111
> (1) P15ty
k=1
which is called the alternating harmonic series.

The reason why this presents a different challenge is that the
sequence of partial sums is no longer increasing. Thus estimates as
to how big that sequence get may be of no help. We can see that
the sequence is bounded but that does not imply convergence for a
non monotonic sequence. Once again we have no closed form for the
partial sums so that a routine computation of a sequence limit is not
available.

By computing the partial sums s9, s4, Sg, ... we see that the
subsequence {sg,} is increasing. By computing the partial sums sy,
83, S5, ... we see that the subsequence {so,—1} is decreasing. A few
more observations show us that

1/2=159<54<s6<---<s5<s3<s1=1. (3)
Our theory of sequences now allows us to assert that both limits
lim s9, and lim sop_1
n—o0 n—oo
exist. Finally since
Sop — S2n—1 = 2_1 =0
n
we can conclude that lim,, o s, exists. (It is somewhere between %
and 1 because of the inequalities (3) but exactly what it is would take
much further analysis.) Thus we have proved that the alternating
harmonic series converges (which is in contrast to the divergence of
the harmonic series).

Size of the terms It should seem apparent from the examples we
have seen that a convergent series must have ultimately very small
terms. If 7° | aj converges then it seems that aj must tend to 0
as k gets large. Certainly for the geometric series that idea precisely
described the situation:
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converges if |r| < 1 which is exactly when the terms tend to zero and
diverges when |r| > 1 which is exactly when the terms do not tend
to zero.

A reasonable conjecture might be that this is always the situa-
tion. A series ZZ’;I ay, converges if and only if ap — 0 as k — 007
But we have already seen the harmonic series diverges even though
its terms do get small; they simply don’t get small fast enough. Thus
the correct observation is very simple and very limited.

If 3272 | ax converges then ay — 0 as k — oo.

To check this is easy. If {s,} is the sequence of partial sums of a
convergent series Y oo | ar = C then

lim a, =

lim (s, —sp-1) = lim s, — lim s, 1 =C —C =0.
n—,oo n—oo n—oQ n—,oo

The converse, as we just noted, is false. To obtain convergence
of a series it is not enough to know that the terms tend to zero. We
shall see, though, that many of the tests that follow discuss the rate
at which the terms tend to zero.

Exercises

3:4.1 Let {s,} be any sequence of real numbers. Show that this sequence
converges to a number S if and only if the series

0
s1 + Z (sn - Snfl)
k=2

converges and has sum S.

3:4.2 State which theorems from Chapter 2 would be used to prove The-
orems 3.7-3.11.

3:4.3 If 3,7, (ak+bi) converges what can you say about the series Y~ | ax
and ).~ by?

3:4.4 If )7, (ar+Dby) diverges what can you say about the series > | ax
and )7 bp?

3:4.5 If the series Zle (ask + a2x—1) converges what can you say about
the series >, ax?

3:4.6 If the series 21:11 ar, converges what can you say about the series
> ore (ask + ask—1)?

3:4.7 If both series > .2 | a and Y72 | by, converge what can you say about
the series Y 72 | ayby?
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3:4.8 How should we interpret

o0 oo oo
E k41, E arts and E ap—4?
k=0 k=5

k=-5

3:4.9 If s, is a strictly increasing sequence of positive numbers show that
it is the sequence of partial sums of some series with positive terms.

3:4.10 If {a,,} is a subsequence of {a,} is there anything you can say
about the relation between the convergence behavior of the two series

Sy ak and 357 an,?
3:4.11 Express the infinite repeating decimal
.123451234512345123451234512345 . ...

as the sum of a convergent geometric series and compute its sum (as
a rational number) in this way.

3:4.12 Using your result from Exercise 3:2.18 obtain a formula for a per-
petuity of P dollars a year paid every year, starting next year and
for every after. You most likely used a geometric series; can you find
an argument that avoids this?

3:4.13 Suppose that a bird flying 100 miles per hour travels back and forth
between a train and the railway station where the train and the bird
start off together 1 mile away and the train is approaching the station
at a fixed rate of 60 mph. How far has the bird traveled when the
train arrives. You most likely did not use a geometric series; can you
find an argument that does?

- <k+1>
Zlog 5
k=1

3:4.14 Does the series

converge or diverge?

3:4.15 Show that
11 2 4 8
=1 rtl Al Al el
for all r > 1.

+ ...

3:4.16 Obtain a formula for the sum
or 2 14t b
V2 V2 2 22

3:4.17 Obtain a formula for the sum

+....

- 1
192::1 k(k+2)(k+4)
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3:4.18 Obtain a formula for the sum
ar+ (3
k E+1)(k+ 2)

3:4.19 Find all values of x for Wthh the the following series converges and

determine the sum:
Tt T T
1+ 1422 (Q+4z)3 (Q+4+z)* 7

3:4.20 Determine whether the series
> i
= at kb
converges or diverges where a and b are positive real numbers.

3:4.21 We have proved that the harmonic series diverges. A computer
experiment seems to show otherwise. Let s, be the sequence of
partial sums and, using a computer and the recursion formula

Sntl = Sp + ——

n+1
compute si, S2, S3, ... and stop when it appears that the sequence
is no longer changing. This does happen! Explain why this is not a

contradiction.

3:4.22 Let M be any integer. In Theorem 3.11 we saw that the series
> pe ar converges if and only if the series Y.~ | apir converges.
What is the exact relation between the sums of the two series?

3:4.23 Use the method we employed to study the harmonic series to handle
the p—harmonic series:

1

P

k=1

for p > 1. Compute that
2" 1 oo oo
ok—1 L ) op—1
—P\j —
ka—z 2k1 _20(2 )_Qp—l_l'
J

Using this conclude that the partial sums of the p—harmonic series
for p > 1 are increasing and bounded. Does the series converge or
diverge?

3:4.24 With a very short argument using what you know about the har-
monic series, show that the p—harmonic series for 0 < p < 1 is
divergent.

3:4.25 Obtain the divergence of the improper calculus integral

| sinz|
—d
L=

by comparing with the harmonic series.
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3:4.26 We have seen that the condition a, — 0 is a necessary, but not
sufficient condition for convergence of the series > 7 ar. Is the
condition na, — 0 either necessary or sufficient for the convergence?
This says terms are going to zero faster than 1/k.

3.5 Criteria for Convergence

How do we determine the convergence or divergence of a series? The
meaning of convergence or divergence is directly given in terms of
the sequence of partial sums. But usually it is very difficult to say
much about that sequence. Certainly we hardly ever get a closed
form for the partial sums.

For a successful theory of series we need some criteria that will
enable us to assert the convergence or divergence of a series without
much bothering with an intimate acquaintance with the sequence of
partial sums. The material below begins the development of these
criteria.

3.5.1 Boundedness criterion

If a series ) oo ; a) consists entirely of nonnegative terms then it is
clear that the sequence of partial sums forms a monotonic sequence.
It is strictly increasing if all terms are positive.

But we have a well established fundamental principle for the
investigation of all monotonic sequences:

A monotonic sequence is convergent if and only if it is

bounded.

Applied to the study of series then this principle says that a series
> roq ay, consisting entirely of nonnegative terms will converge if the
sequence of partial sums is bounded and will diverge if the sequence
of partial sums is unbounded.

This reduces the study of the convergence/divergence behavior
of such series to inequality problems:

Is there or is there not a number M so that

n
Sn :Zak <M
k=1

for all integers n?
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This is both good news and bad. Theoretically it means that con-
vergence problems for this special class of series reduces to another
problem: one of boundedness. That is good news, reducing an ap-
parently difficult problem to one we already understand. The bad
news is that inequality problems may still be very difficult.

Note. One word of warning! The boundedness of the partial sums of a
series is not of as great an interest for series where the terms can be both
positive and negative. For such series the boundedness of the partial sums
does not guarantee convergence.

3.5.2 Cauchy Criterion

One of our main theoretical tools in the study of convergent se-
quences is the Cauchy criterion describing (albeit somewhat tech-
nically) a necessary and sufficient condition for a sequence to be
convergent.

If we translate that criterion to the language of series we shall
then have a necessary and sufficient condition for a series to be con-
vergent. Again it is rather technical and mostly useful in developing
a theory rather than in testing specific series. The translation is
nearly immediate.

Definition 3.13 The series

o0

>

k=1
is said to satisfy the Cauchy criterion for convergence provided for
every € > 0 there is an integer N so that all of the finite sums

m
>
k=n

<e€

for any N <n <m < oc.

Now we have a principle which can be applied in many theoretical
situations:

A series Y 5o, a converges if and only if it satisfies the
Cauchy criterion for convergence.

Note. It may be useful to think of this conceptually. The criterion asserts
that convergence is equivalent to the fact that blocks of terms

M
>
k=N
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added up and taken from far on in the series must be very small. Loosely
we might describe this by saying that a convergent series has a very “small
tail”.

Note too that if the series converges then this criterion implies that for
every € > 0 there is an integer N so that

oo
> a
k=n

<eg

for every n > N.

3.5.3 Absolute convergence

If a series consists of nonnegative terms only, then we can obtain
convergence or divergence by estimating the size of the partial sums.
If the partial sums remain bounded then the series converges; if not
the series diverges.

No such conclusion can be made for a series Y -, aj of positive
and negative numbers. Boundedness of the partial sums does not
allow us to conclude anything about convergence or divergence since
the sequence of partial sums would not be monotonic. What we can
do is ask whether there is any relation between the two series

o0 o0
Zak and Z |a|
k=1 k=1

where the latter series has had the negative signs stripped from it.
We shall see that convergence of the series of absolute values ensures
convergence of the original series. Divergence of the series of absolute
values gives, however, no information.

This gives us a useful test that will prove the convergence of a
series Y 77 | aj by investigating instead the related series > 27, |ak|
without the negative signs.

Theorem 3.14 If the series Y po |ak| converges then so too does
the series Y po q Q.

Proof. The proof takes two applications of the Cauchy criterion.
If Y72 | |ag| converges then for every € > 0 there is an integer N so
that all of the finite sums

m

D laxl <e

k=n
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for any N < n < m < oco. But then

m m
Zak < Z|ak| <e.
k=n k=n

It follows, by the Cauchy criterion applied to the series >y ; aj that
this series is convergent. |

Note. Note that there is no claim in the statement of this theorem that
the two series have the same sum, just that the convergence of one implies
the convergence of the other.

For theoretical reasons it is important to know when the series
Y rey |ak| of absolute values converges. Such series are “more” than
convergent. They are convergent in a way that allows more manip-
ulations than would otherwise be available. They can be thought of
as more robust; a series that converges, but whose absolute series
does not converge is in some ways very fragile. This leads to the
following definitions.

Definition 3.15 A series ) po; a is said to be absolutely conver-
gent if the related series > 72 | |ag| converges.

Definition 3.16 A series > ;o ; |ax| is said to be nonabsolutely con-
vergent if the series ) 77 | aj converges but the series Y 7°, |ag| di-
verges.

Note that every absolutely convergent series is also convergent.
We think of it as “more than convergent”. Fortunately the termi-
nology preserves the meaning even though the “absolutely” refers to
the absolute value, not to any other implied meaning. This play on
words would not be available in all languages.

Example 3.17 Using this terminology, applied to series we have
already studied we can now assert:

Any geometric series 1 + 7 +r2 4+ 73 + ... is absolutely
convergent if |r| < 1 and divergent if |r| > 1.

and

The alternating harmonic series 1 — % + % — i ... is non-
absolutely convergent.
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Exercises

3:5.1 Suppose that Z w—1 Ok 18 a convergent series of positive terms. Show
that Y2 | a} is convergent. Does the converse hold?

3:5.2 Suppose that Ek 1 G is a convergent series of positive terms. Show
that > 2 w—1 V/OkOry1 is convergent. Does the converse hold?

3:5.3 Suppose that Y-, ap and ) .-, by are absolutely convergent. Show
that then so too is the series Zz’;l apbyr. Does the converse hold?

3:5.4 Suppose that Y.~ a, and > . b, are both nonabsolutely con-
vergent. Show that it does not follow that the series Y o | anby is
convergent.

3:5.5 Alter the harmonic series > .-, 1/k by deleting all terms in which
the denominator contains a specified digit (say 3). Show that the
new series converges.

3:5.6 Show that the geometric series ), r™ is convergent for |r| < 1 by
using directly the Cauchy convergence criterion.

3:5.7 Show that the harmonic series is divergent by using directly the
Cauchy convergence criterion.

3:5.8 Obtain a proof that every series >, aj for which Y 77, |ax| con-
verges must itself be convergent without using the Cauchy criterion.
Instead consider the series

S lalt and 3 ol

k=1 k=1
where [X]|t = max{X,0} and [X]~ = max{—X,0} and note that
X =[X]T — [X]” and |X| = [X]* + [X]™.

3:5.9 Show that a series ) .- | aj is absolutely convergent if and only if
two at least of the series

Zak ,Z [ax]t and Z[ak
k=1

k=1
converge. (If two converge then all three converge.)

3:5.10 The sum rule for convergent series

Zak+bk Zak+zbk
k=1

can be expressed by saying that 1f any two of these series converges
so too does the third. What kind of statement can you make for
absolute convergence? ... for nonabsolute convergence?
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3:5.11 A sequence {x,} of real numbers is said to be of bounded variation

if the series
oo
E |z — Tp—1]
k=2

converges.

(a) Show that every sequence of bounded variation is convergent.

(b) Show that not every convergent sequence is of bounded varia-
tion.

(c) Show that all monotonic convergent sequences are of bounded
variation.

(d) Show that any linear combination of two sequences of bounded
variation is of bounded variation.

(e) Is the product of of two sequences of bounded variation also of
bounded variation?

3:5.12 Establish the Cauchy-Schwarz inequality: for any finite sequences
{a1,as,... ,a,} and {b1,bs,... , by} the inequality

3 ah| < (fj(am) (fj(bﬁ)
k=1

k=1 k=1

must hold.

3:5.13 Using the Cauchy-Schwarz inequality (Exercise 3:5.12) show that
if {a,} is a sequence of nonnegative numbers for which Y >° | a,
converges then the series

n

Z
p
n=0

also converges for any p > % Without the Cauchy-Schwarz inequal-
ity what is the best you can prove for convergence?

3:5.14 Suppose that > °° . a2 converges. Show that

n=1"n
. a1 +V2az + V3az +Vdas + - - + \/nan
lim sup < 00.

n—oo n

3:5.15 Let z1, x2, 3 be a sequence of positive numbers and write
_xitzetzs -+,

Sn

n
and 1 1 1 1
p —mtamtet ey
W=

If s, - S and t,, = T show that ST > 1.
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3.6 Tests for Convergence

In many investigations and applications of series it is important to
recognize that a given series converges, converges absolutely, or di-
verges. Frequently the sum of the series is not of much interest, just
the convergence behavior. Over the years a battery of tests have
been developed to make this task easier.

There are only a few basic principles that we can use to check
convergence or divergence and we have already discussed these in
Section 3.5. One of the most basic is that a series of nonnegative
terms is convergent if and only if the sequence of partial sums is
bounded. Most of the tests in the sequel are just clever ways of
checking that the partial sums are bounded without having to do
the computations involved in finding that upper bound.

3.6.1 Trivial test

The first test is just an observation that we have already made about
series: if a series ) - ; aj converges then a; — 0. We turn this into
a divergence test. For example some novices will worry for a long

time over a series such as
o0
> o
k
k=1 Vk

applying a battery of tests to it to determine convergence. The
simplest way to see that this series diverges is to note that the terms
tend to 1 as kK — oo. Perhaps this is the first thing that should be
considered for any series. If the terms do not get small there is no
point puzzling whether the series converges. It does not.

3.18 (Trivial Test) If the terms of the series Y .z | aj do not con-
verge to 0 then the series diverges.

Proof. We have already proved this but let us prove it now as a
special case of the Cauchy criterion. For all € > 0 there is an N so

that
n
> a
k=n

for all n > N and so, by definition, ay — 0. |

lan| = <e
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3.6.2 Direct Comparison Tests

A series Y77, ar with all terms nonnegative can be handled by es-
timating the size of the partial sums. Rather than making a direct
estimate it is sometimes easier to find a bigger series that converges.
This larger series provides an upper bound for our series without the
need to compute one ourselves.

Note. Make sure to apply these tests only for series with nonnegative
terms since, for arbitrary series, this information is useless.

3.19 (Direct Comparison Test I) Suppose that the terms of the
series ZZO:1 ay, are each smaller than the corresponding terms of the
series Y poq bg, i.e., that

0 <ap < b
for all k. If the larger series converges then so does the smaller
series.

Proof. If 0 < a; < b for all £ then the number ZZO:1 by is an
upper bound for the sequence of partial sums of the series > 27 | a.
It follows that Y77 ; a; must converge.

Note. In applying this and subsequent tests that demand that all terms
of a series satisfy some requirement we should remember that convergence
and divergence of a series )~ | ar depends only on the behavior of ay, for
large values of k. Thus this test (and many others) could be reformulated
S0 as to apply only for k greater than some integer N.

3.20 (Direct Comparison Test IT) Suppose that the terms of
the series Y o ax are each larger than the corresponding terms of
the series Y .o ¢k i-e., that

0 <cp <a
for all k. If the smaller series diverges then so does the larger series.

Proof. This follows from the test 3.19 since if the larger series did

not diverge then it must converge and so too must the smaller series.
[ |

Here are two examples illustrating how these tests may be used.

Example 3.21 Consider the series

i k+5

kR4
While the partial sums might seem hard to estimate at first, a fast
glance suggests that the terms (crudely) are similar to 1/k? for large
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values of k and we know that the series Y 3>, 1/k? converges. Note
that
k+5 B 14+5/k < %
E3+k2+k+1  K2Q+1/k+1/k2+1/k3) — k?
for some choice of C (e.g., C = 6 will work). We now claim that our

given series converges by a direct comparison with the convergent
series Y 22, C/k>. <

Example 3.22 Consider the series
i k+5
R
part k“+Ek+1
Again, a fast glance suggests that the terms (crudely) are similar to

1/Vk for large values of k and we know that the series 50, 1/vk
diverges. Note that

k+5 1+5/k S

E2+k+1 k(1+1/k+1/k2+1/k3) =

for some choice of C' (e.g., C = % will work). We now claim that
our given series diverges by a direct comparison with the divergent

series Y v, VC/VE. <

The examples show both advantages and disadvantages to the
method. We must invent the series that is to be compared and we
must do some amount of inequality work to show that comparison.
The next test replaces the inequality work with a limit operation
which is, occasionally, easier to perform.

¢
z

3.6.3 Limit Comparison Tests

We have seen that a series ) p- ; a; with all terms nonnegative can
be handled by comparing with a larger convergent series or a smaller
divergent series. Rather than check all the terms of the two series
being compared, it is convenient sometimes to have this checked
automatically by the computation of a limit. In this section, since
the tests involve a fraction, we must be sure, not only that all terms
are nonnegative, but also that we have not divided by zero.

3.23 (Limit Comparison Test I) Let each ar > 0 and by > 0.
If the terms of the series Y po ax can be compared to the terms of
the series Y po 4 by, by computing

.oa
lim -* < 00
k—o00 Of
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and if the latter series converges then so does the former series.

Proof. The proof is easy. If the stated limit exists and is finite
then there are numbers M and N so that

ag

— <M

b
for all K > N. This shows that ap < Mb for all £k > N. Conse-
quently by the direct comparison test the series ) 7 \ aj converges
by comparison with the series Y 7\ Mby, which we know to be con-
vergent. |

3.24 (Limit Comparison Test II) Let each ar > 0 and cx > 0.
If the terms of the series Y po, ay can be compared to the terms of
the series Y po 4 ¢k, by computing

and if the latter series diverges then so does the original series.

Proof. Since the limit exists and is not zero there are numbers
€ >0 and N so that

ag

— >¢€

Ck
for all kK > N. This shows that ay > ec;, for all K > N. Consequently
by the direct comparison test the series Y 7° \ ay diverges by com-
parison with the series )72 \ ec;, which we know to be divergent.

We repeat our two examples, Example 3.21 and 3.22, where we
previously used the direct comparison test to check for convergence.

Example 3.25 We look again at the series

i k+5
K+ R+ k41

comparing it, as before, to the convergent series Y po; 1/k?. This
now requires computing the limit

. k%(k + 5)
lim
k—oo k3 + k2 +k+1
which elementary calculus arguments show is 1. Since it is not in-

finite the original series can now be claimed to converge by a limit
comparison. >




3.6. Tests for Convergence 111

Example 3.26 Again, consider the series
i k+5
2
pat k*+k+1

by comparing with the divergent series Y 7>, 1/ Vk. We are required
to compute the limit

) k+5
klirgo\/]; B2kt

which elementary calculus arguments show is 1. Since it is not zero
the original series can now be claimed to diverge by a limit compar-
ison. |

3.6.4 Ratio Comparison Test

Again we wish to compare two series ) p- | ax and Y _po | by composed
of positive terms. Rather than directly comparing the size of the
terms we compare the ratios of the terms. The inspiration for this
test rests on attempts to compare directly a series with a convergent
geometric series. If )2, by is a geometric series with common ratio
r then evidently

brrr _

b

This suggests that perhaps a comparison of ratios of successive terms
would indicate how fast a series might be converging.

3.27 (Ratio Comparison Test) If the ratios satisfy

Gk+1 br+1
ar ~— by
for all k (or just for all k sufficiently large) and the series oo by,

with the larger ratio is convergent then the series > po, ay is also
convergent.

Proof. As usual we assume all terms are positive in both series.
If the ratios satisfy

41 Dkt

ar — b
for k > N then they also satisfy

Gk+1 - Ok

bry1 T by
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which means that the sequence {ay/bi} is decreasing for k > N. In
particular that sequence is bounded above, say by C and so

ag S Cbk.

Thus an application of the direct comparison test shows that the
series o2 | aj converges. |

3.6.5 d’Alembert’s Ratio Test

The ratio comparison test requires selecting a series for comparison.
Often a geometric series > oo r* for some 0 < r < 1 may be used.
How do we compute a number r that will work? We would wish to
use by = r* with a choice of r so that
Qg1 beyr _ T ’
ar — by T
One useful and easy way to find whether there will be such an r is
to compute the limit of the ratios.

3.28 (Ratio Test) If terms of the series Y - | ax are all positive
and the ratios satisfy

. ak+1
lim —tt
k—oo ap

<1

then the series Y oo | ay is convergent.

Proof. The proof is easy. If
lim Qp+1
k—oo Qf
then there is a number 8 < 1 so that

Af+1
k1 3
ag

<1

for all sufficiently large k. Thus the series Y ;- aj is seen to be
convergent by the ratio comparison test applied to the convergent
geometric series Y o, G, [ ]

Note. The ratio test can also be pushed to give a divergence answer: if

. Qg4
lim 2+
k—oo Qg

>1

then the series Ezozl ay, is divergent. But it is best to downplay this test
or the reader might think it gives an answer as useful as the convergence

test. But look. If
Gk41

A

>06>1
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for all £k > N then
aN41 > ﬂaN,
anNy2 > ﬂaN+1 > /BzaN,
and
ants > Bany2 > Blan
and we see that the terms ay, of the series are growing large at a geometric
rate. Not only is the series diverging it is diverging in a dramatic way.

We can summarize how this test is best applied. If terms of the
series ) p- , ay are all positive compute
a
lim =L — T,
k—oo ap

1. If L < 1 then the series > ;2 | ai is convergent.

2. If L > 1 then the series > 77, ay is divergent, moreover the
terms a; — o0.

3. If L =1 then the series ), ; a; may diverge or converge, the
test being inconclusive.

Example 3.29 The series

!
— (2k)!
is particularly suited for an application of the ratio test since the ratio
is easily computed and a limit taken: if we write ar = (k!)2/(2k)!
then
agt1  (K+1)N2 (2k)! (k +1)? 1
arp  (2E+2)! (K2 (2k+2)(2k+1) "4
Consequently this is a convergent series. More than that, it is con-
verging faster than any geometric series
0 k
> (3+¢)
4
k=0
for any positive €. |

3.6.6 Cauchy’s Root Test

There is yet another way to achieve a comparison with a convergent
geometric series. We suspect that a series > 2 | a; can be compared
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to some geometric series > 72 ¥ but do not know how to compute
the value of r that might work. The limiting values of the ratios
)
ag
provides one way of determining what r might work but often proves
difficult to compute. Instead we recognize that a comparison of the
form
ap < Crk
would mean that

Yag < VCr.

For large k the term V/C is very close to 1 and this motivates our
next test, usually attributed to Cauchy.

3.30 (Root Test) If terms of the series Y po ay are all nonneg-
ative and if the roots satisfy

lim ¥ap <1
k—o0
then that series converges.
Proof. This is almost trivial. If
(ap)F < B <1
for all £ > N then
ai < B

and so )72 | ai converges by direct comparison with the convergent
geometric series Y po; B, [ |

Again we can summarize how this test is best applied. The con-
clusions are nearly identical with those for the ratio test. Compute

lim (a;)'/* = L.
k—o0
1. If L < 1 then the series ) ;2 aj, is convergent.

2. If L > 1 then the series ) .-, aj is divergent, moreover the
terms aj — oo.

3. If L =1 then the series ) - ; ay may diverge or converge, the
test being inconclusive.

Example 3.31 The series

— (k)?
2 (2k)!

k=0
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we found in Example 3.29 to be easily handled by the ratio test.
It would be extremely unpleasant to attempt a direct computation
using the root test. On the other hand the series

o
kak =24 22% + 323 + 42 + ...
k=0
for z > 0 can be handled by either of these tests. The reader should
try the ratio test while we try the root test:
lim (kmk)l/k = lim Vkz ==z
k—o0 k—o0
and so convergence can be claimed for all 0 < z < 1 and divergence
for all z > 1. The case z = 1 is inconclusive for the root test but the
trivial test shows instantly that the series diverges for = = 1. |

3.6.7 Cauchy’s Condensation Test

Occasionally a method that is used to study a specific series can be
generalized into a useful test. Recall that in studying the sequence of
partial sums of the harmonic series it was convenient to watch only
at the steps 1, 2, 4, 8, ... and make a rough lower estimate. The
reason this worked was simply that the terms in the harmonic series
decrease and so estimates of s1, so, s4, Sg, ... were easy to obtain
using just that fact. This turns quickly into a general test.

3.32 (Cauchy’s Condensation Test) If the terms of a series
Y req ar are nonnegative and decrease monotonically to zero then
that series converges if and only if the related series

o
E 2‘](12j
i=1

COTMIVETGES.

Proof. Since all terms are nonnegative we need only compare the
size of the partial sums of the two series. Computing first the sum
of 2Pt — 1 terms of the original series we have

a1+ (a2 +az) + -+ (age + a1+ + aw+i_y)
<aj+2ay+---+2Pag.

And, with the inequality sign in the opposite direction, we compute
the sum of 2P terms of the original series to obtain

a1 +az+ (a3 + as) + -+ (age-1,11 + ago-149 + - -+ + agp)

1
2§(a1+2a2+---+2”a2p).
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If either series has a bounded sequence of partial sums so too then
does the other series. Thus both converge or else both diverge. W

Example 3.33 Let us use this test to study the p—harmonic series:
>
2
k=1 k

for p > 0. The terms decrease to zero and so the convergence of this
series is equivalent to the convergence of the series

o0 p
> ()

27
j:l

and this series is a geometric series

S .
Z (21—])).7 .

i=1
This converges precisely when 2'"7 < 1 or p > 1 and diverges when
21=P > 1 or p < 1. Thus we know exactly the convergence behavior
of the p~harmonic series for all values of p. (For p < 0 we have

divergence just by the trivial test.) |

It is worth deriving a simple test from the Cauchy Condensa-
tion Test as a corollary. This is an improvement on the trivial test.
The trivial test requires that limg_, ar = 0 for a convergent series
> po; ag. This next test, which is due to Abel, shows that slightly
more can be said if the terms form a monotonic sequence. The se-
quence {aj} must go to zero faster than {1/k}.

Corollary 3.34 If the terms of a convergent series Y po,ay de-
crease monotonically then

lim kay = 0.
k—00

Proof. By the Cauchy condensation test we know that

lim 27ay; = 0.
j—o0

If 27 < k < 27+ then a;, < as; and so
kak < 2 (2ja2j)

which is small for large j. Thus kar — 0 as required. |
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3.6.8 Integral test

To determine the convergence of a series > p-; a; of nonnegative
terms it is often necessary to make some kind of estimate on the size
of the sequence of partial sums. Most of our tests have done this au-
tomatically, saving us the labor of computing such estimates. Some-
times those estimates can be obtained by the methods of the calculus.
The integral test allows us to estimate the partial sums > ;_, f(k)
by computing instead fl z)dx in certain circumstances. This is
more than a convenience; it also shows a close relation between series
and infinite integrals which is of much importance in analysis.

3.35 (Integral Test) Let f be a nonnegatz've decreasing function

on [1,00) such that the integral fl z)dz can be computed for all
X>1. If

lim /Xf(x)dw < 00

X —00

exists then the series Y oo, f(k) converges. If

dn [ e
then the series y oo | f(k) diverges.

Proof. Since the function f is decreasing we must have

k+1 k
/k f@dr<fk) < [ fla)de

k—1
Applying these inequalities for &k = 2,3,4,... we obtain

n+1 n n
[ t@a<y i<+ [ rede @
1 k=1 1

The series converges if and only if the partial sums are bounded.
But we see from the inequalities (4) that if the limit of the integral
is finite then these partial sums are bounded. If the limit of the
integral is infinite then these partial sums are unbounded. |

Note. The convergence of the integral yields the convergence of the series.
There is no claim that the sum of the series ), f(k) and the value of
the infinite integral fl x) dx are the same. In this regard, however, see
Exercise 3:6.21.

Example 3.36 According to this test the harmonic series )y, %
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can be studied by computing
X dx
lim — = lim log X = oco.
X—o00 J1 T X—o00
For the same reasons the p-harmonic series Y po; & for p > 1 can
be studied by computing
: Xde 1 1 1
lim — = lim 1-— = .
X—oo [; P X—oop—1 Xp-1 p—1
Note that in both cases we obtain the same conclusion as before.
The harmonic series diverges and, for p > 1, the p—harmonic series
converges. <

3.6.9 Kummer’s Tests

The ratio test requires merely taking the limit of the ratios
)
ag

but often fails. We know that if this tends to 1 then nothing can
be said about the convergence or divergence of the series > 7 | a.
One need not abandon the general idea. What is needed is a more
delicate viewpoint.

Kummer’s tests provide a collection of tests which can be de-
signed by taking different choices of sequence {Dy}. The choices
Dy =1, Dy, =k and Dy, = klnk are used below.

3.37 (Kummer’s Tests) The series Y .-, aj can be tested by the
following criteria. Let {Dy} denote any sequence of positive numbers
and compute

Lﬂmmpﬁ”—mq.
k—o0 Q11
If L > 0 the series Y po; ar converges. On the other hand if
[ch e _Dk+1] <0
Qk+1

for all sufficiently large k and if the series

o0

1
i1 Dk

diverges then the series > oo | ai diverges.

Proof. If L > 0 then we can choose a positive number a@ < L. By
the definition of a liminf this means there must exist an integer N
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so that for all K > N,

ag

a < |:Dk — Dk+1:| .
Ak+1

Rewriting this we find that
aagy1 < Dgag — Dg410k41-
We can write this inequality for Kk = NN +1,N+2,...N +p to
obtain
aany1 < Dyay — Dyj1an41.

aany2 < Dyyiant1 — Dyysanyo.
and so on. Adding these up (note the telescoping sums) we find that

alayt1 +anqo+ -+ anipi1)

< Dnyiian+1 — DNypr1an+p+1 < Dyyianya.
(The final inequality just uses the fact that all the terms here are
positive.)

From this inequality, now, we can determine that the partial
sums of the series ) . ; a are bounded. By our usual criterion, this
proves that this series converges.

The second part of the theorem requires us to establish diver-
gence. Suppose now that

a
Dy —*

— D1 <0
ag41

for all K > N. Then

Drag < Dy y1ag41-
Thus the sequence {Dyay} is increasing after k = N. In particular
Dyay, > C for some C and all £ > N and so

akZD—k.

It follows by a direct comparison with the divergent series > C/Dy
that our series also diverges. |

Note. In practice, for the divergence part of the test, it may be easier to
compute

k—o0

L =lim sup {Dka—k — Dk+1:| .
Ak+1
If L < 0 then we would know that

ag

[Dk - Dk+1] <0

ag+1
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for all sufficiently large k and so, if the series Y - Dik diverges, then the
series Y o | aj, diverges.

Example 3.38 What is Kummer’s test if the sequence used is the
simplest possible Dy = 1 for all k7 In this case it is simply the ratio
test. For example, suppose that
li Ap+1
im

k—oo Qg
Then, replacing Dy = 1, we have
1
lim [Dk ak _Dk+1:| = lim [ e —1] =-—1
k—00 Af+1 Qk+1 r

Thus, by Kummer’s test, if 1/r — 1 < 0 we have divergence while if
1/r—1 > 0 we have convergence. These are just the cases r > 1 and
r < 1 of the ratio test. |

3.6.10 Raabe’s Ratio Test

A simple variant on the ratio test is known as Raabe’s test. Suppose

that a
ko

lim
k—0o0 Qg1

so that the ratio test is inconclusive. Then instead compute

1Mk(%-4>
k—o00 ap11
The series ), aj, converges or diverges depending on whether this

limit is greater than or less than 1.

3.39 (Raabe’s Test) The series Y oo | ax can be tested by the fol-
lowing criterion. Compute

L:hmk(% —0.
k—o0 Qi1

Then
1. If L > 1 the series Y po ai converges.
2. If L <1 the series Y - | ay diverges.
3. If L =1 the test is inconclusive.

Proof. This is precisely Kummer’s test but using the sequence
Dy = k. |
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Example 3.40 Consider the series

>

k=0
An attempt to apply the ratio test to this series will fail since the
ratio will tend to 1, the inconclusive case. But if instead we consider

the limit
k k+1 1
lim & k ek + 1 .
k=00 ek k! (k + 1)k+1

as called for in Raabe’s test we can use calculus methods (L’Hépital’s
rule) to obtain a limit of % Consequently this series diverges. |

3.6.11 Gauss’s Ratio Test

Rabbe’s test can be replaced by a closely related test due to Gauss.
We might have discovered while using Raabe’s test that

lim k( &L —1> — L.

k—o0 k41
This suggests that in any actual computation we will have discovered,
perhaps by division, that

ag

1
=14 — + terms involving — etc..
k41 k

The case L > 1 corresponds to convergence and the case L < 1 to
divergence, both by Rabbe’s test. What if L = 1 which is considered
inconclusive in Rabbe’s test?

Gauss’s test offers a different way to look at Raabe’s test and
also has an added advantage that it handles this case that was left
as inconclusive in Raabe’s test.

3.41 (Gauss’s Test) The series Y po, ax can be tested by the fol-
lowing criterion. Suppose that

ay L ¢(k)
=1 — -—
Ak+1 + k + k2

where ¢p(k)? (k =1,2,3,...) forms a bounded sequence. Then

1. If L > 1 the series Y po, ai converges.

2. If L <1 the series Y, , ay, diverges.
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Proof. As we noted, for L > 1 and L < 1 this is precisely Rabbe’s
test. Only the case L =1 is new! Let us assume that

Qg 1 Tk
=14+
Ak+1 k k2
where {z} is a bounded sequence.
To prove this case (that the series diverges) we shall use Kum-
mer’s test with the sequence Dy = klogk. We counsider the expres-
sion

a
|:Dk ko Dk+1:|
Ag+1
which now assumes the form
klogk G (k+1)log(k +1)
Ok+1
1
=klogk (1 + Z + %) —(k+1)log(k+1).

We need to compute the limit of this expression as & — oo. It
takes only a few manipulations (which the reader should try) to
see that the limit is —1. [Use the facts that (logk)/k — 0 and
(k+1)log(1+1/k) — 1 as k — oo.

We are now in a position to claim, by Kummer’s test, that our
series Y p ; ay diverges. To apply this part of the test requires us to

check that the series
Z :
P klogk

diverges. Several tests would work for this. Perhaps Cauchy’s con-
densation test is the easiest to apply, although the integral test can
be used too (see Exercise 3:6.2(c).) [ |

Note. In Gauss’s test the reader may be puzzling over how to obtain the

expression
a L k
124 ¢(2).
QAp+1 k k
In practice often the fraction ay/ajy1 is a ratio of polynomials and so
usual algebraic procedures will supply this. In theory, though, there is no
problem. For any L we could simply write

¢(k)=k2( Lk —1+£>.

QAk+1 k

Thus the real trick is whether it can be done in such a way that the ¢(k)
do not grow too large.
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Also in some computations you might prefer to leave the ratio as
ak+1/ar the way it was for the ratio test. In that case Gauss’s test would
assume the form: I f

a
e _y L, o)
ag k k’2

(Note the minus sign.) The conclusions are exactly the same.

Example 3.42 The series

—1
1+mx+%x2+
—1 -2 —1)... —k+1
mm =D =2) 5 mm =Y. on kD

is called the binomial series. When m is a positive integer all terms
for £ > m are zero and the reader will recognize the binomial formula
for (1 + z)™. Here now m is any real number and the hope remains
that the formula might still be valid, but using a series rather than a
finite sum. This series plays an important role in many applications.
Let us check for absolute convergence at x = 1. We can assume that
m # 0 since that case is trivial.
If we call the absolute value of the k + 1-st term ay, so

m(m—1)...(m—k+1)

Ak+1 = Ll
then a simple calculation shows that for large values of k
Gl _ 4 _ ™ +1
Qg k

Here we are using the version ay.1/aj rather than the reciprocal;
see the note above.

There are no higher order terms to worry about in Gauss’s test
here and so the series > aj converges if m +1 > 1 and diverges if
m-+1 < 1. Thus the binomial series converges absolutely for x = 1 if
m > 0. For m = 0 the series certainly converges since it is identically
zero. For m < 0 we know so far only that it does not converge
absolutely. A closer analysis, for those who might care to try, will
show that the series is nonabsolutely convergent for —1 < m < 0
and divergent for m < —1. <

3.6.12 Alternating series test

We pass now to a number of tests that are needed for studying series
of terms that may change signs. The simplest first step in studying
a series Y -2, a; where the a; are both negative and positive is to
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apply one from our battery of tests to the series ) °, |a;|. If any
test shows that this converges then we know that our original series
converges absolutely. This is even better than knowing it converges.

But what shall we do if the series is not absolutely convergent or
if such attempts fail? One method applies to very special series of
positive and negative terms. Recall how we handled the series

> 1 11 1

k-1

> (1) T=l-5+3- 71

k=1
(called the alternating harmonic series). We considered separately
the partial sums so, s4, Sg, ... and s, S3, S5, ... . The special
pattern of 4+ and — signs alternating one after the other allowed us
to see that each subsequence {s2,} and {s2,—1} was monotonic. All
the features of this argument can be put into a test that applies to
a wide class of series, similar to the alternating harmonic series.

3.43 (Alternating Series Test) The series

Z(—l)k_lak

k=1
whose terms alternate in sign converges if the sequence {ay} de-
creases monotonically to zero. Moreover the value of the sum of
such a series lies between the values of the partial sums at any two
consecutive stages.

Proof.  The proof is just exactly the same as for the alternat-
ing harmonic series. Since the ay are nonnegative and decrease we
compute that

a; —az =82 <84 <86 < v <85 < 83 < 81 =ay.
These subsequences then form bounded monotonic sequences and so

lim s9, and lim s9,_1
n—o0 n— 00

exist. Finally since
Son — Sop—1 = —agn — 0

we can conclude that lim,,_,, s,, = L exists. From the proof it is clear
that the value L lies in each of the intervals [sq, s1], [s2, s3], [s4, s3],
[s4,85], ... and so, as stated, the sum of the series lies between the
values of the partial sums at any two consecutive stages. |
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0O 3.6.13 Dirichlet’s Test

Our next test derives from the summation by parts formula

n

Zakbk = 81(b1 - bZ) + 32(b2 - b3) et snfl(bnfl - bn) + spbn

k=1
that we discussed in Section 3.2. We can see that if there is some
special information available about the sequences {s,} and {b,} here
then the convergence of the series Y ), agby can be proved. The
test gives one possibility for this. The next section gives a different
variant.

3.44 (Dirichlet Test) If{b,} is a sequence decreasing to zero and
the partial sums of the series Y p- a are bounded then the series
Y pey agby converges.

Proof. Write s, = > ;_; ax. By our assumptions on the series
Y pe ak there is a positive number M so that |s,| < M for all n.
Let € > 0 and choose N so large that b, < ¢/(2M) if n > N.

The summation by parts formula shows that for m >n > N
m

Z arby

k=n

= [=sp_1by + Sn(bn - bn+1) +... smfl(bmfl - bm) + Smbm|

= |anbn + a'n+1bn+1 et amBm|

< |_3n—1bn| + |5n(bn - bn+1)| +... |5m—1(bm—1 - bm)| + |3mbm|
< M(by, + [by, — b)) + b)) < 2Mb,, < €.

Notice that we have needed to use the fact that each of the terms
bg—1 — b > 0.

This is precisely the Cauchy criterion for the series Y po; apby
and so we have proved convergence.

Example 3.45 The series

1 1 1 1 1

l— -4 —— ..
23711576

converges by the alternating series test. What other pattern of +
and — signs could we insert and still have convergence? Let ar = £1.
If the partial sums
n
P
k=1
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remain bounded then, by Dirichlet’s test the series

n
ag

&
k=1
must converge. Thus, for example, the pattern

-+t - —F -+ + - -+ -+ - -

would produce a convergent series (that is not alternating). |

3.6.14 Abel’s Test

The next test is another variant on the same theme as the Dirichlet
test. There the series Y ;- agby was proved to be convergent by
assuming a fairly weak fact for the series > .7, a; (i.e., bounded
partial sums) and a strong fact for {b;} (i.e, monotone convergence
to 0). Here we strengthen the first and weaken the second.

3.46 (Abel Test) If {b,} is a convergent monotone sequence and
the series EZ‘;I ar 1s convergent then the series 213021 apby con-
verges.

Proof.  Suppose first that by is decreasing to a limit B. Then
by — B decreases to zero. We can apply Dirichlet’s test to the series

> ax(by, — B)
k=1

to obtain convergence, since if Y, aj is convergent then it has a
bounded sequence of partial sums.

But this allows us to express our series as the sum of two con-
vergent series:

oo oo oo
Zakbk = Zak(bk - B) + BZak.
k=1 k=1 k=1

If the sequence by, is instead increasing to some limit then we can
apply the first case proved to the series — Y2 ; ar(—by). [ |

Exercises

3:6.1 Let {a,} be a sequence of positive numbers. If lim, o n?a, =
0 what (if anything) can be said about the series Y 2 a,. If
lim,_,0 na, = 0 what (if anything) can be said about the series
> o2 | an. (If we drop the assumption about the sequence {a,} be-
ing positive does anything change?)
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3:6.2 Which of these series converge?

> (n+1)
(@) S T
* ;(mz)

(b) i 3n(n+1)(n+2)

n=1 n3\/ﬁ

— 1
(c) nz:;nslogn

— 1.3....(2n = 1)
(@) r; 2.4....2n/n
(e) ial/"—l

n=1
f 3 !
O 2 ogm

1

(&) J 7 (logn)t

(h)

2
1 n
(-3)
n=1 n

3:6.3 For what values of x do the following series converge?
(CYRD D %

(b) Yni,(logn)z™

(€) Xplie™™

)

(d) 1420+ 52 + 422 4
3:6.4 Let ap be a sequence of positive numbers and suppose that
lim kap = L
k—o0

exists. What can you say about the convergence of the series >, ; a
if L = 0?7 What can you say about the convergence of the series
E:ozl ay if L > 07

3:6.5 Let {ax} be a sequence of positive numbers. Consider the following []
conditions:

(a) limsup Vkag > 0

k—oco

(b) lim sup Vkay, < 00

k— oo
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(c) liminf Vkag > 0
k—o0

(d) liminf Vkay < oo
k—o0

Which condition(s) imply convergence or divergence of the series
E,;“;l ar? Supply proofs. Which conditions are inconclusive as to
convergence or divergence? Supply examples.

3:6.6 Suppose that Ezozl an is a convergent series of positive terms. Must
Yoo 1 \/an also be convergent?

3:6.7 Give examples of series both convergent and divergent that illustrate
that the ratio test is inconclusive when the limit of the ratios L is
equal to 1.

3:6.8 Give examples of series both convergent and divergent that illustrate
that the root test is inconclusive when the limit of the roots L is equal
to 1.
0 3:6.9 Apply both the root test and the ratio test to the series
at+af+aB+a’f +a’pP+aip ...
where «, § are positive real numbers.

[] 3:6.10 Show that the limit comparison test applied to series with positive
terms can be replaced by the following version. If

. a
limsup — < o
k—oco Ok
and if ;2 | by converges then so does Y oo, ag. If
a
liminf =% > 0
k—o0 Cp
and if Y77 | ¢ diverges then so does Y p- | a.

] 3:6.11 Show that the ratio test can be replaced by the following version.
Compute

Gk41

o . Qf+1
lim inf =L andlimsup =M
k—oo  ag k—oco Ok

(a) If M < 1 then the series >, ay is convergent.

(b) If L > 1 then the series ) .-, a is divergent, moreover the
terms ap — 00.

(¢c) If L <1 < M then the series Y-, a; may diverge or converge,
the test being inconclusive.

[] 3:6.12 Show that the root test can be replaced by the following version.
Compute
lim sup &ay = L.

k— o0
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(a) If L <1 then the series Y, , aj is convergent.

(b) If L > 1 then the series ), aj is divergent, moreover some
subsequence of the terms ay;, — oo.

(c) If L =1 then the series Y-, a; may diverge or converge, the
test being inconclusive.

3:6.13 Show that for any sequence of positive numbers {ay}

.. Oyl
lim inf —**
k—oo  ag

a
< likm inf ¥ay <limsup ¥ar < limsup k1
— 00

k—o0 k— o0 Qg

What can you conclude about the relative effectiveness of the root
and ratio tests?

3:6.14 Give examples of series for which one would clearly prefer to apply
the root (ratio) test in preference to the ratio (root) test. How would
you answer someone who claims that “Exercise 3:6.13 shows clearly
that the ratio test is inferior and should be abandoned in favor of
the root test.”

3:6.15 Let {a,} be a sequence of positive numbers and write

log (%)
logn

Show that if liminf L,, > 1 then ) a,, converges. Show that if L,, <1
for all sufficiently large n then ) a,, diverges.

n =

3:6.16 Apply the test in Exercise 3:6.15 to obtain convergence or diver-
gence of the following series (x is positive):

(a) Yo, los”
(b) 220_2 xlog logn
(c) Ypls(logn)~losn
3:6.17 Prove the alternating series test directly from the Cauchy criterion.

3:6.18 Determine for what values of p the series

o0

1 1 1 1
L Yl S eIl
Z( 1) kp_l 2p+3p T
k=1
is absolutely convergent and for what values it is nonabsolutely con-

vergent.
3:6.19 How many terms of the series
-0
k=1 k?

must be taken to obtain a value differing from the sum of the series
by less than 107107
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3:6.20 If the sequence {z,} is monotonically decreasing to zero then prove
that the series

1 1 1
.’L’1—§($1+IL’2)+§(.’L’1 +1’2+£B3)—Z(Z’1+l‘2+l‘3+$4)...

converges.

[] 3:6.21 This exercise attempts to squeeze a little more information out of
the integral test. In the notation of that test consider the sequence

S k) /n+1f()d
en = — x) dx
k=1 1

Show that the sequence {e,} is increasing and that 0 < e, < f(1).
What is the exact relation between Y 72, f(k) and [ f(z) dz?

3:6.22 Show that
"1 ntlg
Jm 25 [oa)=

for some number v, .5 < v < 1. (The exact value of v, called
FEuler’s constant, you do not need to compute but it is approximately
.5772156.)

3:6.23 Show that

2n 1
Jm, 2 f=los2
k=n+1

3:6.24 Let F be a positive function on [1,00) with a positive, decreasing
and continuous derivative F”.

(a) Show that >°72, F'(k) converges if and only if

f: F'(k)
— F(k)
converges.
(b) Suppose that Y>>, F'(k) diverges. Show that
i F'(k)
2 FR)

converges if and only if p > 1.

] 3:6.25 If a, is a sequence of positive numbers such that E;o:l a, diverges
what (if anything) can you say about the three series below?

(a’) E;L.OZI linan
(b) EZ‘Ll JTT."

(©) Xnt1 Trrar
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[] 3:6.26 Prove the following variant on Dirichlet test 3.44: If {b,} is a
sequence of bounded variation (cf. Exercise 3:5.11) that converges to
zero and the partial sums of the series ;- | a; are bounded then
the series Y 7° | ayby converges.

3:6.27 This collection of exercises develops some convergence properties
of power series, i.e., series of the form

(o]
E ak:ck =ao+a1x+a2x2+a3x3+....
k=0

A full treatment of power series appears in Chapter 10.

(a)
(b)
()

Show that if a power series converges absolutely for some value
x = xo then the series converges absolutely for all || < |zo].

Show that if a power series converges for some value x = xg
then the series converges absolutely for all |z| < |zo|.

Let

oo
R = sup{t: Z at® converges }.

k=0
Show that the power series Y o  axz”® converges absolutely for
all |z] < R and diverges for all |z| > R. [The number R is called
the radius of convergence of the series. The explanation for the
word “radius” (which conjures up images of circles) is that for
complex series the set of convergence is a disk.

Give examples of power series with radius of convergence 0, oo,
1, 2, and /2.

Explain how the radius of convergence of a power series may
be computed with the help of the ratio test.

Explain how the radius of convergence of a power series may
be computed with the help of the root test.

Establish the formula
1

R =
lim supy_, o v/|ak]

for the radius of convergence of the power series Zzozo arz®.

Give examples of power series > -, arz® with radius of con-
vergence R so that the series converges absolutely at both end-
points of the interval [—R, R]. Give another example so that
the series converges at the right hand endpoint but diverges at
the left hand endpoint of [— R, R]. What other possibilities are
there?
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3:6.28 The series

-1
1+mz+ %m%—
m(m—l)(m—2)$3+ m(m—l)...(m—k+1)mk+”'
3! k!
is called the binomial series. Here m is any real number. (See Ex-

ample 3.42.)

(a) Show that if m is a positive integer then this is precisely the
expansion of (1 + z)™ by the binomial theorem.

(b) Show that this series converges absolutely for any m and for all
|z| < 1.

(c) Obtain convergence for x =1 if m > —1.

(d) Obtain convergence for z = —1 if m > 0.

3.7 Rearrangements

Any finite sum may be rearranged and summed in any order. This
is because addition is commutative. We might expect the same to
occur for series. We add up a series ) .-, aj by starting at the
first term and adding in the order presented to us. If the terms are
rearranged into a different order do we get the same result?

Example 3.47 The most famous example of a series that cannot
be freely rearranged without changing the sum is the alternating

harmonic series. We know that the series
TR
2 3 47
is convergent (actually nonabsolutely convergent) with a sum some-
where between 1/2 and 1. If we rearrange this so that every positive
term is followed by two negative terms, thus,

o lotg1111 11
2 4 3 6 8 5 10 1277

we shall arrive at a different sum. Grouping these and adding we
obtain

(-3)-3G-2)-

! 1_1+1_1
2 2 3 477

whose sum is half the original series. Rearranging the series has
changed the sum! <

QO | =
/N
| =
I
Sl=
N———
I
ol
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For the theory of unordered sums there is no such problem. If an
unordered sum ;. ;a; converges to a number c then so too does
any rearrangement. Exercise 3:3.8 shows that if 0 : I — I is one-one

and onto, then

D45 =D (i

iel icl
We had hoped for the same situation for series. If o : IN — IN is
one-one and onto, then

Doak = asp
k=1 k=1

may or may not hold. We call ;7 ag(k) @ rearrangement of the
series > po | ag.

We propose now to characterize those series that allow unlimited
rearrangements, and those that are more fragile (as is the alternating
harmonic series) and cannot permit rearrangement.

3.7.1 TUnconditional Convergence

A series is said to be unconditionally convergent if all rearrangements
of that series converge and have the same sum. Those series that
do not allow this but do converge are called conditionally conver-
gent. Here the “conditional” means that the series converges in the
arrangement given, but may diverge in another arrangement or may
converge to a different sum in another arrangement. We shall see
that conditionally convergent series are extremely fragile; there are
rearrangements that exhibit any behavior desired. There are rear-
rangements that diverge and there are rearrangements that converge
to any desired number.

Our first theorem asserts that any absolutely convergent series
may be freely rearranged. All absolutely convergent series are un-
conditionally convergent. In fact the two terms are equivalent

unconditionally convergent < absolutely convergent

although we must wait until the next section to prove that.

Theorem 3.48 (Dirichlet) Every absolutely convergent series is
unconditionally convergent.

Proof. Let us prove this first for series )"~ | a; whose terms are all
nonnegative. For such series convergence and absolute convergence
mean the same thing.
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Let Y po, ay(k) be any rearrangement. Then for any M

M N 00
Z%(k) < Zak < Zak
k=1 k=1 k=1

by choosing an N large enough so that {1,2,3,..., N} includes all
the integers {o(1),0(2),0(3),...,0(M)}. By the bounded partial
sums criterion this shows that > 72, ag(k) 1s convergent and to a
sum smaller than ) 22, a;. But this same argument would show
that ) .2, ay is convergent and to a sum smaller than Y .2 @y
and consequently all rearrangements converge to the same sum.

We now allow the series Y po; ar to have positive and negative
values. Write

Doar =Y la]" = lax]”
=1 k=1 k=1

(cf. Exercise 3:5.8) where we are using the notation [X]" = max{X, 0}
and [X]™ = max{—X,0} and remembering that X = [X]* — [X]~

and | X| = [X]T 4+ [X]~. Any rearrangement of the series on the left
hand side of this identity just results in a rearrangement in the two
series of nonnegative terms on the right. We have just seen that this
does nothing to alter the convergence or the sum. Consequently any
rearrangement of our series will have the same sum as required to
prove the assertion of the theorem. |

3.7.2 Conditional Convergence

A convergent series is said to be conditionally convergent if it is
not unconditionally convergent. Thus such a series converges in the
arrangement given, but either there is some rearrangement that di-
verges or else there is some rearrangement that has a different sum.
In fact both situations always occur.

We have already seen (page 132) how the alternating harmonic
series can be rearranged to have a different sum. We shall show
that any nonabsolutely convergent series has this property. Our
rearrangement above took advantage of the special nature of the
series; here our proof must be completely general and so the method
is different.

The following theorem completes Theorem 3.48 and provides the
connections:

conditionally convergent < nonabsolutely convergent
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and

unconditionally convergent < absolutely convergent

Note. The reader may wonder why we have needed this extra terminology
if these concepts are identical. One reason is to emphasize that this is
part of the theory. Conditional convergence and nonabsolutely convergence
may be equivalent, but they have different underlying meanings. Also, this
terminology is used for series of other objects than real numbers and for
series of this more general type the terms are not equivalent.

Theorem 3.49 (Riemann) Every nonabsolutely convergent series
is conditionally convergent. In fact, every nonabsolutely convergent
series has a divergent rearrangement and can also be rearranged to
sum to any preassigned value.

Proof. Let > 72, ar be an arbitrary nonabsolutely convergent
series. To prove the first sentence it is enough if we observe that
both series

Z[ak]+ and Z[ak]_
k=1 k=1

must diverge in order for ), aj to be nonabsolutely convergent.
We need to observe as well that a; — 0 since the series is assumed
to be convergent.

Write p1, p2, ps, for the sequence of positive numbers in the
sequence {ay} (skipping any zero or negative ones) and write q1, g2,
qs, - .. for the sequence of terms that we have skipped. We construct
a new series

pr+pe+--+ P @+ Pu+1 +Prr2t 0+ Ppy G2+ Prgt1 -
where we have chosen 0 = ng < n1 <no < ng... so that

pnk—l—l +pn1+2 +--- +pnk+1 > 2k

for each k =0,1,2,.... Since )_,-, py diverges this is possible. The
new series so constructed contains all the terms of our original series
and so is a rearrangement. Since the terms ¢ — 0 they will not
interfere with the goal of producing ever larger partial sums for the
new series and so, evidently, this new series diverges to oc.

The second requirement of the theorem is to produce a convergent
rearrangement, convergent to any given number « say. One proceeds
in much the same way but with rather more caution. We leave this
to the exercises. |
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3.7.3 Comparison of }_° a; and ), . a;

The unordered sum of a sequence of real numbers, written as,
E g,
t€EIN

has an apparent connection with the ordered sum

00
E a;.
1=1

We should expect the two to be the same when both converge, but
is it possible that one converges and not the other?

The answer is that the convergence of ), a; is equivalent to
the absolute convergence of Y2°, a;.

Theorem 3.50 A necessary and sufficient condition for ) ;i a;
to converge is that the series Y 0, a; is absolutely convergent and in

this case
o0

Y=Y

1€IN =1
Proof. We shall use a device we have seen before a few times: for
any real number X write [X]* = max{X, 0} and [X]~ = max{—X,0}
and note that X = [X]T — [X]~ and | X| = [X]* + [X]~. The abso-
lute convergence of the series and the convergence of the sum in the

statement in the theorem now reduce to considering the equality of
the right hand sides of

doai= [a]" =) lai]”
iEN  ieN ieN

and
o0 o0

Zaz‘ =Y lai]" = [ai].

i=1 i=1
This reduces our problem to considering just nonnegative series (sums).
Thus we may assume that each a; > 0. For any finite set I C IN

it is clear that
o0
Sa<Sa
iel i=1

It follows that if }°°, a; converges then (by Exercise 3:3.3) so too
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does ), v a; and

Z a; < Z a;. (5)
=1

1€IN =
Similarly if N is finite,

N
Zai < Z a;.
=1

1€IN
It follows that if ), a; converges then, by the boundedness crite-
rion, so too does > X, a; and

o0

Y ai<d a (6)
=1 1€EIN

Together these two assertions and the equations (5) and (6) prove

the theorem for the case of nonnegative series (sums). [ |
Exercises
3:7.1 Let
11
s=l-gtg—7
Show that
3s_,, 1 1,11 1
2 3 2 5 7 47

3:7.2 What is the sum of the series
142 +z+a' +2°+2° +2° +2'0+2° + ...
and for what values of z does it converge?

3:7.3 For what series is the computation

o0 o0 o ]
E ax = E az + E a2k—1
k=1 k=1 k=1

valid? Is this a rearrangement?

3:7.4 For what series is the computation

o0 o0
Zak = Z (agk + azk—1)
k=1 k=1

valid? Is this a rearrangement?

3:7.5 Give an example of an absolutely convergent series for which is it
much easier to compute the sum by rearrangement than otherwise.
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3:7.6 For what values of a and 8 does the series

converge?

3:7.7 Let a series be altered by the insertion of zero terms in a completely
arbitrary manner. Does this alter the convergence of the series?

3:7.8 Suppose that a series contains only finitely many negative terms.
Can it be safely rearranged?

3:7.9 Suppose that a nonabsolutely convergent series has been rearranged
and that this rearrangement converges. Does this rearranged series
converge absolutely or nonabsolutely?

3:7.10 Is there a divergent series that can be rearranged so as to con-
verge? Can every divergent series be rearranged so as to converge?
If >, aj diverges, but does not diverge to oo or —oo can it be
rearranged to diverge to co?

3:7.11 How many rearrangements of a nonabsolutely convergent series are
there that do not alter the sum?

3:7.12 Complete the proof of Theorem 3.49 by showing that for any non-
absolutely convergent series series ) ., ar and any a there is a
rearrangement of the series so that

00
Z Qg (k) = Q-
k=1

3:7.13 Improve Theorem 3.49 by showing that for any nonabsolutely con-
vergent series series Zz‘;l ar and any —oo < a < 8 < oo there is a
rearrangement of the series so that

n n
a= linrgioréf;ag(k) < liTr:LsolépZag(k) =pf.

k=1

o 3.8 Products of Series

The rule for the sum of two convergent series? in Theorem 3.8

oo o o
Z(ak +bg) = Zak + Zbk
k=0 k=0 k=0

In the formula for a product of series in this section we prefer to label the
series starting with 0. This does not change the series in any way.
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is entirely elementary to prove and comes directly from the rule for
limits of sums of sequences. If A, and B,, represent the sum of n+ 1

terms of the two series then
o0

lim Z(ak +bg) = nlggo (A, + Bp) = nlggo Ap + nll)ngo B,

n—0oQ
oo o0
I WY
k=0 k=0

k=0
At first glance we might expect to have a similar rule for products
of series, since

lim (4, x B,) = lim A, x lim B,
n—,oo

n—,oo n—oo
o0 o0
=S wxYon
k=0 k=0

But what is A,B,? If we write out this product we obtain
ApBp = (ag+a1+az+-+ap) (bo+ b +ba+ -+ by)

n n
=D b
i=0 j=1
From this all we can show is the curious observation that

n n o o0
nli{go Z Zaibj = Z ap X Z by
i=0 j=1 k=0 k=0

What we would rather see here is a result similar to the rule for
sums: “series + series = series”. Can this result be interpreted as
“series X series = series”? We need a systematic way of adding up
the terms a;b; in the double sum so as to form a series. The terms
are displayed in a rectangular array in Figure 3.8.

If we replace the series here by a power series this systematic way
will become much clearer. How should we add up

(ao + a1z + aoz® + - + apz™) (bo + b1z + boz® + -+ - + byz") |

(which with z = 1 is the same question we just asked)? The now
obvious answer is

agby + (a0b1 + albo)x + (aon +aib; + a2b0)$2
-I-(a0b3 + a1by + aosby + agbo)$3 + ...
Notice that this method of grouping the terms corresponds to sum-

ming along diagonals of the rectangle in Figure 3.8.
This is the source of the following definition.
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X ao a1 a3 as a4 as
bo | aobg aibg a2b0 asby asbo asbo
bl a0b1 (lel (Izbl a3b1 a4b1 a5b1
by | apba  aiba  ab2 asbs asby  asbe
b3 a0b3 (les (12[)3 a3b3 a4b3 a5b3
b4 a0b4 a1b4 a2b4 a3b4 a4b4 a5b4
bs | aobs aibs a2bs asbs asbs asbs

Figure 3.2: The product of the two series Y o° ay and ) o° bg.

Definition 3.51 The series
o
> o
k=0
is called the formal product of the two series

o o

Z ay and Z by,

k=0 k=0
provided

k
cp = Z a;bg_;.
=0

Our main goal now is to determine if this “formal” product is in
any way a genuine product, i.e., if

o0 o0 o0
Z Cp = E ar X Z bk?
k=0 k=0 k=0

The reason we expect this might be the case is that the series Y oo o ¢k
contains all the terms in the expansion of

(a0+a1+a2+a3+...)(b0+b1+b2+b3+...).

A good reason for caution, however, is that the series ;> ¢k con-
tains these terms only in a particular arrangement and we know that
series may be very sensitive to rearrangement.

3.8.1 Products of Absolutely Convergent Series

It is a general rule in the study of series that absolutely convergent
series permit the best theorems. We can rearrange such series freely
as we have seen already in Section 3.7.1. Now we show that we
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can form products of such series. We shall have to be much more
cautious about forming products of nonabsolutely convergent series.

Theorem 3.52 (Cauchy) Suppose that Y p- ¢k is the formal prod-
uct of two absolutely convergent series Y oo o ar and Y po o bg. Then
Y peo Ck converges absolutely too and

o o o
Dok = akx ) b

Proof. We write A = Y 22 jag, A" = Y 72 lagl, and A4, =
Yk—o0k, B = 32520 bk, B = 307, |bxl, and B = 37y bk By

definition
k
k=Y aibp_;
=0
and so
N N k N N
D el <30 aal - |bp—il < (Z |a,-\> (Z |b,-|) <A'B".
k=0 k=0 i=0 i=0 i=0

Since the latter two series converge this provides an upper bound
A'B' for the sequence of partial sums Zszl |ck| and hence the series
Y reo Ck converges absolutely.

Let us recall that the formal product of the two series is just
a particular rearrangement of the terms a;b; taken over all + > 0,
j > 0. Consider any arrangement of these terms. This must form
an absolutely convergent series by the same argument as above since
A’'B'" will be an upper bound for the partial sums of the absolute
values |a;bj|. Thus all rearrangements will converge to the same
value by Theorem 3.48.

We can rearrange the terms a;b; taken over all7 > 0, 7 > 0 in the
following convenient way “by squares”. Arrange always so that the
first (m+1)? (m =0,1,2,...) terms add up to A,,B,,. For example
one such arrangement starts off

agby + a1bg + agby + a1b1 + asby + agby + agbs + a1be + agby + . . ..
(A picture helps considerably to see the pattern needed.) We know

this arrangement converges and we know it must converge to

lim A,,B,, = AB.

m—r0o0

In particular the series Y ;- ¢; which is just another arrangement
converges to the same number AB as required. |
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It is possible to improve this theorem to allow one (but not both)
of the series to converge nonabsolutely. The conclusion is that the
product then converges (perhaps nonabsolutely), but very different
methods of proof will be needed. As usual, nonabsolutely convergent
series are much more fragile, and the free and easy moving about of
the terms in this proof is not allowed.

3.8.2 Products of Nonabsolutely Convergent Series

Let us give a famous example, due to Cauchy, of a pair of convergent
series whose product diverges. We know that the alternating series

0 o 1
2

is convergent, but not absolutely convergent since the related abso-

lute series is a p—harmonic series with p = %
Let Y77, ¢k be the formal product of this series with itself. By

definition the term ¢; is given by

(=1)* L TR ! e = :
VIGtD V2 B Gk-D D1
There are k + 1 terms in the sum for ¢; and each term is larger than
1/(k+1) so that we see that |c,| > 1. Since the terms of the product
series Y p- o ¢x do not tend to zero this is a divergent series.
This example supplies our observation: the formal product of
two nonabsolutely convergent series need not converge. In particular
then there may be no convergent series to represent the product

o0 o

Z ar X Z bk

k=0 k=0
for a pair of nonabsolutely convergent series. For absolutely conver-
gent series the product always converges.

We should not be too surprised at this result. The theory be-
gins to paint the following picture: absolutely convergent series can
be freely manipulated in most ways and nonabsolutely convergent
series can hardly be manipulated in general in any serious manner.
Interestingly the following theorem can be proved which shows that

even though, in general, the product might diverge in cases where it
does converge it converges to the “correct” value.

Theorem 3.53 (Abel) Suppose that > ;> cy is the formal product
of two nonabsolutely convergent series Y - ar and Y oo by and
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suppose that Y 72 o ¢k is known to converge. Then
o o o
Dok =2 arx ) b
k=0 k=0 k=0

Proof. The proof requires more technical apparatus and will not
be given until Section 3.9.2. |

Exercises

3:8.1 Form the product of the series 72 arpz® with the geometric series

— =14+t +22+. ..
1—2

and obtain the formula

o0

—Zakm —Z (ao + a1 +az + - -+ + ax)z”
k=0

For what values of z would this be valid?

3:8.2 Show that
o0
(1-2)*=) (k+1)z
k=0

for appropriate values of z.

3:8.3 Using the fact that

o0
_1)k
Z =log2
P k+1
Show that

i (=Dfor _ (log2)?
L+ 2 2

where 0, =1+1/2+1/3+...1/(k+1).
3:8.4 Verify that e®t¥ = e®e¥ by proving that
:c+y b S yk
D R b

3:8.5 For what values of p and ¢ are you able to establish the convergence
of the product of the two series

oo ( oo
Sty i S

k=0
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3.9 Summability Methods for Divergent Series
0

A first course in series methods often gives the impression of being
obsessed with the issue of convergence or divergence of a series. The
huge battery of tests in Section 3.6 devoted to determining the be-
havior of series might lead one to this conclusion. Accordingly the
reader may by now have decided that convergent series are useful
and proper tools of analysis while divergent series are useless and
without merit.

In fact divergent series are, in many instances, as important
or more important than convergent ones. Many eighteenth cen-
tury mathematicians achieved spectacular results with divergent se-
ries but without a proper understanding of what they were doing.
The initial reaction of our founders of nineteenth century analysis
(Cauchy, Abel and others) was that valid arguments could be based
only on convergent series. Divergent series should be shunned. They
were appalled at reasoning such as the following: the series

s=1—-1+1-1...
can be summed by noting that

s=1-(1-14+41—-...)=1-5

andso2s=1ors = % But the sum % proves to be a useful value for

the “sum” of this series even though the series is clearly divergent.

There are many useful ways of doing rigorous work with diver-
gent series. One way, which we now study, is the development of
summability methods.

Suppose that a series Yo ; aj diverges and yet we wish to assign
a “sum” to it by some method. Our standard method thus far is to
take the limit of the sequence of partial sums. We write

n
Sp = Z ag
k=0

and the sum of the series is lim, oo . If the series diverges this
means precisely that this sequence does not have a limit. How can
we use that sequence or that series nonetheless to assign a different
meaning to the sum?
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O 3.9.1 Cesaro’s Method

An infinite series Y 7 jar has a sum S if the sequence of partial

sums
n
N
k=0

converges to S. If the sequence of partial sums diverges then we
must assign a sum by a different method. We will still say that the
series diverges but, nonetheless, we will be able to find a number
that can be considered the sum.
We can replace lim,,_,, s, which perhaps does not exist by
. Sotsitsat 48y
lim
n—00 n+1
if this exists and use this value for the sum of the series. This is an
entirely natural method since it merely takes averages and settles for
computing a kind of “average” limit where an actual limit might fail
to exist.
For a series Y p- jaj often we can use this method to obtain a
sum even when the series diverges.

=C

Definition 3.54 If {s,} is the sequence of partial sums of the series
> reo ak and
. Sotsits2+--+ 5
lim
n—00 n+1

=C

then the new sequence
So+81+82+---+ 38,
n+1
is called the sequence of averages or Cesdro means and one writes

Op =

o
Z ay, = C [Cesaro].
k=0

Thus the symbol [Cesaro| indicates that the value is obtained by
this method rather than by the usual method of summation (taking
limits of partial sums).

Our first concern in studying a summability method is to deter-
mine whether it assigns the “correct” value to a series that already
converges. Does

Zak =A = Zak = A [Cesaro] ?
k=0 k=0
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Any method of summing a series is said to be regular or a regular
summability method if this is the case.

Theorem 3.55 Suppose that a series Y p- o ap converges to a value
A. Then Y 32 ap = A [Cesaro] is also true.

Proof. This is an immediate consequence of Exercise 2:13.16. For
any sequence {s,} write o, = (s1 + s2 +...8,)/n. In that exercise
we showed that

liminfs, <liminfo, <limsupo, < limsup s,,.

n—00 n—0o0 n—00 n—00
For the reader who skipped that exercise here is how to prove it. Let
B > limsup,,_, Sp- (If there is no such § then limsup,,_,,, sp = 00
and there is nothing to prove.) Then s, < ( for all n > N for some
N. Thus

1 n—N+1
op < _(31+32+---3N—1)+M
n n

for all n > N. Fix N, allow n — oo and take limit superiors of each

side to obtain
limsupo, < 8.

n—oo
It follows that limsup,,_,., o, < limsup,,_,., Sp. The other inequal-
ity is similar.
In particular if lim,,_,, s, exists so too does lim,,_,, 0, and they
are equal, proving the theorem.

[ |
Example 3.56 As an example let us sum the series
1—1+1—-1+1-1....
The partial sums form the sequence 1, 0, 1, 0, ... which evidently

diverges. Indeed the series diverges merely by the trivial test: the
terms do not tend to zero. Can we sum this series by the Cesaro
summability method? The averages of the sequence of partial sums
is clearly tending to % Thus we can write

(1) =

k=0

[Cesaro]

N | =

even though the series is divergent. <
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O 3.9.2 Abel’s Method

We require that the reader in this section recall some calculus limits.
We shall need to compute a limit
lim F(z)
rz—1—

for a function F' defined on (0,1) where the expression z — 1— in-
dicates a left hand limit. In Chapter 5 we present a full account of
such limits; here we need remember only what this means and how
it is computed.

Suppose that a series ), ay diverges and yet we wish to assign
a “sum” to it by some other method. If the terms of the series do
not get too large then the series

o
F(z) = Z apz®
k=0

will converge (by the ratio test) for all 0 < z < 1. The value we
wish for the sum of the series would appear to be F(1) but for a
divergent series inserting the value 1 for z gives us nothing we can
use. Instead we compute

lim F(z) = lim Zakxk =A

rz—1— r—1—

and use this value for the sum of the series.
Definition 3.57 One writes

o0

Z apz® = A [Abel|

k=0
if

o0
li k= A.
s 3o

Here the symbol [Abel] indicates that the value is obtained by
this method rather than by the usual method of summation (taking
limits of partial sums).

As before, our first concern in studying a summability method is
to determine whether it assigns the “correct” value to a series that
already converges. Does

o (e}
Zak =A = Zak = A [Abel]?
k=0 k=0
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We are asking, in more correct language, whether Abel’s method of
summability of series is regular.

Theorem 3.58 (Abel) Suppose that a series Y 5o, a converges to
a value A. Then

o
lim g apz® = A.
T—1—

k=0

Proof. Our first step is to note that the convergence of the series
Y peo ak requires that the terms aj — 0. In particular the terms are
bounded and so the root test will prove that the series Y 5o, apz*
converges absolutely for all |z] < 1 at least. Thus we can define

o0
F(z) = Z apz”
k=0

for0 <z <1.
Let us form the product of the series for F'(z) with the geometric
series

—1 =1+ 2 3
= r+x+z° +...
1—=z

(cf. Exercise 3:8.1). Since both series are absolutely convergent for
any 0 < z < 1 we obtain

F(z) = k
m—kz_o(ao-Fm-l-ag—l—---—l—ak)x .

Writing
sk = (ao +ar+az+---+ag)
and using the fact that sy, - A =37 ax we obtain

Flz)=(1-2)) s =A—(1-2)) (s — AP,
k=0 k=0

Let ¢ > 0 and choose N so large that |sy — A| < ¢e/2 for k > N.
Then the inequality
N
F(a) = A < (1—2) Y |s — Alak +¢/2
k=0
holds for all 0 < z < 1. The sum here is just a finite sum and taking
limits in finite sums is routine:

N
x]_igl_(l — ) ;(sk — A)zF = 0.

0



3.9. Summability Methods for Divergent Series 149

Thus for z < 1 but sufficiently close to 1 we can make this smaller
than €/2 and conclude that
|F(z) — A| <e.

We have proved that limy_,; F(z) = A and the theorem is proved.
|

Example 3.59 Let us sum the series

o0
(=1 —-1+1-1+1-1...
k=0

by Abel’s method. We form

k=0

obtaining the formula by recognizing this as a geometric series. Since

lim, ,;_ F(x) = % we have proved that

— 1
D (-1)k = 5 [Abell .
k=0
Recall that we have already obtained in Example 3.56 that

Z(—l)k = % [Cesaro]

k=0
so these two very different methods have assigned the same sum to
this divergent series. The reader might wish to explore whether the
same thing will happen with all series. |

As an interesting application we are now in a position to prove
Theorem 3.53 on the product of series.

Theorem 3.60 (Abel) Suppose that > pock is the formal prod-
uct of two convergent series Y o qa and Y o o by and suppose that
Y reo Ck s known to converge. Then

0 0 ()
ch = Zak X Zbk.
k=0 k=0 k=0

Proof. The proof just follows on taking limits as x — 1— in the

expression
o o

o0
chwk = Z akavk X Zbkxk.
=0 k=0

k=0 k
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Abel’s theorem, Theorem 3.58, allows us to do this. How do we
know, however, that this identity is true for all 0 < z < 17 All
three of these series are absolutely convergent for |z| < 1 and, by
Theorem 3.52, absolutely convergent series can be multiplied in this
way. |

Exercises

3:9.1 Is the series
1+1-14+14+1—-14+14+1—-1+4---
Cesaro summable?

3:9.2 Is the series
1-24+3-445-64+7---
Cesaro summable?
3:9.3 Is the series
1-24+3-4+5-64+7---
Abel summable?

3:9.4 Show that any divergent series of positive numbers cannot be Cesaro
summable or Abel summable.

3:9.5 Find a proof from an appropriate source that demonstrates the exact
relation between Cesaro summability and Abel summability.

3:9.6 In an appropriate source find out what is meant by a Tauberian
theorem and present one such theorem appropriate to our studies in
this section.

3.10 More on Infinite Sums

How should we form the sum of a double sequence {a i} where both
j and k can range over all natural numbers? In many applications of
analysis such sums are needed. A variety of methods come to mind:

1. We might simply form the unordered sum
D,
(4,k)EINXIN

2. We could construct “partial sums” in some systematic method
and take limits just as we do for ordinary series:

N N
lim E 5 Qik-
N—o0 7
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These are called square sums and are quite popular. If you
sketch a picture of the set of points

{(5;k):1<j<N, 1<k <N}

in the plane the square will be plainly visible.

3. We could construct partial sums using rectangular sums:

M N
B % o
j=1k=1
Here the limit is a double limit, requiring both M and N to
get large. If you sketch a picture of the set of points
{(4,k):1<j <M, 1<k <N}

in the plane you will see the rectangle.

4. We could construct partial sums using circular sums:
lim Z Q-
R—o0
j24+k2<R2

Once again a sketch would show the circles.

5. We could “iterate” the sums, by summing first over j and then

over k:
[o¢] o0
DD ik

j=1k=1

or, in the reverse order

k=1j=1

Our experience in the study of ordinary series suggests that all
these methods should produce the same sum if the numbers summed
are all nonnegative, but that subtle differences are likely to emerge
if we are required to add numbers both positive and negative.

In the exercises there are a number of problems that can be
pursued to give a flavor for this kind of theory. At this stage in your
studies it is important to grasp the fact that such questions arise.
Later on when you have found a need to use these kinds of sums you
can develop the needed theory. The tools for developing that theory
are just those that we have studied so far in this chapter.
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Exercises

3:10.1 Decide on a meaning for the notion of a double series
o0
2 aj
Jrk=1

and prove that if all the numbers a;, are nonnegative then this con-
verges if and only if
>

(j,k)eINxIN
converges and that the sums are equal.
3:10.2 Decide on a meaning for the notion of an absolutely convergent

double series
oo
> a

Jrk=1
and prove that such a series is absolutely convergent if and only if
>
(4,k)eINxIN
converges and that the sums are equal.

3:10.3 Show that the methods given in the text for forming a sum of a
double sequence {a;;} are equivalent if all the numbers are nonneg-
ative.

3:10.4 Show that the methods given in the text for forming a sum of a
double sequence {a;} are not equivalent in general.

3:10.5 What can you assert about the convergence or divergence of the
double series
= 1
> !
=

3:10.6 What is the sum of the double series

Y v
GlELS

3.11 Infinite Products

In this chapter we studied, quite extensively, infinite sums. There is
a similar theory for infinite products, a theory which has very much
in common with the theory of infinite sums. In this section we shall
briefly give an account of this theory, partly to give a contrast and
partly to introduce this important topic.
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Similar to the notion of an infinite sum

o0
Za”=a1+a2+a3+a4+...

n=1

is the notion of an infinite product

o

[ 7n=p1 xp2xpsxpsx...

n=1
with a nearly identical definition. Corresponding to the concept of
“partial sums” for the former will be the notion of “partial products”
for the latter.

The main application of infinite series is that of series represen-
tations of functions. The main application of infinite products is
exactly the same. Thus, for example, in more advanced material we
will find a representation of the sin function as an infinite series

. L 3, 15 14
smx—x—gw +ax —ﬁx
and also as an infinite product

x2 x2 x2 x2
me=(1-Z ) (12 ) (12 ) (1= 2 ...
SHLE <1 7r2> (1 47r2> (1 97r2) < 167r2>

The most obvious starting point for our theory would be to define
an infinite product as the limit of the sequence of partial products in
exactly the same way that an infinite sum is defined as the limit of
the sequence of partial sums. But products behave differently from
sums in one very important regard: the number zero plays a peculiar
role. This is why the definition we now give is slightly different than
a first guess might suggest. Our goal is to define an infinite product
in such a way that a product can be zero only if one of the factors
is zero (just like the situation for finite products).

Definition 3.61 Let {b;} be a sequence of real numbers. We say
that the infinite product

[e.e]

[

k=1

converges if there is an integer N so that all b, # 0 for £ > N and if
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exists and is not zero. For the value of the infinite product we take

o0 M
ku:blxng...bNxﬂ}l_l)noo II o
k=1 k=N+1

This definition guarantees us that a product of factors can be
zero if and only if one of the factors is zero. This is the case for finite
products and we are reluctant to lose this.

Theorem 3.62 A convergent product

o0
ku =0
k=1

if and only if one of the factors is zero.

Proof. This is built into the definition and is one of its features.
[ |

We expect the theory of infinite products to evolve much like
the theory of infinite series. We recall that a series > ;_; a; could
converge only if ap — 0. Naturally the product analog requires the
terms to tend to 1.

Theorem 3.63 A product
o0
1K
k=1
that converges necessarily has b, — 1 as k — oo.

Proof. This again is a feature of the definition, that would not be
possible if we had not handled the zeros in this way. Choose N so
that none of the factors by is zero for k¥ > N. Then
. [le=nbr
bn = hm -1 =1
n=00 [Tk N1 bk
[ |

As a result of this theorem it is conventional to write all infinite
products in the special form

[e.e]

H (14 ag)

k=1
and remember that the terms ay — 0 as £ — oo in a convergent
product. Also our assumption about the zeros allows for a; = —1

only for finitely many values of k. The expressions (1 + aj) are
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called the “factors” of the product and the a; themselves are called
the “terms”.

A close linkage with series arises because the series Y7 ; a; and
the product [];2 ; (1+ay) have very much the same kind of behavior.

Theorem 3.64 A product

o0

H (1+ ag)

k=1
where all the terms ay are positive is convergent if and only if the
series Y po | Gk COMVETYES.

Proof. Here we use our usual criterion that has served us through
most of this chapter: a sequence that is monotonic is convergent if
and only if it is bounded.

Note that

ag+ay+ag+--+a, <(1+a1)(l+a)(l1+az) x---x(1+ay)

so that the convergence of the product gives an upper bound for the
partial sums of the series. It follows that if the product converges so
must the series.

In the other direction we have

(1+a1)(14+a2)(l+a3) - x (1+a,) < entotast ton

and so the convergence of the series gives an upper bound for the
partial products of the infinite product. It follows that if the series
converges, so must the product.

Exercises

3:11.1 Give an example of a sequence of positive numbers {by} so that
lim b1b2b3 e bn

n— 00

exists, but so that the infinite product
oo
IR
n=1
nonetheless diverges.

3:11.2 Compute
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3:11.3 In Theorem 3.64 we gave no relation between the value of the prod-
uct [Jee, (1 + ax) and the value of the series > - a; where all the
terms ay are positive. What is the best you can state?

3:11.4 For what values of p does the product

E(Hkip)

converge.

3:11.5 Show that

ﬁ(1+m2k):(1+m2)x(1+x4)X(1+$8)X(1+.’E16)...
k=1

converges to 1/(1 — 2?) for all —1 < z < 1 and diverges otherwise.
3:11.6 Find a Cauchy criterion for the convergence of infinite products.

3:11.7 A product

oo

H(l + ak)

k=1
is said to converge absolutely if the related product

oo

H (1 + |ak])
k=1
converges.

(a) Show that an absolutely convergent product is convergent.
(b) Show that an infinite product

oo

H(l + ak)

k=1

converges absolutely if and only if the series of its terms Yo~ ; ax
converges absolutely.

(c) For what values of x does the product
S x
IT(1+7%)
k=1
converge absolutely?
(d) For what values of z does the product
S x
IT(1+5)
k=1
converge absolutely?
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(e) For what values of z does the product

oo
(14 %)
k=1
converge absolutely?

(f) Show that

[e%s} -1 k

I (1 L k) )

k=1

converges but not absolutely?

3:11.8 Develop a theory that allows for the order of the factors in a product
to be rearranged.

3.12 Additional Problems for Chapter 3

3:12.1 Prove this variant on the Cauchy condensation test: If the terms
of a series Ezozl ay, are nonnegative and decrease monotonically to
zero then that series converges if and only if the series

oo
> (2 + aye
7j=1
converges.
3:12.2 Prove this more general version of the Cauchy condensation test:

If the terms of a series Z;ozl ay, are nonnegative and decrease mono-
tonically to zero then that series converges if and only if the related

series
o0
> (mjp1 —mj)am,
i=1
converges. Here m; < my < m3z < my... is assumed to be an

increasing sequence of integers and
mjy1 —m; < C(mj—mj1)
for some positive constant and all j.

3:12.3 For any two series of positive terms write
oo oo
Z ag =X Z br
k=1 k=1
ifak/bk — 0 as k — oo.

(a) If both series above converge explain why this might be in-
terpreted by saying that ) . ax is converging faster than
Zz’;1 bk-
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If both series above diverge explain why this might be inter-
preted by saying that Zz’;l ay, is diverging more slowly than
2:;;1bb

For convergent series is there any connection between

oo o0
D ak =) b
k=1 k=1

and
o0 o0
D ak <D bl
k=1 k=1

For what values of p, ¢ is

21 > 1,
Zyizﬁ
k=1 k=1

For what values of r, s is

oo

Z rk < i sk?
k=1

k=1
Arrange the divergent series

D% k; Flog k kgz Flog(log ) ’gm“

k=2
into the correct order.
Arrange the convergent series

e oo

i 1 Z 1
po L k(log k)P = klog k(log(log k))P

o0

> 1
,;2 klog k(log(log k)) (log(log(log k)))» ~

into the correct order. Here p > 1.

Suppose that Ezil by, is a divergent series of positive numbers.
Show that there is a series

oo oo

dar =D b

k=1 k=1
that also diverges (but more slowly).

Suppose that Zz’;l ar, is a convergent series of positive num-
bers. Show that there is a series

oo oo
a2 by
k=1 k=1

that also converges (but more slowly).
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(j) How would you answer this question? Is there a “mother” of

all divergent series diverging so slowly that all other divergent
series can be proved to be divergent by a comparison test with
that series?

3:12.4 This collection of exercises develops some convergence properties
of trigonometric series, i.e., series of the form

ap/2 + Z (ak cos kx + by sin kx) . (7)
k=1

Further treatment of some aspects of trigonometric series may be
found in Section 10.8.

(a) For what values of = does

converge?

(b) For what values of z does

> sinkz
2

k=1
converge?
(c) Show that the condition
oo
D (lak] + [be]) < oo
k=1

ensures the absolute convergence of the trigonometric series (7)
for all values of x.

3:12.5 Let {ax} be a decreasing sequence of positive real numbers with
limit 0 such that

br = ar — 2ag41 + agq2 > 0.
Prove that

i k‘bk = daj-
k=1

3:12.6 Let {a;} be a monotonic sequence of real numbers such that > p> | ay
converges. Show that
o0
> k(ak — aki1)
k=1
converges.
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3:12.7 Show that every positive rational number can be obtained as the
sum of a finite number of distinct terms of the harmonic series
1 1 1 1

T+ =4-F+-+=+....
+ttgt it

3:12.8 Let ) ;- z) be a convergent series of positive numbers that is
monotonically nonincreasing, i.e., 1 > z2 > z3 > .... Let P denote
the set of all real numbers which are sums of finitely or infinitely
many terms of the series. Show that P is an interval if and only if

oo
Tn < Z Ty

k=n+1
for every integer n.

3:12.9 Let p1, p2, p3, be a sequence of distinct points which is dense in
the interval (0,1). The points p1, p2, P3, --- , Pn—1 decompose the
interval [0, 1] into n closed subintervals. The point p,, is an interior
point of one of those intervals and decomposes that interval into
two closed subintervals. Let a, and b, be the lengths of those two
intervals. Prove that

Zakbk(ak + bk) =3.

k=1

3:12.10 Let {an} be a sequence of positive number such that the series
> e, aj converges. Show that

o0

(ak)n/("+1)
=1

k
also converges
3:12.11 Let {ax} be a sequence of positive numbers and suppose that
a < azp + G2p+1
for all £ =1,2,3,4,.... Show that

oo
> a
k=1
diverges

3:12.12 If {a;} is a sequence of positive numbers for which Y 7, aj di-
verges, determine all values of p for which

00
ag

(a1 +az + -+ ap)?

k=1
converges.
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3:12.13 Let {a,} be a sequence of real numbers converging to zero. Show
that there must exist a monotonic sequence {b,} such that the series
> ey by, diverges and the series

oo
D> arbi
k=1

is absolutely convergent.



