Chapter 2

SEQUENCES

2.1 Introduction

Let us start our discussion with a method for solving equations that
originated with Newton in 1669. To solve an equation f(z) = 0 the
method proposes the introduction of a new function

f(z)
F(z)=z— .
f'(z)
One then begins with a guess at a solution of f(z) = 0, say z; and
computes zg = F(z1) in the hopes that zs is closer to a solution than
x1 was. The process is repeated so that 3 = F(z2), 4 = F(z3),
x5 = F(z4), ... and so on until the desired accuracy is reached. Pro-

cesses of this type have been known for at least 3500 years although
not in such a modern notation.

We illustrate by finding an approximate value for /2 this way.
We solve the equation f(z) = z? — 2 = 0 by computing the function

flz) _.2:2—2

F(x):w—fl(x) =z oy

and using it to improve our guess. A first (very crude) guess of
z1 = 1 will produce the following list of values for our subsequent
steps in the procedure. We have retained 60 digits in the decimal
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expansions to show how this is working:

z1 = 1.00000000000000000000000000000000000000000000000000000000000
2 = 1.50000000000000000000000000000000000000000000000000000000000
z3 = 1.41666666666666666666666666666666666666666666666666666666667
x4 = 1.41421568627450980392156862745098039215686274509803921568628
x5 = 1.41421356237468991062629557889013491011655962211574404458490
ze = 1.41421356237309504880168962350253024361498192577619742849829
x7 = 1.41421356237309504880168872420969807856967187537723400156101

To compare, here is the value of the true solution v/2, computed in
a different fashion to the same number of digits:

V2 = 1.41421356237309504880168872420969807856967187537694807317668

Note that after only four steps the procedure gives a value differing

from the true value only in the sixth decimal place, and all subse-
quent values remain this close. A convenient way of expressing this
is to write that

|z, — V2| <1072 for all n > 4.

By the seventh step, things are going even better and we can
claim that
|zn — V2| < 1077 for all n > 7.

It is inconceivable that anyone would require any further accu-
racy for any practical considerations. The error after the sixth step
cannot exceed 10™47 which is a very tiny number. Even so, as math-
ematicians we can ask what may seem an entirely impractical sort of
question. Can this accuracy of approximation continue forever? Is it
possible that, if we wait long enough, we can find an approximation
to v/2 with any degree of accuracy?

Expressed more formally, if we are given a positive number ¢
(we call it epsilon to suggest that it measures an error) no matter
how small, can we find a stage in this procedure so that that value
computed and all subsequent values are closer to v/2 than ¢? In
symbols, is there an integer ngy (which will depend on just how small
¢ is) that is large enough so that

|zn — V2| < € for all n > ng?

If this is true then this sequence has a remarkable property. It
is not merely in its first few terms a convenient way of computing
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V2 to some accuracy; the sequence truly represents the number v/2
itself, and it cannot represent any other number. We shall say that
the sequence converges to v/2 and write

lim z, = V2.

n—oo

This is the beginning of the theory of convergence that is central
to analysis. If mathematicians had never considered the ultimate
behavior of such sequences and had contented themselves with using
only the first few terms for practical computations, there would have
been no subject known as analysis. These ideas lead, as you might
imagine, to an ideal world of infinite precision, where sequences are
not merely useful gadgets for getting good computations but are pre-
cise tools in discussing real numbers. From the theory of sequences
and their convergence properties has developed a vast world of beau-
tiful and useful mathematics.

For the student approaching this material for the first time this
is a critical test. All of analysis, both pure and applied, rests on an
understanding of limits. What you learn in this chapter will offer a
foundation for all the rest that you will have to learn later on.

2.2 Sequences

A sequence (of real numbers, of sets, of functions, of anything) is
simply a list. There is a first element in the list, a second element,
a third element and so on continuing in an order forever. In mathe-
matics a finite list is not called a sequence; a sequence must continue
without interruption.

For a more formal definition notice that the natural numbers are
playing a key role here. Every item in the sequence (the list) can be
labelled by its position; label the first item with a “1”, the second
with a “2”, and so on. Seen this way a sequence is merely then a
function mapping the natural numbers IN into some set. We state
this as a definition. Since this chapter is exclusively about sequences
of real numbers the definition considers just this situation.

Definition 2.1 By a sequence of real numbers we mean a function
f:IN—RR.

Thus the sequence is the function. Even so we usually return to
the list idea and write out the sequence f as

f),£(2), @), f(n),- -
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with the ellipsis (i.e., the three dots) indicating that the list is to
continue in this fashion. The function values f(1), f(2), f(3), ...
are called the terms of the sequence. If we need to return to the
formality of functions we do, but try to keep the intuitive notion
of a sequence as an unending list in mind. While computer scien-
tists much prefer the function notation, mathematicians have become
more accustomed to a subscript notation and would rather have the
terms of the sequence above rendered as

fisfo, f3yeeesfryenns

In this chapter we study sequences of real numbers. Later on we
will encounter the same word applied to other lists of objects, e.g.,
sequences of intervals, sequences of sets, sequences of functions. In
all cases the word sequence simply indicates a list of objects.

2.2.1 Sequence Examples

In order to specify some sequence we need to communicate what
every term in the sequence is. For example the sequence of even
integers
2,4,6,8,10,...

could be communicated in precisely that way: “consider the sequence
of even integers”. Perhaps more direct would be to give a formula
for all of the terms in the sequence: “consider the sequence whose
nth term is z, = 2n”. Or we could note that the sequence starts
with 2 and then all the rest of the terms are obtained by adding 2 to
the previous term: “consider the sequence whose first term is 2 and
whose nth term is 2 added to the (n — 1)st term”, i.e.,

Tp =24 Tp_1.
Often an explicit formula is best. Frequently though, a formula
relating the nth term to some preceding term is preferable. Such

formulas are called recursion formulas and would usually be more
efficient if a computer is used to generate the terms.

Arithmetic progressions The simplest types of sequences are
those in which each term is obtained from the preceding by adding
a fixed amount. These are called arithmetic progressions. The se-
quence

c,e+d,c+2d,c+3d,c+4d,...,c+ (n—1)d,...

is the most general arithmetic progression. The number d is called
the common difference.
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X X2 X3 X1 X5 X Xz Xg X9 Xpo

Figure 2.1: An arithmetic progression.

Every arithmetic progression could be given by a formula
Tn=c+ (n—1)d
or a recursion formula
T1=C Ty = Tp_1+d.

Note that the explicit formula is of the form z,, = f(n) where f is
a linear function, f(z) = dz + b for some b. If you plot the points
(n,x,) of an arithmetic progression you will find that they all lie on
a straight line with slope d. (See Figure 2.1.)

Geometric progressions. A variant on the arithmetic progres-
sion is obtained by replacing the addition of a fixed amount by the
multiplication by a fixed amount. These sequences are called geo-
metric progressions. The sequence

c,er,er?er®ert, e, ...

is the most general geometric progression. The number r is called
the common ratio.
Every geometric progression could be given by a formula

Ty = cr™ !

or a recursion formula
1L =¢C Ip =TTp—1.

Note that the explicit formula is of the form z,, = f(n) where f is an
exponential function f(z) = br® for some b. If you plot the points
(n,z,) of a geometric progression you will find that they all lie on the
graph of an exponential function. If ¢ > 0 and the common ratio r
is larger than 1 the terms increase in size becoming extremely large.
If 0 < r <1 the terms decrease in size getting smaller and smaller.
(See Figure 2.2.)
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Xg X7 X6 X5 X4 X3 X2 X1

Figure 2.2: A geometric progression.

Iteration The examples of an arithmetic progression and a geo-
metric progression are special cases of a process called iteration. So
too is the sequence generated by Newton’s method in the introduc-
tion to this chapter.

Let f be some function. Start the sequence {z,} by assigning
some value in the domain of f, say 1 = ¢. All subsequent val-
ues are now obtained by feeding these values through the function
repeatedly:

¢, f(e), F(f(0), F(F(F () FFF(F (D)), - -

As long as all these values remain in the domain of the function f
the process can continue indefinitely and defines a sequence. If f is
a linear function then the result is an arithmetic progression. If f is
an exponential function then the result is a geometric progression.

A recursion formula best expresses this process and would of-
fer the best way of writing a computer program to compute the
sequence:

z1=c¢  Tp = f(Tn-1)

Sequence of partial sums. If a sequence

L1,L2, L3y Lhy---
is given one can construct a new sequence by adding the terms of
the old one:

81 =11
So =11 + X2
s3=x1+T2+ I3
S84 =21 +To+ T3+ 24

and continuing in this way. The process can also be described by a
recursion formula:

$1 =21 Sp=38p—11+Zn.
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The new sequence is called the sequence of partial sums of the old
sequence {z,}. We shall study such sequences in considerable depth
in the next chapter.

For a particular example we could use z,, = 1/n and the sequence
of partial sums could be written as

Sn=141/241/3+---+1/n.

Is there a more attractive and simpler formula for s,,7 The answer
is no.

Example 2.2 These examples, given so far, are of a general nature
and describe many sequences that we will encounter in analysis. But
a sequence is just a list of numbers and need not be defined in any
manner quite so systematic. For example consider the sequence de-
fined by a,, = 1 if n is divisible by three, a,, = n if n is one more than
a multiple of three and a, = —2" if n is two more than a multiple of
three. The first few terms are evidently

1,2,-8,1,5,—64,....
What would be the next three terms? <

Exercises

2:2.1 Let a sequence be defined by the phrase “consider the sequence of
prime numbers 2,3,5,7,11,13...”. Are you sure that this defines a
sequence?

2:2.2 On I.Q. tests one frequently encounters statements such as “what is
the next term in the sequence 3, 1, 4, 1, 5, ... ?”. In terms of our
definition of a sequence is this correct usage? (By the way what do
you suppose the next term in the sequence might be?)

2:2.3 Give two different formulas (for two different sequences) that gener-
ate a sequence whose first four terms are 2, 4, 6, 8.

2:2.4 Give a formula that generates a sequence whose first five terms are
2,4,6, 8, w.

2:2.5 The examples listed here are the first few terms of a sequence that
is either an arithmetic progression or a geometric progression. What
is the next term in the sequence? Give a general formula for the
sequence.

(a) 7,4,1, ...
(b) .1, .01, .001, ...
(c) 2,V2,1, ...
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2:2.6 Consider the sequence defined recursively by
T1=V2 Tp=V2+zp_1.

Find an explicit formula for the nth term.

2:2.7 Consider the sequence defined recursively by
21 =V2 zn=V22,_1.
Find an explicit formula for the nth term.

2:2.8 Consider the sequence defined recursively by

Ty = \/5 Tp =24+ Tp_1.

Show, by induction, that z,, < 2 for all n.

2:2.9 Consider the sequence defined recursively by

1 =2 Ty =2+ Tp_1.

Show, by induction, that z,, < z,41 for all n.

2:2.10 The sequence defined recursively by

fi=1 =1 for2=[fo+ o
is called the Fibonacci sequence. It is possible to find an explicit
formula for this sequence. Give it a try.

2.3 Countable Sets

A sequence of real numbers, formally, is a function whose domain
is the set IN of natural numbers and whose range is a subset of the
reals IR. What sets might be the range of some sequence? To put
it another way, what sets can have their elements arranged into an
unending list? Are there sets that cannot be arranged into a list?

The arrangement of a collection of objects into a list is sometimes
called an enumeration. Thus another way of phrasing this question
is to ask what sets of real numbers can be enumerated?

The set of natural numbers is already arranged into a list in its
natural order. The set of integers (including 0 and the negative
integers) is not usually presented in the form of a list but can easily
be so presented as the following scheme suggests:

0,1,-1,2,-2,3,—3,4,—4,5,—5,6,—6,7,—7, . ...

Example 2.3 The rational numbers can also be listed but this is
quite remarkable, for at first sight no reasonable way of ordering
them into a sequence seems likely to be possible. The usual order of
the rationals in the reals is of little help.
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To find such a scheme define the “rank” of a rational number
m/n in its lowest terms (with n > 1) to be |m| + n. Now begin
making a finite list of all the rational numbers at a various rank;
list these from smallest to largest. At rank 1 we would have only
the rational number 0/1. At rank 2 we would have only the rational
numbers —1/1, 1/1. At rank 3 we would have only the rational
numbers —2/1, —1/2, 1/2, 2/1. Carry on in this fashion through
all the ranks. Now construct the final list by concatenating these
shorter lists in order of the ranks:

0/1,-1/1,1/1,-2/1,-1/2,1/2,2/1,....
The range of this sequence is the set of all rational numbers. |

One’s first impression might be that very few sets would be able
to be the range of a sequence. But having seen in Example 2.3 that
even the set of rational numbers Q that is seemingly so large can be
listed it might then appear that all sets can be so listed. After all can
you conceive of a set that is “larger” than the rationals in some way
that would stop it being listed? The remarkable fact that there are
sets which cannot be arranged to form the elements of some sequence
was proved by G. Cantor (1845-1918) This proof is essentially his
original proof. (Note that this requires some familiarity with infinite
decimal expansions.)

Theorem 2.4 (Cantor) No interval (a,b) of real numbers can be
the range of some sequence.

Proof. It is enough to prove this for the interval (0, 1) since there
is nothing special about it (see Exercise 2:3.1). The proof is a proof
by contradiction. We suppose that the theorem is false and that
there is a sequence {sp} so that every number in the interval (0, 1)
appears at least once in the sequence. We obtain a contradiction by
showing that this cannot be so. We shall use the sequence {s,} to
find a number c in the interval (0, 1) so that s, # c for all n.

Each of the points sq, sg, s3 ... in our sequence is a number
between 0 and 1 and so can be written as a decimal fraction. If we
write this sequence out in decimal notation it might look like

s1 = 0.211%12713%14%15T16 - - -
82 = 0.221722T23T24T25T26 - - -
83 = 0.231232233L34L35L36 - - -
etc. Now it is easy to find a number that is not in the list. Construct

¢ = 0.cicacseqc5¢06 - - -
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by choosing ¢; to be either 5 or 6 whichever is different from z;;. This
number cannot be equal to any of the listed numbers s1, s9, s3 ...
since ¢ and s; differ in the ith position of their decimal expansions.
This gives us our contradiction and so proves the theorem. |

Definition 2.5 (Countable) A set S of real numbers is said to be
countable if there is a sequence of real numbers whose range contains
the set S.

In the language of this definition then we can see that (i) any
finite set is countable (ii) the natural numbers and the integers are
countable (iii) the rational numbers are countable (iv) no interval of
real numbers is countable.

Exercises

2:3.1 Show that, once it is known that the interval (0,1) cannot be ex-
pressed as the range of some sequence, it follows that any interval
(a,b), [a,b), (a,b], or [a,b] has the same property.

2:3.2 Some novices, on reading the proof of Cantor’s theorem say “Why
can’t you just put the number ¢ that you found at the front of the
list.” What is your rejoinder?

2:3.3 A set (any set of objects) is said to be countable if it is either finite
or there is an enumeration (list) of the set. Show that the following
properties hold for arbitrary countable sets:

(a) All subsets of countable sets are countable.
(b) Any union of a pair of countable sets is countable.

(c) All finite sets are countable.

2:3.4 Show that the following property holds for countable sets: if Sy, So,
. is a sequence of countable sets of real numbers then the set S
formed by taking all elements that belong to at least one of the sets

S; is also a countable set.

2:3.5 Show that if a nonempty set is contained in the range of some se-
quence of real numbers then there is a sequence whose range is pre-
cisely that set.

2:3.6 In Cantor’s proof presented in this section we took for granted ma-
terial about infinite decimal expansions. This is entirely justified by
the theory of sequences studied later on. Explain what it is that we
need to prove about infinite decimal expansions to be sure that this
proof is valid.
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2:3.7 Define a relation on the family of subsets of IR as follows. Say
that A ~ B where A and B are subsets of IR if there is a function
f : A — B that is one-one and onto. (If A ~ B we would say that A
and B are “cardinally equivalent”.) Show that this is an equivalence
relation, i.e. show that

(a) A~ A for any set A.
(b) If A~ B then B ~ A.
(c) f A~Band B~ C then A~ C.

[0 2:3.8 Let A and B be finite sets. Under what conditions are these sets
cardinally equivalent (in the language of Exercise 2:3.7)?

] 2:3.9 Show that an infinite set of real numbers that is countable is car-
dinally equivalent (in the language of Exercise 2:3.7) to the set IN.
Give an example of an infinite set that is not cardinally equivalent
to IN.

O 2:3.10 We define a real number to be algebraic if it is a solution of some
polynomial equation

-1
ant” +an_12" "+ - +ax+ag =0

where all the coefficients are integers. Thus v/2 is algebraic because
it is a solution of £2 —2 = 0. The number 7 is not algebraic because
no such polynomial equation can ever be found (although this is hard
to prove). Show that the set of algebraic numbers is countable.

2.4 Convergence

The sequence

155755155565"'
is getting closer and closer to the number 0. We say that this se-
quence converges to 0 or that the limit of the sequence is the number
0. How should this idea be properly defined?

The study of convergent sequences was undertaken and developed
in the eighteenth century without any precise definition. The closest
one might find to a definition in the early literature would have been
something like

A sequence {s,} converges to a number L if the terms of
the sequence get closer and closer to L.
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Apart from being too vague to be used as anything but a rough guide
for the intuition, this is misleading in other respects. What about
the sequence

1,.01,.02,.001,.002, .0001, .0002, .00001, .00002, . ..?

Surely this should converge to 0 but the terms do not get steadily
“closer and closer” but back off a bit at each second step. Also the
sequence

1,.11,.111,.1111,.11111,.111111, . ...

is getting “closer and closer” to .2 but we would not say the sequence
converges to .2. A smaller number (1/9 which it is also getting closer
and closer to) is the correct limit. We want not merely “closer and
closer” but somehow a notion of “arbitrarily close”.

The definition which captured the idea in the best way was given
by Cauchy in the 1820’s. He found a formulation that expressed
the idea of “arbitrarily close” using inequalities. In this way the
notion of limit, involving apparently infinite ideas, is reduced to a
straightforward mathematical statement about inequalities.

Definition 2.6 (Limit of a Sequence) Let {s,} be a sequence of
real numbers. We say that {s,} converges to a number L and write
lim s, =L

n—0o0
or

Sp— L as n— oo
provided that for every number ¢ > 0 there is an integer N so that
lsp, — L| <€
whenever n > N.

A sequence that converges is said to be convergent. A sequence
that fails to converge is said to diverge. We are equally interested in
both convergent and divergent sequences.

Note. In the definition the NV depends on ¢. If € is particularly small then
N might have to be chosen very large. In fact then N is really a function
of £. Sometimes it is best to emphasize this and write N (¢) rather than N.

Note, too, that if an NV is found, then any larger N would also be able to
be used. Thus the definition requires us to find some N but not necessarily
the smallest N that would work.

While the definition does not say this, the real force of the definition is
that the V can be determined no matter how small a number € is chosen.
If € is given as rather large there may be no trouble finding the IV value. If
you find an N that works for € = .1 that same N would work for all larger
values of ¢.
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Example 2.7 Let us use the definition to prove that

n? 1

lim —— = —.

n—oo2n?+1 2
It is by no means clear from the definition how to obtain the number
L= % Indeed the definition is not intended as a method of finding
limits. It assigns a precise meaning to the statement about the limit
but offers no way of computing that limit. Fortunately most of us
remember some calculus devices that can be used to first obtain the
limit before attempting a proof of its validity.

I n? I 1 1
n00 22 + 1m0 24 1/n? | limpseo(2 + 1/n2)
1 1
2+ lim,_oo(1/n2) 2
Indeed this would be a proof that the limit is 1/2 provided that we
can prove the validity of each of these steps. Later on we will prove
this and so can avoid the €, N arguments that we now use.
Let any positive € be given. We need to find a number N (or
N(e) if you prefer) so that every term in the sequence on and after
the Nth term is closer to 1/2 than e, i.e., so that

n? 1 <
-l <e
2n2+1 2
forn=N,n=N+1,n= N+2,.... It is easiest to work backwards

and discover just how large n should be for this. A little work shows
that this will happen if
1

2+ 1) °

or 1
dn? +2> =,
£

The smallest n for which this statement is true could be our N. Thus
we could use any integer N with

1/1
N?2>Z(=2=2]).

There is no obligation to find the smallest N that works and so,
perhaps, the most convenient one here might be a bit larger, say
take any integer N larger than

1
N> —.
2./¢
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The real lesson of the example, perhaps, is that one wishes never
to have to use the definition to check any limit computation. The def-
inition offers a rigorous way to develop a theory of limits but a very
impractical method of computation of limits and a clumsy method
of verification. Only very rarely does one have to do a computation
of this sort to verify a limit.

Uniqueness of Sequence Limits Let us take the first step in
developing a theory of limits. This is to ensure that our definition
has defined limit unambiguously. Is it possible that the definition
allows for a sequence to converge to two different limits? If we have
established that s, — L is it possible that s,, — L for a different
number L7

Theorem 2.8 (Uniqueness of Limits) Suppose that

lim s, = L1 and lim,_o0Sn = Lo
n—00

are both true. Then L1 = Lo.
Proof. Let € be any positive number. Then, by definition, we
must be able to find a number N7 so that
lspn — L1| < €
whenever n > Ni. We must also be able to find a number N5 so that
|sp — Lao| < €
whenever n > Ny. Take m to be the maximum of N; and Ns. Then
both assertions
|sm — 1| < €
and
|sm — Lo| < €
are true.
This allows us to conclude that
|L1 — Lo| < |Li — S| + |sm — Lo| < 2¢
so that
| Ly — Lo| < 2¢.

But € can be any positive number whatsoever. This could only be
true if L1 = Ly which is what we wished to show. [ |
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Exercises

2:4.1 Give a precise ¢, N argument to prove that
lim — =0.
n—oo N
2:4.2 Give a precise €, N argument to prove that
2n+3
m

exists.

2:4.3 Show that a sequence {s,} converges to a limit L if and only if the
sequence {s, — L} converges to zero.

2:4.4 Show that a sequence {s,} converges to a limit L if and only if the
sequence {—s,} converges to —L.

2:4.5 Show that Definition 2.6 is equivalent to the following slight modi-
fication:

We write lim,,_, o, s, = L provided that for every positive
integer m there is a real number N so that |s,, — L| < 1/m
whenever n > N.

2:4.6 Compute the limit

1+2+43+--+n

lim 5

n—oo n

and verify it by the definition.
2:4.7 Compute the limit

124224324407
lim 3 .
n—o0 n

2:4.8 Suppose that {s,} is a convergent sequence. Prove that lim,_, 2s,
exists.

2:4.9 Prove that lim,, .o, n does not exist.
2:4.10 Prove that lim,_,(—1)" does not exist.

2:4.11 The sequence s, = (—1)" does not converge. For what values of
€ > 0 is it nonetheless true that there is an integer N so that

lsn — 1] <&

whenever n > N. For what values of € > 0 is it nonetheless true that
there is an integer N so that

|sn — 0| <&
whenever n > N.

2:4.12 Let {s,} be a sequence that assumes only integer values. Under
what conditions can such a sequence converge?
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2:4.13 Let {s,} be a sequence and obtain a new sequence (sometimes
called the “tail” of the sequence) by writing
th =Smyn forn=1,23,...

where M is some integer (perhaps large). Show that {s,} converges
if and only if {¢,} converges.

2:4.14 Show that the the statement “{s,} converges to L” is false if and
only if there is a positive number ¢ so that the inequality
|[sn —L| > ¢
holds for infinitely many values of n.

2:4.15 If {s,} be a sequence of positive numbers converging to 0 show
that {\/sn} also converges to zero.

2:4.16 If {s,} be a sequence of positive numbers converging to a positive
number I show that {,/5,} converges to v/L.

2.5 Divergence

A sequence that fails to converge is said to diverge. Some sequences
diverge in a particularly interesting way and it is worthwhile having
a language for this.

The sequence s, = n? diverges because the terms get larger and
larger. One is tempted to write

n? =00 or lim n?= co.
n—od
This conflicts with our definition of limit and so needs its own defini-
tion. We do not say that this sequence “converges to co” but rather

that it “diverges to oo”.
Definition 2.9 (Divergence to o) Let {s,} be a sequence of real
numbers. We say that {s,} diverges to co and write
lim s, = c©
n—oo
or

Sp —> 00 as n — 00
provided that for every number M there is an integer N so that
Sn>M
whenever n > N.
Note. The definition does not announce this, but the force of the definition

is that the choice of N is possible no matter how large M is chosen. There
may be no difficulty in finding an N if the M given is not very big.
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Example 2.10 Let us prove that
n?+1
n+1
using the definition. If M is any positive number we need to find

some point in the sequence after which all terms exceed M. Thus
we need to consider the inequality

— 00

2

n°+1 Y

n+1 —
After some arithmetic we see that this is equivalent to

1

n + __n > M.
n+1l n+1
Since
" <1
n+1

we see that, as long as n > M + 1 this will be true. Thus take any
integer N > M + 1 and it will be true that
2
n”+1 > M
n+1 —
for all n > N. (Any larger values of N would work to0.) <

Exercises
2:5.1 Formulate the definition of a sequence diverging to —oo.

2:5.2 Show, using the definition, that

lim n? = co.
n—oo

2:5.3 Show, using the definition, that
. nP+1
lim — =
n—oo n? + 1

0.

2:5.4 Prove that if s,, = oo then —s, — —o0.
2:5.5 Prove that if s,, — oo then (s,)? — oo also.

2:5.6 Prove that if z,, — oo then the sequence
mn
Ty +1
is convergent. Is the converse true?

2:5.7 Suppose that a sequence {s,,} of positive numbers satisfies limy,_, o $p =
0. Show that lim,_,« 1/s, = co. Is the converse true?
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2:5.8 Suppose that a sequence {s,} of positive numbers satisfies the con-
dition
Sp+1 > QSp
for all n where a > 1. Show that s, = 0.

2:5.9 The sequence s, = (—1)" does not diverge to co. For what values
of M is it nonetheless true that there is an integer N so that

Sp > M
whenever n > N.
2:5.10 Show that the sequence
7P +oaanP +aonP 2+ ... ap

diverges to oo where here p is a positive integer and o4, as,...,
are real numbers (positive or negative).

2.6 Boundedness Properties of Limits

A sequence is said to be bounded if its range is a bounded set. Thus
a sequence {sp} is bounded if there is a number M so that every
term in the sequence satisfies

|sn| < M.

For such a sequence, every term belongs to the interval [— M, M].
It is fairly evident that a sequence that is not bounded could not
converge. This is important enough to state and prove as a theorem.

Theorem 2.11 FEwvery convergent sequence is bounded.

Proof. Suppose that s,, — L. Then for every number € > 0 there
is an integer N so that

|sn — L| < ¢
whenever n > N. In particular we could take just one value of ¢,
say ¢ = 1, and find a number N so that

lsp, — L| < 1
whenever n > N. From this we see that

|sn| =|sn — L+ L| <|sp, — L|+|L| < |L|+1
for all n > N. This number |L|+ 1 would be an upper bound for all
the numbers |s,| except that we have no indication of the values for
‘31|, |32|a SRR |3N—1|'
Thus if we write
M = max{|s1|,|sal,---,|sn-1],|L| + 1}
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we must have
|sn| < M

for every value of n. This is our upper bound and the theorem is
proved. |

As a consequence of this theorem we can conclude that an un-
bounded sequence must diverge. Thus, even though it is a rather
crude test, we can prove the divergence of a sequence if we are able
somehow to show that it is unbounded. The next example illustrates
this technique.

Example 2.12 We shall show that the sequence

_1 1 1 1 1
Sp =1+ 2 + 3 + 1 + ”
diverges. The easiest proof of this is to show that it is unbounded
and hence, by Theorem 2.11, could not converge.
We watch only at the steps 1, 2, 4, 8, ... and make a rough lower
estimate of s1, s9, S4, Sg, ... in order to show that there can be no

bound on the sequence. After a bit of arithmetic we see that
S§1 = 1

1
32:1+§

1 1 1 1 1
84:1+§+ g‘f—z >1+§+2 1
I Y (I N P

®=LToT 37T, 56 78

1 1 1
>1+-4+21- 41 -
>1+5+2(5) +4(5)

and, in general, that
Son Z ]_ + ’I’L/Z

for all m = 0, 1, 2, ... . Thus the sequence is not bounded and so
must diverge. <

Example 2.13 As a variant of the sequence of the preceding exam-
ple consider the sequence

. =1 1 1 1 1
n=lt gttt
where p is any positive real number. The case p = 1 we have just

found diverges.
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For p < 1 the sequence is larger than it is for p = 1 and so
the case is even stronger for divergence. For p > 1 the sequence
is smaller and we cannot see immediately whether it is bounded
or unbounded; in fact, with some effort we can show that such a
sequence is bounded. What can we conclude? Nothing yet. An
unbounded sequence diverges. A bounded sequence may converge or
diverge. |

Exercises
2:6.1 Which statements are true?

(a) If{sp}is unbounded then either lim, ,~ sn, = oo or else lim,_, o sp, =
—00.

b

—~

) If {s,} is unbounded then lim, , |$n| =
c) If {sp} and {t,} are both bounded then so is {s, + t,}.
d) If {s,} and {¢,} are both unbounded then so is {s, + ¢, }.
)
)
)

~ o~

e) If {s,} and {t,} are both bounded then so is {spt}.
f) If {s,} and {t,} are both unbounded then so is {s,t,}.
g) If {s,} is bounded then so is {1/sp}.

(h) If {s,} is unbounded then {1/s,} is bounded.

TN~

2:6.2 If {s,} is bounded prove that {s,/n} is convergent.
2:6.3 State the converse of Theorem 2.11. Is it true?
2:6.4 State the contrapositive of Theorem 2.11. Is it true?

2:6.5 Suppose that {s,} is a sequence of positive numbers converging to a
positive limit. Show that there is a positive number ¢ so that s,, > ¢
for all n.

2:6.6 As a computer experiment compute the values of the sequence
el byl
S, = — — — P —
" 2 3 4 n

for large values of n. Is there any indication in the numbers that you
see that this sequence fails to converge or must be unbounded?

2.7 Algebra of Limits

Sequences can be combined by the usual arithmetic operations (ad-
dition, subtraction, multiplication and division). Indeed most se-
quences we are likely to encounter can be seen to be composed of
simpler sequences combined together in this way.
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In Example 2.7 we suggested that the computations
lim LQ = lim L = 1 =
ns02n?4+1 noo02+4+1/n? lim,00(2 + 1/n2)
1 1
2+ lim, oo 1/n2 2
could be justified. Note how this sequence has been obtained from
simpler ones by ordinary processes of arithmetic. To justify such a
method we need to investigate how the limit operation is influenced
by algebraic operations.
Suppose that

$p— S and t, — T.
Then one would expect
Csp, > CS
Sp+t, > S+T
Sptn — ST
and
Sp/tn — S/T.

Each of these statements must be justified, however, solely on the
basis of the definition of convergence, not on intuitive feelings that
this should be the case. Thus we need to develop what could be
called the “algebra of limits”.

Theorem 2.14 (Multiples of Limits) Suppose that {s,} is a con-
vergent sequence and C a real number. Then

lim Cs, =C ( lim sn) .

n—o0 n—oQ

Proof. Let S =lim, ., s,. In order to prove that lim,_,,, Cs, =
C'S we need to prove that no matter what positive number ¢ is given
we can find an integer N so that

|Cs, —CS|<e
if n > N. Note that
|Csp —CS|=|C||sn — S|

by properties of absolute values. This gives us our clue.
Suppose first that C # 0 and let € > 0. Choose N so that

lsp — S| < €/|C|
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if n > N. Then if n > N we must have
|Csn — CS| = [Cl]sn — S| <[C|(/|C]) = &.
This is precisely the statement that
lim Cs, =CS
n—oo
and the theorem is proved in the case C' # 0. The case C = 0 is
obvious. (Now we should probably delete our first paragraph since

it does not contribute to the proof; it only serves to motivate us in
finding the correct proof.) [ |

Theorem 2.15 (Sums and Differences of Limits) Suppose that
{sn} and {t,} are convergent sequences. Then

lim (s, +t,) = lim s, + lim ¢,

n—oo n—oo n—oo
and

lim (s, —t,) = lim s, — lim t,.
n—oo n—,oo n—,oo

Proof. Let S =lim, s s, and T = lim,,_, t,,. In order to prove
that lim, o (s, +t,) = S+T we need to prove that no matter what
positive number ¢ is given we can find an integer N so that

[(sn +1tn) — (S+T)| <e
if n > N. Note that
|(sp +tn) —(S+T)| <|sp— S|+ |tn =T
by the triangle inequality. Thus we can make this expression smaller
than € by making each of the two expressions on the right smaller

than €/2. This provides the method.
Suppose that € > 0. Choose N7 so that

|sn — S| < e/2
if n > N; and also choose Ny so that
[tn, —T| < g/2

if n > Ny. Then if n is greater than both N; and Ny both of these
two inequalities will be true. Set N = max{N;, N2} and note that
if n > N we must have

[(sn+tn) = (SH+T)| < |sn—=S|+|tn —=T| <e/2+¢e/2 =¢.
This is precisely the statement that
(Sp+1tn)=S+T

lim
n—oo
and the first statement of the theorem is proved. The second state-
ment is similar and is left as an exercise. (Once again, for a more

formal presentation, we would delete the first paragraph.) |
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Theorem 2.16 (Products of Limits) Suppose that {s,} and {t,}
are convergent sequences. Then

lim (spt,) = (lim sn) <1im tn) .
n—00 n—00 n—00
Proof. Let S =Ilim,_,s s, and T = lim,,_,, t,,. In order to prove

that lim, . (sptn,) = ST we need to prove that no matter what
positive number ¢ is given we can find an integer N so that

|sptn — ST| < €

if n > N. It takes some experimentation with different ways of
writing this to find the most useful version. Here is an inequality
that offers the best approach:

|sptn — ST| = |sp(tn —T) + spT — ST|
<|sp|ltn =T|+|T||5n — S| .

We can control the size of |s, — S| and |t, — T'|, T is constant, and
|sn| cannot be too big. To control the size of |s,| we need to recall
that convergent sequences are bounded (Theorem 2.11) and get a
bound from there. With these preliminaries explained the rest of
the proof should seem less mysterious. (Now this paragraph can be
deleted for a more formal presentation.)

Suppose that ¢ > 0. Since {s,} converges it is bounded and
hence, by Theorem 2.11, there is a positive number M so that |s,| <
M for all n. Choose N7 so that

€
Sl < —
Isn = 81 < o771
if n > Nj. [We did not use ¢/(2T') since there is a possibility that
T = 0.] Also choose N so that
€
th —T| < ——
It =71 < 537

if n > Ny. Set N = max{Nj, No} and note that if n > N we must
have

|sntn — ST| < |spl|ltn —T| + |T||sn — S|

€ €
< — —_ .
<M (557) +17] (2|T| n 1) <€

This is precisely the statement that
lim spt, = ST
n—oo

and the theorem is proved. ||
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Theorem 2.17 (Quotients of Limits) Suppose that {s,} and {t,}
are convergent sequences. Suppose further that t, # 0 for all n and
that the limit

lim ¢, # 0.
n—r0oQ

. < Sn ) limy, ;0 Sn,
lim — |\ =7.

n—oo \ iy, limy, 500 By

Proof. Rather than prove the theorem at once as it stands let us
prove just a special case of the theorem, namely that

. 1 1
Im ([ —)=—""——.
n—oo \ ip limy, 00 tp

Let T = limy, oo t;,. We need to show that no matter what positive
number ¢ is given we can find an integer N so that

Then

l - l‘ <eg
t, T
if n > N. To work with this inequality requires us to consider
1 L|  |tn =T
ta T| |tal|T]"

It is only the |¢,| in the denominator that offers any trouble since if it
is too small we cannot control the size of the fraction. This explains
the first step in the proof that we now give, which otherwise might
have seemed very strange.

Suppose that € > 0. Choose N7 so that

tn = T'| < |T/2
if n > N; and also choose N, so that
tn — T| < €|T|*/2
if n > Ny. From the first inequality we see that
IT| = [tn] <|T = tn| < [T]/2
and so
|tn| > |T'|/2

if n > Nj. Set N = max{Ni, N2} and note that if n > N we must
have

1 1] |ta—T|
tn T‘ ~ [t IT
elT|*/2 _

|T|?/2
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This is precisely the statement that lim, o, (1/t,) = 1/T.
We now complete the proof of the theorem by applying the prod-
uct theorem along with what we have just proved to obtain

. Sn ) . 1 lim,, o0 Sp
Iim { — ) = (hm sn) Iim — )= —"——
n—oo \ t, n—00 n—oo ty, lim,, oty

as required. [ |

Exercises

2:7.1 By imitating the proof given for the first part of Theorem 2.15 show
that

lim (s, —t,) = lim s, — lim #%,.
n—o0 n—0o0 n—oo

2:7.2 Show that
. 2 . 2
lim (s,)" = (hm sn)

n—o0 n—oo

using the theorem on products and also directly from the definition
of limit.

2:7.3 Explain which theorems are needed to justify the computation of

the limit
2

lim ———
n—ooo 2n2 + 1
that introduced this section,

2:7.4 Which statements are true?

(a) If {s,} and {t,} are both divergent then so is {sp + 5}
) If {sn} and {t,} are both divergent then so is {s,t,}.
(c) If {s,} and {s, + t,} are both convergent then so is {t,}.
(d) If {s,} and {s,t,} are both convergent then so is {t,}.
) Is {sn} is convergent so too is {1/s,}.
) If {s,} is convergent so too is {(s,)%}.

(g) If {(sn)?} is convergent so too is {s,}.

2:7.5 Note that there are extra hypotheses in the quotient theorem (The-

orem 2.17) that were not in the product theorem (Theorem 2.16).
Explain why both of these hypotheses are needed.

2:7.6 Here is a flawed proof of Theorem 2.16. Find the flaw:

“Suppose that € > 0. Choose N; so that
€

Isn =51 < g3
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if n > Ny and also choose N5 so that
€
th —T| < ———
[tn < 2|s,| +1

if n > Ny. If n > N = max{N;, N} then

|sntn — ST| < |sn|[tn = T| + |T||sn — S|

£ g
< _ T ———— .
< on| (2|sn| n 1) d (2|T| +1> <€

Well that works!”

2:7.7 Why are Theorems 2.15 and 2.16 no help in dealing with the limits
(Vn+1—+/n)

lim
n—oo
and

lim v/n (Vn+1-+/n)?

n—oo

What else can you do?

2:7.8 In calculus courses one learns that a function f : IR — R is contin-
uous at y if for every € > 0 there is a § > 0 so that |f(z) — f(y)| < e
for all |z —y| < &. Show that if f is continuous at y and s, — y then
f(sn) — f(y). Use this to prove that lim,, oo (5,)? = (limy,— 0 85 )2

2.8 Order Properties of Limits

In the preceding section we discussed the algebraic structure of lim-
its. It is a natural mathematical question to ask how the algebraic
operations are preserved under limits. As it happens these natural
mathematical questions usually are very important in applications.
We have seen that the algebraic properties of limits can be used to
great advantage in computations of limits.

There is another aspect of structure of the real number system
that plays an equally important role as the algebraic structure and
that is the order structure. Does the limit operation preserve that or-
der structure the same way that it preserves the algebraic structure?
For example, if

Sp < t,

for all n can we conclude that
lim s, < lim ¢,?
n—oQ n—oQ
In this section we solve this problem and several others related to
the order structure. These results, too, will prove to be most useful
in handling limits.
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Theorem 2.18 Suppose that {s,} and {t,} are convergent sequences
and that

Sp <ty

for all n. Then
lim s, < lim t,.

n—oo n—oo

Proof. Let S =lim, ,y S, and T = lim,_, t, and suppose that
e > 0. Choose N; so that

lsn — S| <¢€/2
if n > Nj and also choose N3 so that
|th — T < e/2

if n > Ny. Set N = max{N1, N2} and note that if n > N we must
have
0<ty—s, =T -8+, —T)+(S—sp)<T—S+¢/2+¢/2.
This shows that
—e<T-5.
This statement is true for any positive number . It would be false

if T'— S is negative and hence T' — § is positive or zero, i.e., T' > S
as required. |

Note. There is a trap here that many students have fallen into. Since the
condition s, < t, implies

lim s, < lim ¢,
n—oo n—oo

would it not follow “similarly” that the condition s, < t, implies

lim s, < lim ¢,7
n—oo n—oo

Be very careful with this. It is false.

Corollary 2.19 Suppose that {s,} is a convergent sequence and
that

a<ls, <p
for alln. Then
a< lim s, <.

n—oo
Proof. Consider that the assumption here can be read as a,, <

sp, < Bn where {a,} and {f,} are constant sequences. Now apply
the theorem. [
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Note. Again, don’t forget the trap. The condition a < s, < 8 for all n
implies that
a< lim s, <g.

n—oo

It would not imply that
a< lim s, < g.
n—o0

The Squeeze Theorem The next theorem is another very useful
variant on these themes. Here an unknown sequence is sandwiched
between two convergent sequences, allowing us to conclude that that
sequence converges. This theorem is often taught as “the squeeze
theorem” which seems a convenient label.

Theorem 2.20 (Squeeze Theorem) Suppose that {sp} and {t,}
are convergent sequences, that

lim s, = lim ¢,
n—00 n—00

and that
Sp <oy <ty

for all n. Then {x,} is also convergent and

lim z, = lim s, = lim {,.

n—oo n—r00 n—r00
Proof. Let L be the limit of the two sequences. Choose N; so that
lsn — L| <€
if n > N; and also choose N3 so that
|t, — L| < ¢

if n > Ny. Set N = max{Ny, No}. Note that
sp—L<z,—L<t,—L
for all n and so
—e<sp—L<zx,—L<t,—L<e
if n > N. From this we see that
—e<zp—L<e
or, to put it in a more familiar form,
|z, — L| <€

proving the statement of the theorem. |
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Example 2.21 Let 8 be some real number and consider the com-
putation of
. sinnf

lim

n—0o0 n
While this might seem hopeless at first sight since the values of
sinnf are quite unpredictable, we recall that none of these values
lies outside the interval [—1,1]. Hence
1 sinnfd 1

< —

n- n ~n
The two outer sequences converge to the same value 0 and so the
inside sequence (the “squeezed” one) must converge to 0 as well.

<

Absolute Values A further theorem on the theme of order struc-
ture is often needed. The absolute value, we recall, is defined directly
in terms of the order structure. Is absolute value preserved by the
limit operation?

Theorem 2.22 (Limits of Absolute Values) Suppose that {sy}
is a convergent sequence. Then the sequence {|sn|} is also a conver-
gent sequence and

lim |sp| =

lim s,|.
n—oo n

— 00

Proof. Let S = lim,_, s, and suppose that € > 0. Choose N so
that
lsp, — S| <e€
if n > N. Observe that, because of the triangle inequality, this
means that
[lsn| = [SI] < [sn — S| <

for all n > N. By definition

lim |s,| =|S]

n—oo

as required. |

Maxima and Minima Since maxima and minima can be ex-
pressed in terms of absolute values there is a corollary that is some-
times useful.

Corollary 2.23 (Max/Min of Limits) Suppose that {s,} and {t,}
are convergent sequences. Then the sequences

{max{sp,tn}}
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and

{min{sp,tn}}

are also convergent and

lim max{sp,t,} = max{ lim s, lim ¢,}
n—oo n—oo n—oo

and
lim min{s,,t,} = min{ lim s,, lim ¢,}.
n—o0 n—oo n—oQ
Proof. The first of the these follows from the identity
|sn + tn| + |$n — tnl
2 2

and the theorem on limits of sums and the theorem on limits of
absolute values. In the same way the second assertion follows from

max{sp,tn} =

: Isn +tn]  |$n — tol
min{s,, tp} = n2 = — n2 =
| |
Exercises
2:8.1 Show that the condition
Sp < tpn

does not imply that

lim s, < lim t,.
n—oo n—o0

(If the proof of Theorem 2.18 were modified in an attempt to prove
this false statement where would the modifications fail?)

2:8.2 If {s,} is a sequence all of whose values lie inside an interval [a, b]
prove that {s,/n} is convergent.

2:8.3 Suppose that s, < t, for all n and that s, - oo. What can you
conclude?

2:8.4 Suppose that

.8
lim 22 >0
n—oo N

Show that s,, — oo.

2:8.5 Suppose that {s,} and {¢,} are sequences of positive numbers, that
lim 2" — a
n—oo 1y,

and that s, — oco. What can you conclude?
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2:8.6 Suppose that {s,} and {t,} are sequences of positive numbers, that
lim 2* = o
n—oo ty,

and that t,, = co. What can you conclude?
2:8.7 Suppose that {s,} and {t,} are sequences of positive numbers, that
. 8n
lim — =00
n—oo ty,

and that {s,} is bounded. What can you conclude?

2:8.8 Let {s,} be a sequence of positive numbers. Show that the condition

. Sn+1
lim +
n—oo Sn

<1

implies that s, — 0.

2:8.9 Let {s,} be a sequence of positive numbers. Show that the condition

S
n+1 >1

lim
n—oo  Sp

implies that s, — oco.

2.9 Monotone Convergence Criterion

In many applications of sequence theory we find that the sequences
that arise are going in one direction: the terms steadily get larger or
steadily get smaller. The analysis of such sequences is much easier
than for general sequences.

Definition 2.24 (Increasing) We say that a sequence {s,} is in-
creasing if
§1 <82 <83 < <8 < 8pgp1< ...,
Definition 2.25 (Decreasing) We say that a sequence {s,} is de-
creasing if
§1 >89 >83>+>8;,>8p41 > .-
Often we encounter sequences that “increase” except perhaps

occasionally successive values are equal rather than strictly larger.
The following language is usually used in this case.

Definition 2.26 (Nondecreasing) We say that a sequence {s,}
is nondecreasing if
51<82<83< - <8, <81 < -ne

Definition 2.27 (Nonincreasing) We say that a sequence {s,} is
nonincreasing if
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Thus every increasing sequence is also nondecreasing but not
conversely. A sequence that has any one of these four properties
(increasing, decreasing, nondecreasing, or nonincreasing) is said to
be monotonic. Monotonic sequences are often easier to deal with
than sequences which can go both up and down.

Note. In some texts you will find that a nondecreasing sequence is said to
be increasing and an increasing sequence is said to be strictly increasing.
The way in which we intend these terms should be clear and intuitive. If
your monthly salary occasionally rises but sometimes stays the same you
would not likely say that it is increasing. You might, however, say “at least
it never decreases”, i.e., it is nondecreasing.

The convergence issue for a monotonic sequence is particularly
straightforward. We can imagine that an increasing sequence could
increase up to some limit, or we could imagine that it could increase
indefinitely and diverge to +o0o. It is impossible to imagine a third
possibility. We express this as a theorem which will become our
primary theoretical tool in investigating convergence of sequences.

Theorem 2.28 (Monotone Convergence Theorem) Let {s,} be
a monotonic sequence. Then {sp} is convergent if and only if {s,}
is bounded. More specifically

1. If {sp} is nondecreasing then either {s,} is bounded and con-
verges to sup{s,} or else {s,} is unbounded and s, — oc.

2. If {sn} is nonincreasing then either {s,} is bounded and con-
verges to inf{s,} or else {sp} is unbounded and s, — —oc.

Proof. If the sequence is unbounded then it diverges. This is true
for any sequence, not merely monotonic sequences.

Thus the proof is complete if we can show that for any bounded
monotonic sequence {s;} the limit is sup{s, } in case the sequence is
nondecreasing or it is inf{s,} in case the sequence is nonincreasing.
Let us prove the first of these cases.

Let {s,} be assumed to be nondecreasing and bounded, and let
L = sup{sp}. Then s, < L for all n and if 8 < L there must be
some term s,, say, with s, > 0. Let ¢ > 0. We know that there is
an m so that

Sp>8m >L—¢

for all n > m. But we already know that every term s, < L. Putting
these together we have that

L—e<s,<L<L+e¢
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or
lsn — L| <€
for all n > m. By definition then s,, — L as required. |

How would we normally apply this theorem? Suppose a sequence
{sn} were given that we recognize as increasing (or maybe just non-
decreasing). Then to establish that {s,} converges we need only
show that the sequence is bounded above, i.e., we need to find just
one number M with

Sp < M

for all n. Any crude upper estimate would verify convergence.

Example 2.29 Let us show that the sequence s, = 1/4/n con-
verges. This sequence is evidently decreasing. Can we find a lower
bound? Yes, all of the terms are positive so that 0 is a lower bound.
Consequently the sequence must converge. If we wish to show that
1

lim — =

SV
we need to do more. But to conclude convergence we needed only
to make a crude estimate on how low the terms might go. <

Example 2.30 Let us examine the sequence
1 1 1 1 1
Sp = +2+3+4+---+n.
This sequence is evidently increasing. Can we find an upper bound?
If we can then the series does converge. If we cannot then the series
diverges. We have already (earlier) checked this sequence. It is

unbounded and so lim,, 4, $;, = 0. <

Example 2.31 Let us examine the sequence

V2, 24+ V2, {2+ 2+ V2, \/2—I—\/2—|—\/2+\/§,...

Handling such a sequence directly by the limit definition seems quite
impossible. This sequence can be defined recursively by

T = V2 Tp =2+ Tp_1.

The computation of a few terms suggests that the sequence is in-
creasing and so should be accessible by the methods of this section.

We prove this by induction. That z; < x5 is just an easy compu-
tation (that the reader should do). Let us suppose that z, 1 < z,
for some n and show that it must follow that z, < xn4+1. But

xn:\/2+xn—1<\/2+$n:$n+1
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where the middle step is the induction hypothesis (i.e., that z,, 1 <
Zn). It follows by induction that the sequence is increasing.

Now we show inductively that the sequence is bounded above.
Any crude upper bound will suffice. It is clear that z; < 10. If
Tp—1 < 10 then

Tp=+/2+Tp_1 <V2+10<10
and so it follows, again by induction, that all terms of the sequence
are smaller than 10. We conclude from the monotone convergence
theorem that this sequence is convergent.

But to what? (Certainly it does not converges to 10 since that
estimate was extremely crude.) That is not so easy to sort out it
seems. But perhaps it is, since we know that the sequence converges
to something, say L. In the equation

()2 =2+ zp_1,
obtained by squaring the recursion formula given to us, we can take
limits as n — oo. Since z,, — L so too does z,_1 — L and (z,)% —
L?. Hence
=241
The only possibilities for L in this quadratic equation are L = —1
and L = 2. We know the limit L exists and we know that it is either

—1 or 2. We can clearly rule out —1 as none of the numbers in our
sequence were negative. Hence z, — 2. |

Exercises

2:9.1 Define a sequence {s,} recursively by setting s; = o and
(Sn—l)2 + ﬂ
Sp = ———
23n71
where a, 8 > 0.
(a) Show that forn=1,2,3, ...
(sn — VDB)?
25y,

(b) Show that s, > /3 for all n = 2, 3, 4, ... unless a = /8.
What happens if a = /57
(c) Show that s3 > s3 > s4 > ...8, > ... except in the case

a=+/pB..

(d) Does this sequence converge? To what?

= Sp41 — B

(e) What is the relation of this sequence to the one introduced in
Section 2.1 as Newton’s method?
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2:9.2 Define a sequence {t,} recursively by setting t; = 1 and

tn =/t 1 + 1.

Does this sequence converge? To what?

2:9.3 Consider the sequence

s1=1 and s, = 55—

@
3

|
—-

We argue that if s,, = L then

L:ﬁ

and so L? = 2 or L = /2. Our conclusion is that lim,_,e $p = ¥/2.
Do you have any criticisms of this argument?

2:9.4 Does the sequence

converge?

2:9.5 Does the sequence

converge?

2:9.6 Several nineteenth century mathematicians used, without proof, a
principle in their proofs that has come to be known as the nested
interval property:

Given a sequence of closed intervals
[al,bl] D [GQ,bQ] D [ag,bg] D...

arranged so that each interval is a subinterval of the one
preceding it and so that the lengths of the intervals shrink
to zero then there is exactly one point that belongs to every
interval of the sequence.

Prove this statement. Would it be true for a descending sequence of
open intervals

(al,bl) D) (Clz,bz) D) (ag,bg) . ?
2.10 Examples of Limits
The theory of sequence limits has now been developed far enough

that we may investigate some interesting limits. Each of the limits
in this section has some cultural interest. Most students would be
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expected to know and recognize these limits as they arise quite rou-
tinely. For us they are also an opportunity to show off our methods.
Mostly we need to establish inequalities and use some of our theory.
We have not needed to use an ¢, N argument since we now have
more subtle and powerful tools at hand.

Example 2.32 (Geometric Progressions) Let r be a real num-
ber. What is the limiting behavior of the sequence

2,3 .4 n
Lrro,ro,r™ oo ...

forming a geometric progression? If r > 1 then it is not hard to show
that r™ — oo. If r < —1 the sequence certainly diverges. If r = 1
this is just a constant sequence.
The interesting case is:

lim 7" =0 if-1<r<l1.

n—oQ
To prove this we shall use an easy inequality. Let £ > 0 and n
an integer. Then using the binomial theorem (or induction if you
prefer) we can show that

(1+2)" > nx.
Case (i): Let 0 < r < 1. Then
1
"Tits
(where z =1 —1/r > 0) and so
0<r":71 <i—>0
(1+z)»  nx

as n — 0o. By the squeeze theorem we see that ™ — 0 as required.
Case (ii): If =1 <7 < 0 then r = —t for 0 < ¢ < 1. Thus

- <" <t
By case (i) we know that ¢ — 0. By the squeeze theorem we see

that ™ — 0 again as required. |

Example 2.33 (Roots) An interesting and often useful limit is

lim {/n = 1.

n—oQ

To show this we once again derive an inequality from the binomial
theorem: if n > 2 and z > 0 then

(14 2)" > n(n—1)z%/2.
For n > 2 write
Yn=1+z,
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(where z,, = ¢/n—1>0) and so
n=(1+z,)">n(n—1)z2/2
or
0<a<—2 50
" Tn—1
as n — o0o. By the squeeze theorem we see that z, — 0 and it
follows that {/n — 1 as required.
As a special case of this example note that

Vo =1
as n — oo for any positive constant C'. This is true because if C > 1
then
1< VYC < /n
for large enough n. By the squeeze theorem this shows that ¥/C — 1.
If, however, 0 < C' < 1 then
1

by the first case since 1/C > 1. <

Example 2.34 (Sums of Geometric Progressions) For all val-
ues of z in the interval (—1,1) the limit

1

lim (1+z+2”+2°+---+2") = i

n—0oo l1—2x
While, at first, a surprising result this is quite evident once one
checks the identity

l-2)(l+z+2®+2°+-- +3")=1—2""

which just requires a straightforward multiplication. Thus
n+1 1

l1—2x

lim (1—|—x—|—m2—|—:z;3—|—---+a:"):lim =
n—00 n—oo 1 —x 11—z
where we have used the result we proved above, namely that
"0 if 2] < 1.
One special case of this is very useful to remember. Set z = 1/2.
Then

m (14424t pp )=
n—00 2227 3 ;)
<

Example 2.35 (Decimal Expansions) What meaning is assigned
to the infinite decimal expansion

T = O.d1d2d3d4 “e dn e
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where the choices of integers 0 < d; < 9 can be made in any way?
Repeating decimals can always be converted into fractions and so the
infinite process can be avoided. But if the pattern does not repeat a
different interpretation must be made.

The most obvious interpretation of the number z above is to
declare that it is the limit of the sequence

lim O.d1d2d3d4 e dn
n—o0

But how do we know that the limit exists? Our theory provides an
immediate answer: this sequence is nondecreasing and every term
is a number smaller than 1. Thus by the monotone convergence
theorem the sequence converges no matter what the choices of the
decimal digits are. <

Example 2.36 (Expansion of ¢*) Let 2 > 0 and consider the two
closely related sequences

_1 22z z™
Sp = +$+E+§+"'+H
and
€T n
tn:(1+—).
n

The relation between the two sequences becomes more apparent once
the binomial theorem is used to expand the latter.
In more advanced mathematics it is shown that both sequences
converge to e”. Let us be content to prove that
lim s, = lim t,.
n—oo n—oo
The sequence {s,} is clearly increasing since each new term is
the preceding term with a positive number added to it. To show
convergence then we need only show that the sequence is bounded.
This takes some arithmetic, but not too much.
Choose N so large that

Note then that

that
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and that
gN+3 1/ zV
(N13)! "8 <(N)!>'
Thus
<figer@ 2]y 2 (1100
S TET T v T @) 2 4
$2 :IIN_I :I:N
<1 Ty 2.7 .
—[ trhagrt (N—l)!]+ ™!

Here we have used the limit for the sum of a geometric progression
from Example 2.34 to make an upper estimate on how large this sum
can get. Note that the N is fixed and so the number on the right
hand side of this inequality is just a number, and it is larger than
every number in the sequence {sy}.

It follows now from the monotone convergence theorem that {s, }
converges. To handle {¢,} first apply the binomial theorem to obtain

TP VT U

From this we see that {t,} is increasing and that it is smaller than
the convergent sequence {s,}. It follows, again from the monotone
convergence theorem that {¢,} converges. Moreover

th,=1+x+

lim ¢, < lim s,.

n—o0 n—o0

If we can obtain the opposite inequality we will have proved our
assertion. Let m be a fixed number and let n > m. Then, from the
expansion above, we note that

1—1/n 1—-1/n)(1-2/n
Una, (12100 =2/

(1—1/n)(1 —2/n)...(1—[m—1]/n)

m!

t, >1+z+ z3

™.

We can hold m fixed and allow n — oo in this inequality and obtain
that

lim ¢, > s,
n—oQ

for each m. From this it now follows that

lim ¢, > lim s,

n—oQ n—oQ

and we have completed our task. <
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Exercises
2:10.1 Since we know that
1
l+z+224+22+--- 42" 5 ——
11—z
this suggests the formula
1
L+2+448+16+- =7 =-1

Do you have any criticisms? (By the way, do not be too harsh in
your criticism; many great mathematicians, including Euler, would
have accepted this formula.)

2:10.2 Let o and (3 be positive numbers. Discuss the convergence behavior
of the sequence
abn

W-

1 n
e = lim (1+—> .
n— 0o n

2:10.3 Define

Show that 2 < e < 3.
2:10.4 Show that

1 n
lim (1 + —) = ye.
2n

n—oo

2:10.5 Check the simple identity

(+2) (o) (o2

and use it to show that
2 n
lim (1 + —> = e
n—oo n

2.11 Subsequences

The sequence
1,-1,2,-2,3,-3,4,—4,5,—5, ...
appears to contain within itself the two sequences
1,2,3,4,5,...

and
—-1,—-2,-3,—4,-5,....
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In order to have a language to express this we introduce the term
subsequence. We would say that the latter two sequences are sub-
sequences of the first sequence. Often a sequence is best studied by
looking at some of its subsequences. But what is a proper definition
of this term? We need a formal mathematical way of expressing the
vague idea that a subsequence is obtained by crossing out some of
the terms of the original sequence.

Definition 2.37 (Subsequences) Let

81582,83,84,.-.
be any sequence. Then by a subsequence of this sequence we mean
any sequence
Sni1ySnas SngySngy - -
where n1, no, n3, ... is an increasing sequence of natural numbers.

Example 2.38 We can consider
1,2,3,4,5,...
to be a subsequence of sequence
1,-1,2,-2,3,—3,4,—4,5,—5, ...
because it contains just the first, third, fifth, etc. terms of the origi-
nal sequence. Here n1 =1, no =3, n3 =95, ... . |

In many applications of sequences it is the subsequences that
need to be studied. For example what can we say about the existence
of monotonic subsequences, or bounded subsequences, or divergent
subsequences, or convergent subsequences? The answers to these
questions have important uses.

Existence of Monotonic Subsequences Our first question is
easy to answer for any specific sequence, but harder to settle in
general. Given a sequence can we always select a subsequence that
is monotonic, either monotonic nondecreasing or monotonic nonin-
creasing?

Theorem 2.39 Every sequence contains a monotonic subsequence.

Proof. We construct first a nonincreasing subsequence if possible.
We call the mth element z,, of the sequence {z,} a turn-back point
if all later elements are less than or equal to it, in symbols if x,, >
T, for all n > m. If there is an infinite subsequence of turn-back
points T,y Tinys Trngs Ty, - - - then we have found our nonincreasing
subsequence since

Ty > Ty > Ty > Ty > ..
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This would not be possible if there are only finitely many turn-
back points. Let us suppose that x; is the last turn-back point so
that any element z, for n > M is not a turn-back point. Since it
is not there must be an element further on in the sequence greater
than it, in symbols z,,, > z, for some m > n. Thus we can choose
Ty > Tap41 withmg > M +1, then z,,, > 24,1 With my > mg, and
then z,,, > z,, with m3 > mg, and so on to obtain an increasing
subsequence

TM+1 < Ty < Ty < Ty < Ty < - - -

as required. [ |

Existence of Convergent Subsequences Having answered this
question about the existence of monotonic subsequences we can also
now answer the question about the existence of convergent subse-
quences. This might, at first sight, seem just a curiosity but it will
give us later on one of our most important tools in analysis.

Theorem 2.40 (Bolzano—Weierstrass) FEvery bounded sequence
contains a convergent subsequence.

Proof. By Theorem 2.39 every sequence contains a monotonic
subsequence. Here that subsequence would be both monotonic and
bounded, and hence convergent. |

Other (less important) questions of this type appear in the exer-
cises.

Exercises

2:11.1 Show that, according to our definition, every sequence is a sub-
sequence of itself. How would the definition have to be reworded
to avoid this if, for some reason, this possibility were to have been
avoided?

2:11.2 Show that every subsequence of a subsequence of a sequence {z,}
is itself a subsequence of {z,}.

2:11.3 If {s,,} is a subsequence of {s,} and {t.,,} is a subsequence of
{tn} then is it true that {s,, + t;,, } is a subsequence of {s, +t,}?

2:11.4 If {s,,} is a subsequence of {s,} is {(sn,)?} is a subsequence of
{(s2)?}?

2:11.5 Describe those sequences that have only finitely many different
subsequences.

2:11.6 Establish which statements are true?
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(a) A sequence is convergent if and only if all of its subsequences
are convergent.

(b) A sequence is bounded if and only if all of its subsequences are
bounded.

(c) A sequence is monotonic if and only if all of its subsequences
are monotonic.

(d) A sequence is divergent if and only if all of its subsequences are
divergent.

2:11.7 Where possible find subsequences that are monotonic and subse-
quences that are convergent for the following sequences

(a) {(=1)"n}.

(b) {sin (nn/8)}.

(c) {nsin(nw/8)}.

(d) {ZtLsin (n7/8)} .

(&) {1+ (-1)"}.

(f) {rn} consists of all rational numbers in the interval (0,1) ar-

ranged in some order.

2:11.8 Describe all subsequences of the sequence
1,0,1,0,1,0,1,0,1,0,1,0,....

Describe all convergent subsequences. Describe all monotonic sub-
sequences.

2:11.9 If {s,,} is a subsequence of {s,} show that n; > k for all k¥ =
1,2,3,....

2:11.10 Give an example of a sequence that contains subsequences con-
verging to every natural number (and no other numbers).

2:11.11 Give an example of a sequence that contains subsequences con-
verging to every number in [0, 1] (and no other numbers).

2:11.12 Show that there cannot exist a sequence that contains subse-
quences converging to every number in (0,1) and no other numbers.

2:11.13 Show that if {s,,} has no convergent subsequences then |s,| = oo
as n — 0o.
2:11.14 If a sequence {z,} has the property that

lim z9, = lim z9p41 =L
n—oo n—o0

show that the sequence {z,} converges to L.
2:11.15 If a sequence {z,} has the property that

lim x5, = lim x2,41 = 00
n—oo n—oo

show that the sequence {z,} diverges to oo.
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2:11.16 Let o and (8 be positive real numbers and define a sequence by
setting s1 = a, 52 = B and sSp42 = 2(sp+8n41) foralln =1,2,3,. ...
Show that the subsequences {s2,} and {ss,_1} are monotonic and
convergent. Does the sequence {s,} converge? To what?

2:11.17 Without appealing to any of the theory of this section prove that
every unbounded sequence has a strictly monotonic subsequence (i.e.,
either increasing or decreasing).

2:11.18 Show that if a sequence {z,} converges to a finite limit or diverges
to £oo then every subsequence has precisely the same behavior.

2:11.19 Suppose a sequence {z,} has the property that every subsequence
has itself a further subsequence convergent to L. Show that {z,}
converges to L.

2:11.20 Let {z,} be a bounded sequence and let = sup{z, : n € IN}.
Suppose that, moreover, z, < x for all n. Prove that there is a
subsequence convergent to x.

2:11.21 Let {z,} be a bounded sequence, let y = inf{z,, : n € IN} and let
x = sup{z, : n € IN}. Suppose that, moreover, y < z,, < z for all
n. Prove that there is a pair of convergent subsequences {z,, } and
{Zm, } so that

lim |2n, — 2Zm,| =2 —y.
k—o00

2:11.22 Does every divergent sequence contain a divergent monotonic se-
quence?

2:11.23 Does every divergent sequence contain a divergent bounded se-
quence?

2:11.24 Construct a proof of the Bolzano—Weierstrass theorem for bounded
sequences using the nested interval property and not appealing to the
existence of monotonic subsequences.

2:11.25 Construct a direct proof of the assertion that every convergent
sequence has a convergent, monotonic subsequence (i.e., without ap-
pealing to Theorem 2.39).

2:11.26 Let {z,} be a bounded sequence that we do not know converges.
Suppose that it has the property that every one of its convergent
subsequences converges to the same number L. What can you con-
clude?

2:11.27 Let {z,} be a bounded sequence that diverges. Show that there
is a pair of convergent subsequences {z,, } and {z,,,} so that

lim |Zp, — Zm,| > 0.
k—o0
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2:11.28 Let {z,} be a sequence. A number z with the property that for all
€ > 0 there are infinitely many terms of the sequence in the interval
(z — e,z +¢) is said to be a cluster point of the sequence. Show that
z is a cluster point of a sequence if and only if there is a subsequence
{zn,} converging to z.

2.12 Cauchy Convergence Criterion

What property of a sequence characterizes convergence? As a “char-
acterization” we would like some necessary and sufficient condition
for a sequence to converge. We could simply write the definition and
consider that that is a characterization. Thus the following technical
statement would, indeed, be a characterization of the convergence of
a sequence {s; }.

A sequence {sp} is convergent if and only if 3L so that
Ve > 0 3N with the property that

|sn — L| <€
whenever n > N.

In mathematics when we ask for a characterization of a property
we can expect to find many answers, some more useful than others.
The limitation of this particular characterization is that it requires
us to find the number L which is the limit of the sequence in advance.
Compare this with a characterization of convergence of a monotonic
sequence {s,}.

A monotonic sequence {s,} is convergent if and only if
it is bounded.

This is a wonderful and most useful characterization. But it applies
only to monotonic sequences.

A correct and useful characterization, applicable to all sequences,
was found by Cauchy. This is the content of the next theorem. Note
that it has the advantage that it describes a convergent sequence with
no reference whatsoever to the actual value of the limit. Loosely it
asserts that a sequence converges if and only if the terms of the
sequence are eventually arbitrarily close together.

Theorem 2.41 (Cauchy Criterion) A sequence {s,} is conver-
gent if and only if for all € > 0 there exists an integer N with the
property that

| — sm| < €
whenever n > N and m > N.
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Proof. This property of the theorem is so important that it de-
serves some terminology. A sequence is said to be a Cauchy sequence
if it satisfies this property. Thus the theorem states that a sequence
is convergent if and only if it is a Cauchy sequence. The terminology
is most significant in more advanced situations where being a Cauchy
sequence is not necessarily equivalent with being convergent.

Our proof is a bit lengthy and will require an application of the
Bolzano-Weierstrass Theorem.

The proof in one direction, however, is very easy. Suppose that
{sn} is convergent to a number L. Let ¢ > 0. Then there must be
an integer N so that

£
_Il<t
|sk |<2

whenever k > N. Thus if both m and n are larger than N,
€

2 ¢

€
|sn—5m|§|sn—L|+|L—5m|<§+

which shows that {s,} is a Cauchy sequence.

Now let us prove the opposite (and more difficult) direction.

For the first step we show that every Cauchy sequence is bounded.
Since the proof of this can be obtained by copying and modifying
the proof of Theorem 2.11 we have left this as an exercise. (It is not
interesting really that Cauchy sequences are bounded since, after the
proof is completed we know that all Cauchy sequences are convergent
and so must indeed be bounded.)

The second steps comes easily. We apply the Bolzano-Weierstrass
theorem to the (bounded) sequence {s,} to obtain a convergent sub-
sequence {sp, }.

The final step is a feature of Cauchy sequences. Once we know
that s,, — L and that {s,} is Cauchy we can show that s, — L
also. Let € > 0 and choose N so that

|sn, — sm| < €/2
for all m, n > N. Choose K so that
|sn, —L| < €/2

for all £ > K. Suppose that n > N. Set m equal to any value of ny
that is larger than N and so that k > K. For this value s, = s,

|sp — L| < |8y — spp| + |Sn, — L] <€/24¢/2 =€.

This is exactly the statement that the sequence {s,} converges to L
and so the proof is complete. |
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Example 2.42 The Cauchy criterion is most useful in theoretical
developments, rather than applied to concrete examples. Even so
occasionally it is the fastest route to a proof of convergence. For
example consider the sequence {z,,} defined by settingz; =1, zo = 2
and then recursively
€, = Tp—1+ $n72.
2

Each term after the second is the average of the preceding two terms.
The distance between z; and z2 is 1, that between z2 and z3 is 1/2,
between z3 and z4 is 1/4, and so on. We see then that after the
N stage all the distances are smaller than 2=V*! ie., that for all

n>Nandm>N
1

|.Tn — .Tm| S W.

This is exactly the Cauchy criterion and so this sequence converges.
Note that the Cauchy criterion offers no information on what the
sequence is converging to. The reader will have to come up with
another method to find out. |

Exercises
2:12.1 Show directly that the sequence s, = 1/n is a Cauchy sequence.

2:12.2 Show directly that any multiple of a Cauchy sequence is again a
Cauchy sequence.

2:12.3 Show directly that the sum of two Cauchy sequences is again a
Cauchy sequence.

2:12.4 Show directly that any Cauchy sequence is bounded.

2:12.5 The following criterion is weaker than the Cauchy criterion. Show
that it is not equivalent:

For all € > 0 there exists an integer N with the property
that

[Sn+1 — sn| < €
whenever n > N.

2:12.6 Is the following criterion weaker, stronger or equivalent to the
Cauchy criterion?

For all € > 0 and all positive integers p there exists an
integer N with the property that

|sntp —sn| <€
whenever n > N.
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2:12.7 Show directly that if {s, } is a Cauchy sequence then so too is {|s,|}
From this conclude that {|s,|} converges whenever {s,} converges.

2:12.8 Show that every subsequence of a Cauchy sequence is Cauchy. [Do
not use the fact that every Cauchy sequence is convergent.]

2:12.9 Show that every bounded monotonic sequence is Cauchy. [Do not
use the monotone convergence theorem.)

2:12.10 Show that the sequence in Example 2.42 converges to 5/3.

2.13 Upper and Lower Limits

If limy, o x, = L then, according to our definition, numbers « and
[ on either side of L, i.e, @ < L < 3, have the property that

a<z, and T, < f

for all sufficiently large n. In many applications only half of this
information is used.

Example 2.43 Here is an example showing how half a limit is as
good as a whole limit. Let {z,} be a sequence of positive numbers
with the property that

lim ¢z, =L <1.

n—o0

Then we can prove that =, — 0. To see this pick numbers « and
so that

a<L<pB<1l.
There must be an integer N so that
a< Y, <p<1
for all n > N. Forget half of this and focus on

Y, < B <1
Then we have
T, < B"
for all n > N and it is clear now why z,, — 0. |

This example suggests that the definition of limit might be weak-
ened to handle situations where less is needed. This way we have a
tool to discuss the limiting behavior of sequences that may not neces-
sarily converge. Even if the sequence does converge this often offers
a tool that can be used without first finding a proof of convergence.

We break the definition of sequence limit into two half-limits as
follows.
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Definition 2.44 (Lim Sup) A limit superior of a sequence {z,},
denoted as limsup,,_,,, Zp, is defined to be the infimum of all num-
bers 8 with the following property:

there is an integer N so that z, < S for all n > N.

Definition 2.45 (Lim Inf) A limit inferior of a sequence {z,}, de-
noted as lim inf,, _, , z,, is defined to be the supremum of all numbers
«a with the following property:

there is an integer N so that a < z, for all n > N.

Note. In interpreting this definition note that, by our usual rules on infs
and sups, the values —oo and oo are allowed. If there are no numbers 3
with the property of the definition then the sequence is simply unbounded
above. The infimum of the empty set is taken as oo and so

limsup,,_,, Tn = 00 & the sequence {z,} has no upper bound.

On the other hand, if every number 3 has the property of the definition this
means exactly that our sequence must be diverging to —oco. The infimum
of the set of all real numbers is taken as —oo and so

lim sup,,_, ., Tn = —00 & the sequence {z,} = —oo.

The same holds in the other direction. A sequence that is unbounded
below can be described by saying liminf, ., 2, = —oo. A sequence that
diverges to oo can be described by saying lim inf,,_, , z,, = oco.

We refer to these concepts as “upper limits” and “lower limits”
or “extreme limits”. They extend our theory describing the limit-
ing behavior of sequences to allow precise descriptions of divergent
sequences. Obviously we should establish very quickly that the up-
per limit is indeed greater than or equal to the lower limit since our
language suggests this.

Theorem 2.46 Let {z,} be a sequence of real numbers. Then

liminf z,, < limsup z,.

n—00 n—00
Proof. If limsup,,_,,, zn, = oo or if liminf, , 2z, = —oc0 we
have nothing to prove. If not then take any number g larger than
lim sup,,_,, Z and any number « smaller than liminf, ,. z,. By
definition then there is an integer N so that z, < 8 for alln > N
and an integer M so that a < z, for all n > M. It must be true
that o < B. But (8 is any number larger than lim sup,,_,., . Hence

a < limsup z,.
n—oo
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Similarly « is any number smaller than lim inf,, . z,. Hence

lim inf z,, < limsupz,
n—00 n—00

as required. [ |

How shall we use the limit superior of a sequence {z,}? If
limsup,, o, Tr, = L then every number S > L has the property that
zn < [ for all n large enough. This is because L is the infimum of
such numbers 8. On the other hand any number b < L cannot have
this property so xz, > b for infinitely many indices n. Thus num-
bers slightly larger than L must be upper bounds for the sequence
eventually. Numbers slightly less than L are not upper bounds even-
tually. To express this a little more precisely the number L is the
limit superior of a sequence {z,} exactly when the following holds:

For every € > 0 there is an integer N so that z, < L+ ¢
for all n > N and z, > L — ¢ for infinitely many n > N.

The next theorem gives another characterization which is some-
times easier to apply. This version also better explains why we de-
scribe this notion as a “lim sup” and “lim inf”.

Theorem 2.47 Let {z,} be a sequence of real numbers. Then

limsupz, = lim sup{zn,Tni1, Tni2, Tn+3,--- }
n—00 n—00
and

liminfz, = lim inf{z,,Znt1, Tnt2, Tnis, .- }
n—o n—o0

Proof. Let us prove just the statement for lim sups as the lim inf
statement can be proved similarly.
Write
Yn = SUP{Zn, Trt1s Tnt2, Trt3s--- }-
Then z, < y, for all n and so, using the inequality promised in
Exercise 2:13.5,

lim supz, < limsupy,.
n—oo n—oo

But {y,} is an increasing sequence and so

limsupy, = lim y,.
n—o0o n—00

From this it follows that

limsupz, < lim sup{zn, Tni1, Tnt+2; Tnts,--- |-
n—00 n—00
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Let us now show the reverse inequality. If limsup,,_,., z, = o0
then the sequence is unbounded above. Thus for all n
sup{:vn, Tn+1,Tn+2,Tn+3y--- } =00

and so, in this case,

limsupz, = lim sup{z,, Tni1, Tni2, Tnis,--- }
n—00 n—00
must certainly be true.
If limsup,,_,, Zn < oo then take any number 3 larger than
limsup,,_,., Tn. By definition then there is an integer N so that
T, < B for all n > N. It follows that

lim sup{Tn, Tnt1, Tnt2, Tnt3,--- } < B
n—oQ
But § is any number larger than limsup,,_, . z,. Hence

lim sup{zn, Tn+1,Tnt2, Tnt3, ...} < limsupzy,.

n—00 n—o00
Having proved both inequalities the equality follows and the the-
orem is proved. |

The connection between limits and extreme limits is very close.
If a limit exists then the upper and lower limits must be the same.

Theorem 2.48 Let {z,} be a sequence of real numbers. Then {z,}
1s convergent if and only if lim sup,,_, o, Tn, = liminf,_, z, and these
are finite. In this case

limsupz, = liminfx, = lim z,.
n—00 n—00 n—00

Proof. Let ¢ > 0. If limsup,_,,, zn, = L then there is an inte-
ger Ny so that z, < L + ¢ for all n > N;. If it is also true that
liminf, ,, x, = L then there is an integer Ny so that z, > L — ¢
for all n > Ny. Putting these together we have
L—e<z,<L+e¢
for all n > N = max{Ny, N2}. By definition then lim,, . z, = L.
Conversely if lim,,_,, x,, = L then for some N,
L—e¢e<z,<L+e¢
for all n > N. Thus

L — ¢ <liminfz, <limsupz, < L +¢.

n—=00 n—00

Since € is an arbitrary positive number we must have

L =liminfz, = limsupz,
n—00 n—00
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as required. |

In the exercises you will be asked to compute several lim sups and
lim infs. This is just for familiarity with the concepts. Computations
are not so important. What is important is the use of these ideas in
theoretical developments. More critical is how these limit operations
relate to arithmetic or order properties. The limit of a sum is the
sum of the two limits. Is thus true for lim sups and lim infs? (See
Exercise 2:13.9.) Do not skip these exercises.

Exercises

2:13.1 Complete Example 2.43 by showing that if {z,} is a sequence of
positive numbers with the property that

limsup /z, <1

n—oe

then z,, = 0. Show that if
liminf /z, > 1

n—oe

then z,, = 0co. What can you conclude if
limsup /z, >1

n—o0
or if
liminf /z, < 17

n—oe

2:13.2 Compute lim sups and lim infs for the following sequences

(a) {(=1)"n}.
(b) {sin (nm/8)}.
(¢) {nsin(nw/8)}.
(d) {[(n+1)sin(n7/8)]/n}.
e) {1+ (-1)"}.
)

f) {rn} consists of all rational numbers in the interval (0,1) ar-
ranged in some order.

(
(
2:13.3 Give examples of sequences of rational numbers {a,} with
(a) upper limit v/2 and lower limit —v/2,
(b) upper limit +oc and lower limit /2,

(¢) upper limit 7 and lower limit e.

2:13.4 Show that

lim sup(—z,) = —(liminf z,,).
n—00 n—0o0
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2:13.5 If two sequences {a,} and {b,} satisfy the inequality a, < b, for
all sufficiently large n show that

limsup a,, < limsupb,,.
n—r 00 n— 00

liminf a, < liminf b,.
n—oo n—oo

2:13.6 Show that lim,_,, x, = oo if and only if

lim sup z,, = liminf z,, = cc.
n—oo n—0oo

2:13.7 Show that if limsup,,_,,, a, = L for a finite real number L and
€ > 0 then
anp>L+¢€

for only finitely many n and
an>L—c¢
for infinitely many n.
2:13.8 Show that for any monotonic sequence {z, }

limsup £, = liminf z,, = lim =z,
n—oo n—o0 n— oo

(including the possibility of infinite limits).
2:13.9 Show that for any sequences {a,} and {b,}
lim sup(a, + b,) < limsup a,, + lim sup by,.

n— 00 n— 00 n—oo

Give an example to show that the equality need not occur.
2:13.10 What is the correct version for the lim inf of Exercise 2:13.97

2:13.11 Show that for any sequences {a,} and {b,} of positive numbers
lim sup(a,b,) < (limsup a,)(limsup by,).
n—oo n—oo n—oo

Give an example to show that the equality need not occur.

2:13.12 What relation, if any, can you state for the lim sups and lim infs
of a sequence {a,} and one of its subsequences {a,, }?

2:13.13 If a sequence {a,} has no convergent subsequences what can you
state about the lim sups and lim infs of the sequence?

2:13.14 Let S denote the set of all real numbers ¢ with the property that
some subsequence of a given sequence {a,} converges to t. What is
the relation between the set S and the lim sups and lim infs of the
sequence {a,}?

2:13.15 Prove the following assertion about the upper and lower limits for
any sequence {a,} of positive real numbers:

. A . . An+1

lim inf < liminf /a, < limsup {/a, < limsup —*.

n—co 4, = N2 "= n—)oop "= n—)oop an

Give an example to show that each of these inequalities may be strict.

ant1
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2:13.16 For any sequence {a,} write s, = (a1 +a2+...an)/n. Show that

liminf a,, <liminf s, <limsup s, < limsup a,,.
n—o0 n—o0 n—oo n—oo

Give an example to show that each of these inequalities may be strict.

2.14 Additional Problems for Chapter 2

2:14.1 Let a and 8 be positive numbers. Show that
lim {/a™ + " = max{a, 8}.
n—00

2:14.2 For any convergent sequence {a,} write s, = (a1 + a2 +...a,)/n,
the sequence of averages. Show that

lim a, = lim s,.
n— oo n—oo

Give an example to show that {s,} could converge even if {a,}
diverges.

2:14.3 Let a; = 1 and define a sequence recursively by
Qp41 = \/al +az+-:Fan.

Show that a
lim — =1/2.

n—oo N

2:14.4 Let zy = 6 and define a sequence recursively by
Tn

14 z,/2

For what values of @ is it true that z,, — 07

Tpt1 =

2:14.5 Let {a,} be a sequence of numbers in the interval (0,1) with the
property that

Gn—1+ Gnt1
2

for all n = 2,3,4,.... Show that this sequence is convergent.

an <

2:14.6 For any convergent sequence {a,} write

sn = V(araz...ay),
the sequence of geometric averages. Show that

lim a, = lim s,.

n—oo n—oe
Give an example to show that {s,} could converge even if {a,}
diverges.
2:14.7 If
lim =% =

n—o00 8§y + &
what can you conclude about the sequence {s,}?
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2:14.8 A function f is defined by
i 1—22\"
o= Jim (155

at every value x for which this limit exists. What is the domain of
the function?

2:14.9 A function f is defined by

f(z) = lim

n—oo g 4 "
at every value z for which this limit exists. What is the domain of
the function?

2:14.10 Suppose that f : IR — IR is a positive function with a derivative f’
that is everywhere continuous and negative. Apply Newton’s method
to obtain a sequence

f (@)
f'(zn)

Show that x,, — oo for any starting value 6.

21 =0 Zpi1 =2y —

0 2:14.11 Let f(z) = z® — 3z + 3. Apply Newton’s method to obtain a
sequence

f'(@n)
Show that for any positive integer p there is a starting value 8 such
that the sequence {z,} is periodic with period p.

1 =0 Tpi1 =z —

2:14.12 A sequence {s,} is said to be contractive if there is a positive
number 0 < 7 <1 so that

|8n+1 = 8n| < 7|8p — Sn—1]
foralln=234,....
(a) Show that the sequence defined by s1 = 1 and s, = (4+5,-1) !
for n =2, 3, ... is contractive.
(b) Show that every contractive sequence is Cauchy.
(c) Show that a sequence can satisfy the condition
841 — 8n| < [Sn — Sn_1]

for allm = 2, 3, 4, ... and not be contractive, nor even conver-
gent.

(d) Is every convergent sequence contractive?

] 2:14.13 The sequence defined recursively by

h=1 fo=1 foro=fo+ fon
is called the Fibonacci sequence. Let

Tn = fn+1/fn
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be the sequence of ratios of successive terms of the Fibonacci se-
quence.

(a) Show that
rE<ry3<ry---<7rg <rqg <nrs.
(b) Show that Ton — Ton—1 — 0.

(c) This proves that the sequence {r,} converges. Can you find a
way to determine that limit? (This is related to the roots of
the equation 22 —z — 1 =0.)

2:14.14 A sequence of real numbers {z,} has the property that
(2 — $n)$n+1 =1.
Show that lim,_,. z, = 1.

2:14.15 Let {a,} be an arbitrary sequence of positive real numbers. Show

that .
lim sup (M) >e.

n—oo an
2:14.16 Suppose that the sequence whose nth term is

Sp + 23n+1
is convergent. Show that {s,} is also convergent.

2:14.17 Show that the sequence

\/7,\/7—\/7,\/7—\/7+\ﬁ,\/7—\/7+\/7—ﬁ,...

converges and find its limit.

2:14.18 Let a; and as be positive numbers and suppose that the sequence
{an} is defined recursively by

An+2 = \/Qp + \/Cnt1-

Show that this sequence converges and find its limit.



