Chapter 10

POWER SERIES

10.1 Introduction

One of the simplest and, arguably, the most important type of series
of functions is the power series. This is a series of the form

oo
Z apz”
0
or more generally

Zak(x — o)k

It represents a notion of “infinitely long” polynomial
a0+a1x+a2x2+---+akwk+....

The material we developed in Chapter 9 will allow us to show in
this chapter that power series can be treated very much as if they
were indeed polynomials in the sense that they can be integrated
and differentiated term-by-term.

The main reason for developing this theory is that it allows a
representation for functions as series. This enlarges considerably the
class of functions that we can work with. Not all functions that
arise in applications can be expressed as finite combinations of the
elementary functions (i.e., as combinations of e®, zP, sinz, cosz,
etc.). Thus if we remain at the level of an elementary calculus class
we would be unable to solve many problems since we cannot express
the functions needed for the solution in any way. For a large and
important class of problems the functions that can be represented
as power series (the so-called analytic functions) are precisely the

438



10.2. Power Series: Convergence 439

functions needed.

10.2 Power Series: Convergence

We begin with the formal definition of power series.

Definition 10.1 Let {ax} be a sequence of real numbers and let
c € IR. A series of the form
oo
Zak(w—c)k —ay+ai(z—c)+tax(z—c)?+...
0
is called a power series centered at c. The numbers ay, are called the
coefficients of the power series.

What can one say about the set of points on which the power
series Y o° ax(z — c)k converges? It is immediately clear that the
series converges at its center ¢. What possibilities are there? A
collection of examples illustrates the methods and also essentially all
of the possibilities.

Example 10.2 The simple example
o
Zkkxk =z +4z2+272% + ...
1

shows that a power series can diverge at every point other than its
center. Observe that in this example k*¥z* = (kz)¥ does not approach
0 unless x = 0, so the series diverges for every x # 0 by the trivial
test. Thus the set of convergence of this series is the set {0}. <

Example 10.3 The familiar geometric series
o
D
k=0

should be considered the most elementary of all power series. We
know that this series converges precisely on the interval (—1,1) and
diverges everywhere else. |

Example 10.4 The series
k

s X
D%
k=1
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has as coefficients ay = 1/k and the root test! supplies

s = limsup {/|z|*/k = |z|.
k

(Verify this!) Thus the series converges on (—1,1) and diverges for
|z| > 1. At the two endpoints of the interval (—1,1) a different test
is required. We see that for £ = 1 this is the familiar harmonic series
and so diverges, while for z = —1 this is the familiar alternating
harmonic series and so converges nonabsolutely. The interval of con-
vergence is [—1,1). Observe that in this case, the series converges at
only one of the two endpoints of the interval. <

Example 10.5 The series

25

k=1
converges on [—1,1] and diverges otherwise. Again the root test (or
the ratio test) is helpful here. Simpler, though, is to notice that
ok 1
IR
for all |z| < 1 and so obtain convergence on [—1,1] by a comparison
test with the convergent series Y poo1/k?. If |z| > 1 the terms
|z* /k?| — oo and so, trivially, the series diverges. Note here that the

series converges on the interval [—1, 1] and is absolutely convergent
there. <

Example 10.6 The root test applied to the series

k .’Ek
2

. k |£C|k . . 1 o
i

(The ratio test can also be used here.) It follows that the series
converges for all x € IR. Perhaps an easier method in this particular
example is to use the comparison test and the fact that

gives

k 1
‘%‘ <o when &k > 2|z|.

!The form of the root test needed to discuss power series uses the limit supe-
rior. For that the study of Section 2.13 may be required.
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Thus the series converges at any = by comparison with a geometric
series. Thus the set of convergence of this series is (—o0, 00), again
as in the previous examples an interval. |

In general, as these examples seem to suggest, the set of points
of convergence of a power series forms an interval and an application
of the root test is an essential tool in determining that interval. Let
us apply this test to the series

Zak(x —ok.
0

Let s = limsup, {/|ak|- Then

limsup {/|ag||z — c[k = limsup ¥/|ax||z — ¢| = s|z — -
k k

By the root test the series converges absolutely if s|z —¢| < 1 and
diverges if s|lz — ¢| > 1.
If 0 < s < oo, then the series converges on the interval
(c—1/s,c+1/s)
and diverges for x outside the interval
[c—1/s,c+1/s].
The root test is inconclusive about convergence at the endpoints

x = ¢+ 1/s of these intervals. The interval of convergence is thus
one of the four possibilities

(c—1/s,c+1/s)or [c—1/s,c+1/s) or
(c—1/s,c+1/s]or [c—1/s,c+1/s].

If s = 0 then the series converges for all values of z. We could say
that the interval of convergence is (—oo,00) in this case. If s = oo
then the series converges for no values of = other than the trivial
value z = ¢. We could say that the interval of convergence is the
degenerate “interval” {c}.

Thus the set of convergence is an interval centered at c¢. This
interval might be degenerate (consisting of only the center), might
be all of the real line, and may contain none, one, or both of its
endpoints.

Our next theorem summarizes the discussion of convergence to
this point. We first give a formal definition.

Definition 10.7 Let > ¢° ax(z — ¢)* be a power series. Then the
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number
1

R=———
lim supy, {/|a|
is called the radius of convergence of the series. (Here we interpret
R = oo if limsupy, {/]ag| = 0 and R = 0 if limsup,, {/|ax| = o0.)

Note. This book deals with real analysis, but a full theory of power series
fits more naturally into the setting of compler analysis. In that setting, a
power series converges in a “circle of convergence” centered at a complex
number c¢ in the complex plane and with radius

. 1
lim supy, 4/]ax|

This explains the origin of the term “radius of convergence”.

Theorem 10.8 Let Y o° ax(z — c)lc be a power series with radius of
convergence R.

1. If R =0, then the series converges only at x = c.
2. If R = oo, then the series converges absolutely for all x.

3. If 0 < R < oo, then the series converges absolutely for all x
satisfying |x — c¢| < R and diverges for all z satisfying |z —c| >
R.

Proof. We first consider the case R = 0. Here limsupy, {/|ax| = oo
so, for = # c,

limsup 1/ |ak||z — c|F = |z — ¢|limsup {/|ax| = oo.
k k

By the root test the series cannot converge for x # c¢. The other
cases are similarly established by the root test as in the discussion
following our examples. |

In general then a power series
o
Z akmk
k=0

with a finite radius of convergence R must have as its set of conver-
gence one of the four intervals

(-R,R), [-R,R], (—R,R]or [-R,R).

As we have seen from the examples each of these four cases can occur.
The only other possibilities are for series with radius of convergence
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R = 0 in which case the set of convergence is trivially {0} or R = oo
in which case the set of convergence is the entire real line. Note too
that if the series converges absolutely at x = R or at £ = —R then
it must converge absolutely on all of [—R, R]. It is possible, though,
for the series to converge nonabsolutely at one endpoint but not at
the other.

Exercises

10:2.1 Find the radius of convergence for each of the following series.
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10:2.2 Another expression for R is sometimes available. If
lim Gk
k—o0

Q41

exists or equals 0o, then show that the following expression also gives
the radius of convergence of a power series:

a
R= lim |—*
k—oo | Q41
10:2.3 For the examples
DILANED DL~ DS~
k k
k=0 k=1 k=1
verify in each case that
a
R =lim|—| =1.
k |Gk+1

10:2.4 For the series

oo

Zkkmk and iz—z
1

1
check that the radius of convergence is R = 0 and oo respectively.
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10:2.5 Give an example of a power series > ° arz”® for which the radius
of convergence R satisfies

p—_ 1
limg 00 v/ |ak|

Qg

but

lim
k— o0

Q41
does not exist.

10:2.6 Give an example of a power series > ° apz® for which the radius
of convergence R satisfies

Q41

Qg

ak+1
ar

lim inf < R < limsup

k

10:2.7 Give an example of a power series Y o a,z* with radius of conver-
gence 1 that is nonabsolutely convergent at both endpoints 1 and —1
of the interval of convergence.

10:2.8 Give an example of a power series Y o axz* with interval of con-
vergence exactly [—v/2,/2).

10:2.9 If the power series > ° axz® has a radius of convergence R what
must be the radius of convergence of the series Y oo, karz® and
Yo, klagak?

10:2.10 If the coefficients {a } of a power series "° ayz* form a bounded
sequence show that the radius of convergence is at least 1.

10:2.11 If the power series 280 arz® has a radius of convergence R, and
the power series > ° bix* has a radius of convergence R, and |ag| <
|bg,| for all k sufficiently large what relation must hold between R,
and Rp?

10:2.12 If the power series Y o axz” has a radius of convergence R what
must be the radius of convergence of the series Y - arz?*?

10:2.13 If the power series Ego arx® has a finite positive radius of conver-
gence show that the radius of convergence of the series )77 apz®”
is 1.

10:2.14 Find the radius of convergence of the series

o

ak)!

> et

k=0 V"

where a and [ are positive and « is an integer.

10:2.15 Let {ax} be a sequence of real numbers and let 29 € IR. Suppose
there exists M > 0 such that |azzk| < M for all k € IN. Prove
Yo arz® converges absolutely for all z satisfying the inequality || <
|zo|. What can you say about the radius of convergence of this series?
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10.3 Uniform Convergence

So far we have reached a complete understanding of the nature of
the set of convergence of any power series. In order to apply many
of our theorems of Chapter 9 to questions concerning term-by-term
integration or differentiation of power series, we need to check ques-
tions related to the uniform convergence of power series. Our next
theorem does this and also summarizes the discussion of convergence
to this point.

We repeat the convergence results of Theorem 10.8 but now add
a discussion of uniform convergence.

Theorem 10.9 Let Y o° ax(z — ©)* be a power series with radius of
convergence R.

1. If R =0, then the series converges only at x = c.

2. If R = oo, then the series converges absolutely and uniformly
on any compact interval [a, b].

3. If 0 < R < o0, then the series converges absolutely and uni-
formly on any interval [a,b] contained entirely inside the inter-
val (c— R,c+ R).

Proof. To verify (2) and (3), let us choose 0 < p < R so that
the interval [a,b] is contained inside the interval (c — p,c + p). Fix
po € (p, R). Then

1 1
limsup {/|ax| = = < —.
k lae R po
Thus there exists N € IN such that

1
y \ak\<% for all K > N. (1)

For k> N and |z — ¢| < p we calculate

k
lax (@ — ] < laglo* < (ﬁ) ,
Po

the last inequality following from (1).
Now since p/pg < 1, it follows that

00 k
> (L) <.
o \Po

It now follows from the Weierstrass M-test (Theorem 9.16) that the

series converges absolutely and uniformly on the set {z : |z — ¢| < p}
and hence also on the subset [a, b].
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If the interval of convergence of a power series is (—R, R) then
certainly the assertion (3) of Theorem 10.9 is the best that can be
made. (See Exercise 10:3.3.) The geometric series > > ) ™ furnishes
the clearest example of this. This series converges on (—1, 1) but does
not converges uniformly on the entire interval of convergence (—1,1).
It does, however, converge uniformly on any [a,b] C (—1,1).

To improve on this we can ask the following: if R is the radius
of convergence of a power series and the interval of convergence is
[-R, R] or (—R, R] or [—R, R] can uniform convergence be extended
to the endpoint(s)? If the convergence at an endpoint R (or —R)
is absolute then an application of the Weierstrass M-test shows im-
mediately that the convergence is absolute and uniform on [—R, R].
For non absolute convergence a more delicate test is needed and we
need to appeal to material developed in Section 9.3.3. The theo-
rem contains, for easy reference, a repeat of the third assertion in
Theorem 10.9.

Theorem 10.10 Suppose that the power series Y o ag(T — )* has
a finite and positive radius of convergence R and an interval of con-
vergence I.

1. If I = [c — R,c+ R] then the series converges uniformly (but
not necessarily absolutely) on [c — R,c+ R).

2. If I = (¢ — R,c+ R] then the series converges uniformly (but
not necessarily absolutely) on any interval [a,c + R] for all
c—R<a<c+R.

3. If I = [c — R,c+ R) then the series converges uniformly (but
not necessarily absolutely) on any interval [c — R,b] for all

c—R<b<ec+R.

4. If I = (¢ — R,c+ R) then the series converges uniformly and
absolutely on any interval [a,b] forc— R <a <b<c+ R.

Proof.  For the purposes of the proof we can take ¢ = 0. Let
us examine the case I = (¢ — R,c + R] = (—R, R| which is typical.
Consider the intervals [a,0] for —R < a < 0 and [0, R]. The uniform
convergence of the series on [a,0] is clear since this is contained
entirely inside the interval of convergence.

Now we examine uniform convergence on [0, R]. We consider the

series
o o0
>zt = Ayt
k=0 k=0
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where Ay = axRF and ¢t = (z/R). The series Y 4o, AxtF converges
for 0 < ¢ < 1 by our assumptions. Note that ) 7>, Ag is conver-
gent while the sequence {t¥} converges monotonically on the inter-
val [0,1]. By a variant of Theorem 9.19 (Exercise 9:3.26) this series
converges uniformly for ¢ € [0, 1]. This translates easily to the asser-
tion that our original series converges uniformly for = € [0, R]. Thus
since the series converges uniformly on [a,0] and on [0, R] we have
obtained the uniform convergence on [a, R] as required. The other
cases are similarly handled. |

Exercises
10:3.1 Characterize those power series > o° ax(z — c)k that converge uni-
formly on (—o0, 00).

10:3.2 Show that if > ;7 apz® converges absolutely at a point 2o > 0
then the convergence of the series is uniform on [—zg, zq].

10:3.3 Show that if Y, , axz® converges uniformly on an interval (—r,r)
then it must in fact converge uniformly on [—r,7]. Deduce that if
the interval of convergence is exactly of the form (—R, R), or [-R, R)
or [—R, R) then the series cannot converge uniformly on the entire
interval of convergence.

10.4 Functions Represented by Power Series

Suppose now that a power series Y o° aj(z — c)]c has positive or infi-
nite radius of convergence R. Then this series represents a function
f on (at least) the interval (¢ — R,c+ R):

fl@) =Y ar(z—c)* for|z—c| <R (2)
0

If the series converges at one or both endpoints then this represents
a function on [c — R,c+ R) or (¢ — R,c+ R] or [c — R,c+ R).

What can one say about the function f? In terms of the questions
that have motivated us throughout Chapter 9 we can ask

1. Is the function f continuous on its domain of definition?
2. Can f be differentiated by termwise differentiation of its series?
3. Can f be integrated by termwise integration of its series?

We address each of these questions and find that generally the answer
to each is yes.
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10.4.1 Continuity of Power Series

A power series may represent a function on an interval. Is that
function necessarily continuous?

Theorem 10.11 A function f represented by a power series
o0
f(z) :Zak(w—c)k for |z —c| < R. (3)
0

s continuous on its interval of convergence.

Proof. This follows from Theorem 10.10. For example if the inter-
val of convergence is (¢ — R, c + R| then we can show that f is con-
tinuous at each point of this interval. Since convergence is uniform
on [¢,c+ R] and since each of the functions ay(z — ¢)¥ is continuous
on [c,c+ R], the same is true of the function f (Corollary 9.23). For
any point g € (¢ — R, c) we can similarly prove that f is continuous
at z in the same way by noting that the series converges uniformly
on an interval [a, ] where a is chosen so that c — R < a < 7y < c.
[ |

Example 10.12 The series

flz) = ZI
k=1

converges at every point of the interval [—1,1). Consequently this
function is continuous at every point of that interval. We shall show
in the next section that the identity

log(1 —z) = Z -
k=1

holds for all z € (—1,1) (by integrating the geometric series term
by term). Since we are also assured of continuity at the endpoint
z = —1 we can conclude that

(o]
(—1)*
log2 = .

10.4.2 Integration of Power Series

If a function is represented by a power series is it possible to integrate
that function by integrating the power series term by term?
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Theorem 10.13 Let a function f be represented by a power series

f@) = apa — o)
0

with an interval of convergence I. Then for every point x in that
interval f is integrable on [c,z] (or [z,c] if © < c) and

oo

’ _ ag k1
/Cf(t)dt— 0 - o,

Proof. Let z be a point in the interval of convergence. The conver-
gence of the series Y.0° ag(z — ¢)* is uniform on [¢, z] (or on [z, ] if
z < ¢), so the series can be integrated term-by-term (Theorem 9.29).
[

Example 10.14 The geometric series

1 o~k
-z Z v
k=0
has radius of convergence 1 and so can be integrated term by term
provided we stay inside the interval (—1,1). Thus

| |
log(l —z) = ——dt = Z ahtl
0

o 1—t¢ k+1

for all -1 < z < 1. We would not be able to conclude from this
theorem that the integral can be extended to the endpoints of (—1, 1).

The new series, however, also converges at £ = —1 and so we can
apply Theorem 10.11 to show that the identity just proved is actually
valid on [—1,1). <

10.4.3 Differentiation of Power Series

If a function is represented by a power series is it possible to dif-
ferentiate that function by differentiating the power series term by
term?

Note that for continuity and integration we were able to prove
Theorems 10.11 and 10.13 immediately from general theorems on
uniform convergence. To prove a theorem on term-by-term differen-
tiation, we need to check uniform convergence of the series of deriva-
tives. The following lemma, gives us what we need.

Lemma 10.15 Let Y ° ax(z — &)F have radius of convergence R.
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Then the series
(o]
Z kay(z — c)F 1
1

obtained via term-by-term differentiation also has the same radius of
convergence R.

Proof. The radius of convergence of the series is given by
1
R= ——m——.
lim supy, {/|a|
The radius of convergence of the differentiated series is given by
1
!/

R = .
lim supy, ¥/|kag|

But since vk — 1 as k — oo we see immediately that these two
numbers are equal. (They may be both zero or both infinite.) W

Theorem 10.16 Let > ;° ax(z — ¢)* have radius of convergence R >
0, and let

f@) =3 anla— o
0
whenever |x —c| < R. Then f is differentiable on (c— R,c+ R) and
o
fz) =3 koo — !
1

for each z € (c— R,c+ R).

Proof. It follows from the preceding lemma that the series

Z kay(z — )1
1

has radius of convergence R. Thus this series converges uniformly
on any compact interval [a,b] contained in (¢ — R,c + R). Since
each value of z in (¢ — R,c + R) can be placed inside some such
interval [a,b] it now follows immediately from Corollary 9.35 that
f'(z) = 37 kag(z — ¢)F~! whenever |z — ¢| < R. [ |

We can apply the same argument to the differentiated series, and
differentiate once more. From the expansion

F@) =3 kag(a —
1



10.4. Functions Represented by Power Series 451

we obtain a formula for f”(z):
(@) = k(k— ag(z — o).
2

Let us express explicitly the formulas of f(z), f'(z) and f"(z).

f(x) = ag+ai(z—c)+ay(z—c)?+as(z—c)P+...
fl(x) = a1+2a2(z —c)+3az(z —c)* + ...
f"(z) = 2a3+3-2a3(x—c)+...

These expressions are valid in the interval (¢ — R,c+ R). For z = ¢
we obtain

fle) = ao
flle) = a
f"(C) = 2(1,2.

If we continue in this way, we can obtain power series expansions
for all the derivatives of f. This results in the following theorem.
The proof (which requires mathematical induction) is left as Exer-
cise 10:4.1.

Theorem 10.17 Let ) ;° ap(z — ¢)* have radius of convergence R >
0. Then the function

@)= axlz — o
0

has derivatives of all orders and these derivatives can be calculated by
repeated term-by-term differentiation. The coefficients ay are related
to the derivatives of f at x = ¢ by the formula

1)
K

Uniqueness of Power Series From Theorem 10.17 we deduce
that any two power series representations of a function must be iden-
tical. Note that the centers have to be the same for this to be true.

Corollary 10.18 Suppose two power series
o0

f@) =) arz—c)F
0

and
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agree on some interval centered at ¢, that is f(z) = g(z) for |z —c| <
p and some positive < p. Then ay = by for allk =0,1,2,....

Proof. It follows immediately from Theorem 10.17 that
F®e) _ W9

a’k}: = :bk)

k! k!
forall kK =0,1,2,.... ||

Example 10.19 The series for the exponential function
Lk
x
S J—
€= Z k!
k=0

reveals one of the key facts about the exponential function, namely
that it is its own derivative. Note simply that

0 0o k 0
iew:izx_: iﬂ”_zzﬂf‘_:ew_
dx dx k! dz k! k!
k=0 k=0 k=0
R |

Example 10.20 The material in this section can also be used to
obtain the power series expansion of the exponential function. Sup-
pose that we know that the exponential function f(z) = e* does in
fact have a power series expansion

f(z) = Z apzk.
k=0

Then the coefficients must be given by the formulas we have ob-
tained, namely
F®(0)

kK
But for f(x) = e it is clear that £%*)(0) = 1 for all k£ and so the series
must be indeed be given by a; = 1/k! as we well know. But how
can we be assured that the exponential function does have a power
series expansion? This argument shows only that if there is a series
then that series is precisely > 2, ‘fc—’: There remains the possibility
that there may not be a series after all. This is the subject of the
next section. <

ap —

10.4.4 Power Series Representations

Corollary 10.18 shows that if one can obtain a power series repre-
sentation for a function f by any means whatsoever, then that series
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must have its coefficients given by the equations ay = f*)(c)/k!. In
particular a power series representation for f about a given point
must be unique.

Example 10.21 For example, the formula for the sum of a geomet-
ric series can be used to show that

?1332 =1—z?+4zt— (1) ¥ ...
Thus this series represents the function f(z) = 1 +z2 on the interval
(—=1,1). Note that the coefficients ay, are zero if k is odd and that
azj = (—1)7 for k = 2j even. It now follows automatically that for
even integers k = 2j

(k) .
fT!(O) = ap = (—1)7

while all the odd derivatives are zero. Thus

dk 1

dr (m) =0 atz=0
if k£ is odd and

% (%) = (-1)(2j)! atz=0

1+z
if k = 25 is even. One need not compute derivatives to obtain this
result. <

Note. There is a curious fact here which should be puzzled upon. The
formula 1

1+ 22
is valid precisely for —1 < z < 1. But the function on the right hand side
of this identity is defined for all values of z. We might have hoped for a
representation valid for all 2 but we do not obtain one!

=1—z? 4+t — -+ (=1)2% + ...

Sometimes the easiest way to obtain a power series expansion
formula for a function is by using the formula a; = f*)(c)/k!. For
example, this is how we obtained the power series expansion for
f(z) = e®. We compute f*)(z) = e® for k =0,1,2..., s0 f*#)(0) =
1 for all k. Thus the series expansion for this function (if it has a
series expansion) would have to be

2
—1+x-|——+—+ Zk, (4)

Note that the series converges for all x € IR. In the next section we
will show how to verify that the equality holds for all x.
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If we had wanted a formula for g(z) = ¢** we might have used
the same idea and determined all the derivatives g(*)(0). It would be
simplest, however, to just substitute z? for z in the expansion (4),
obtaining

o
E
e —1+:1:+—+—+ Zk|. (5)

Also, from this expansion we can readily obtain an expansion for
2z’ in either of two ways: We can multiply the expansion in (5)
by 2z giving

225 2z >, 22k +1
2z —2$+2x+—+?+---220: o

Alternatively we can use Theorem 10.16 and differentiate (5) term-
by-term giving

0 o2k+1
2 d g2 423 6z° 8z" 2z
L A T R DR

The reader may wish instead to try to obtain these expansions di-
rectly by using the formula a, = f*)(c)/k!.

Exercises
10:4.1 Provide the details in the proof of Theorem 10.17.
10:4.2 Obtain expansions for

7 and ?
1+ z2 (1+22)2’
10:4.3 Obtain expansions for
1 z?

—— and ——.

1+azs 2 Tyg8
10:4.4 Find a power series expansion about z = 0 for the function

1 —
1— sx
f) = [ 5
0 s

10:4.5 The function

o0 .z
Jo(z) =D (1) (22
k=0
is called a Bessel function of order zero of the first kind. Show that
this is defined for all values of z. The function Ji(z) = —Jj(z) is

called a Bessel function of order one of the first kind. Find a series
expansion for J; (z).
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10:4.6 Let
o
fl@)=> apa*
k=0

have a positive radius of convergence. If the function f is even (i.e., if
f(—z) = f(x) for all ) what can you deduce about the coefficients
ar? What can you deduce if the function is odd (i.e., if f(—z) =
—f(z) for all z)?

10:4.7 Let
o
fl@) =" ara"
k=0

have a positive radius of convergence. If zero is a critical point (i.e., if
a1 = 0) and if a2 > 0 then the point x = 0 is a strict local minimum.
Prove this and also formulate and prove a generalization of this that
would allow a; =ag =a4 =---=an_1 =0 and any # 0.

10.5 The Taylor Series

We have seen that if a power series Y o° ax(z — ¢)* converges on an
interval I then the series represents a function f that has derivatives
of all orders. In particular the coefficients a; are related to the
derivatives of f at c:
F®)(e)

k-
One then calls the series the Taylor series for f about the point
T =c.

Let us turn the question around:

ap =

What functions f have a Taylor series representation in
their domain?

We see immediately that such a function must be infinitely differ-
entiable in a neighborhood of ¢ since for such a series to be valid
we know that all of the derivatives f*)(c) must exist. But is that
enough?

If we start with a function that has derivatives of all orders on
an interval I containing the point ¢, and write the series

0 £(k) (,
Zf '( )(.Z‘—C)k,
0

k

we might expect that this is exactly the representation we want.
Indeed if there is a valid representation then this must be the one,
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since such representations are unique. But can we be sure the series
converges to f on I7 Or even that the series converges at all on I.
The answer to both questions is “no”.

Example 10.22 Consider, for example, the function

f@) =1/ +a?).
This function is infinitely differentiable on all of the real line. Its

Taylor series about « = 0 is, as we have seen in Example 10.21,
o0

1—2? 42t —ab ... = Z(—l)km%.
0
This series converges for |z| < 1 but diverges for |z| > 1. It does
represent f on the interval (—1,1) but not on the full domain of
f. Indeed there can be no series Y .o, apz® that represents f on
(—00,00) since that series would agree with this present series on
(—1,1) and so could not be any different. We could, however, hope
for series > 7o, ar(z — c)* centered at different points ¢ that might
work. <

Worse situations are possible. For example, there are infinitely
differentiable functions whose Taylor series have zero radius of con-
vergence for every c; for these functions

0 (),
0

diverges except at z = c and this is true for all ¢ € IR.?2 For these
functions the Taylor series cannot represent the function.

Another unpleasant situation occurs when a Taylor series con-
verges to the wrong function. This possibility seems even more
startling!

Example 10.23 Consider the function
0, ifr=0
flo) = { e V7 iz #£0.
Exercise 10:5.4 provides an outline for showing that f is infinitely
differentiable on the real line, and that f*)(0) = 0for k =1,2,3,....
Thus the Taylor series for f about z = 0 takes the form ) 5° 0z*
with all coefficients equal to zero. This series converges to the zero

function on the real line, so it does not represent f except at the
origin, even though the series converges for all z. |

*See D. Morgenstern, Math. Nach. 12 (1954), p. 74. One finds here that in a
certain sense “most” infinitely differentiable functions have this property!
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10.5.1 Representing a Function by a Taylor Series

The preceding discussion shows that one should not automatically
assume that a Taylor series for a function f represents f. It is true,
however, that the developments in the earlier sections of this chapter
help us see that many of the familiar Taylor series encountered in
elementary calculus are valid.

Example 10.24 For example, starting with the geometric series
(e o]

1
= (_1)kxk7
14z o

we can apply Theorem 10.13 on integrating a power series term-by-
term to obtain, for |z| < 1,

r q o0 T Kok
In(l+z) = / BN / (1) gt
et ey
o0 k 2 3
-1 T T
= Z( ) el =g -4
5 k+1 2 3
We can notice that the integrated series converges at = 1 and so the
convergence is uniform on [0, 1]. It follows that the representation is
valid for z € (—1, 1] but for no other points. In this case we obtained
a valid Taylor series expansion by integrating a series expansion that
we already knew to be valid. |

To study the convergence of a Taylor series in general, let us
return to fundamentals. Let f be infinitely differentiable in a neigh-
borhood of ¢. For n =0,1,2,... let

n
f®) (¢
Pu) =3 ot
k=0
The polynomial P, is called the n-th Taylor polynomial of f at c.
The difference R, (z) = f(z) — P,(x) is called the n-th remainder
function. In order for the Taylor series about ¢ to converge to f on

an interval I, it is necessary and sufficient that R,, — 0 pointwise on
1.

Example 10.25 We know that the geometric series represents the
function f(z) = (1 — z)~! on the interval (—1,1). We could also
prove this result by relying on the remainder term. For z # 1 and
n=20,1,2,... we have

1 3,‘"+1

=l+z+2°+-+a"+ :
l1-2z l—=z
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Here
Pyz)=14+z+z+2°+ - +2"
and .
z"t
R, (z) = T

For |z| < 1, R,(z) — 0 as n — oco. But we have
f(z) = Py(z) + Ry (z)

and so the Taylor series for f(z) = 1/(1 — z) represents f on the
interval (—1,1). For |z| > 1, the remainder term does not tend to
zero and (as before) we see that the representation is confined to the
interval (—1,1). <

In a more general situation than this example we would not have
an explicit formula for the remainder term. How then should we be
able to show that the remainder term tends to zero? For functions
that are infinitely differentiable in a neighborhood I of ¢, the various
expressions we obtained in Section 7.12 for the remainder functions
R, can be used. In particular, Lagrange’s form of the remainder
allows us to write forn =0,1,2,3,...

Fm(2)
(n+1)!
where z is between z and ¢. With some information on the size of the

derivatives f("*1(z) we can show that this remainder term tends to
zero. The integral form of the remainder term, gives us

f@) = Palo) + o [ @ty e e

Again information on the size of the derivatives f("*+1(¢) might show
that this remainder term tends to zero.

n+1

f(z) = P(z) + (=",

Example 10.26 Let us justify the familiar Taylor series for sinx:

. o (=DF
sinz = 20: %m%ﬂ. (6)

The remainder term is not expressible in any simple way but can
be estimated by using the Lagrange’s form of the remainder. The
coefficients

(=1)*

(2k + 1)!
are easily verified by calculating successive derivatives of f(z) = sinz
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and using the formulas

F®)(0)

kO
To check convergence of the series, apply Lagrange’s form for Ry, (z):
For each = € IR, there exists z such that

f(n+1)(z) n+1
"
(n+ 1)
Now |f("+1(2)| equals either |cos z| or |sinz| (depending on n) so,
in either case, |+ (2)| < 1, and
|Bn(2)] < |2"*1/(n+ 1)L,
Since |z|"*1/(n 4+ 1)! = 0 as n — oo for all z € IR, we can see that
the remainder term |R,(z)| — 0 as n — oo for all z € IR. Thus the

series representation is completely justified for all real x.
Observe that our estimate for |R, ()|,

|Bn(2)| < |z"*"/(n+ 1),

gives also a sense of the rate of convergence of the series for fixed z.
For example, for |z| < 1 we find
|Rn(z)| < 1/(n+ 1)

Thus, if we want to calculate sinz on (—1,1) to within .01, we need
take only the first 5 terms of the series (n = 4) to achieve that degree
of accuracy.

Had we used the integral form for R, (z) we would have obtained
a similar estimate. We leave that calculation as Exercise 10:5.1.
<

ap —

R,(x) =

10.5.2 Analytic Functions

The class of functions that can be represented as power series is
not large. As we have remarked the class of infinitely differentiable
functions is much larger. The terminology that is commonly used
for this very special class of functions is given by the definition.

Definition 10.27 A function f whose Taylor series converges to f
in a neighborhood of c is said to be analytic at c.

The functions commonly encountered in elementary calculus are
generally analytic except at certain “obviously non-analytic points”:
e.g., |z| is not analytic at x = 0, and 1/(1 — z) is not analytic at
x = 1. These functions fail to have even a first derivative at the
point in question. Similarly a function such as f(z) = |z|*> cannot
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be analytic at z = 0 because, while f'(0) and f"(0) exist, f©)(0)
does not. It is not possible to write the complete Taylor series for
such a function since some of the derivatives fail to exist.

Even if a function has infinitely many derivatives at a point it
need not be analytic there. We would be able to write the complete
Taylor expansion but, as we have already noted, the resulting series
might not converge to f on any interval. In this connection, it is
instructive to work Exercise 10:5.4.

In Example 10.26 we justified the Taylor expansion for sinz.
Part of the justification involved the fact that sinz and all of its
derivatives are bounded on the real line. This suggests a general
result.

Theorem 10.28 Let f be infinitely differentiable in a neighborhood
I of c. Suppose z € I and there exists M > 0 such that |f(™ (t)| < M
forallm € INandt € [c,z] (or [z,c] ifx < ¢). Thenlim, o R,(z) =
0. Thus, f is analytic at c.

Proof. We prove the theorem for z > ¢. We leave the case z < ¢
as Exercise 10:5.5.

We use the integral form of the remainder (Theorem 7.43), ob-
taining

1 xr
Rala)l = |7 [ (2 =ty D0 . (7

Using our hypothesis that |f(™)(2)| < M for all ¢ € [c,z], we infer
from (7) that

n

T

Ra@l < o [ @ty
M (.’17 _ t)n—l—l

!l n+1

M

(n+ 1)!(
For fixed z and ¢, (z — ¢) is just a constant, so
M(a: _ C)n—|—1

(n+ 1)
Thus |R,(z)| — 0 and f is analytic at c. [ |

C

T — C)n—l—l

— 0.

Example 10.29 The function f(z) = e” is analytic at z = 0. It is
certainly infinitely differentiable but we need to prove more. This
follows from the previous theorem. We choose, say, the interval
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[—1,1] and note that |f™(z)| = |e*| < e for all z € (—1,1) and
n € IN. A similar observation applies to the analyticity of f at any
point ¢ € R. |

Exercise 10:5.6 provides another theorem similar to Theorem 10.28.

Exercises

10:5.1 Justify formula (6) for sin z using the integral form of the remainder
R, ().

10:5.2 Show that
TR0,
fla) =3 L0,
k=0

under appropriate assumptions on f.

xn—i—l

n!

/1 FOH) (s2)(1 — s)™ ds
0

10:5.3 Show that

1 !
[ e - o ds < B

if f and all of its derivatives exist and are nonnegative on the interval
[0,B].

10:5.4 Let
0, ifz=0
fla) = { e V= ifz £0.

Prove that f is infinitely differentiable on the real line. Show that
f®)(0) = 0 for all £ € IN. Explain why the Taylor series for f about
z = 0 does not represent f in any neighborhood of zero. Is f analytic
at x = c for ¢ # 0?7

10:5.5 Prove Theorem 10.28 for z < c.

10:5.6 Prove Bernstein’s Theorem: If f is infinitely differentiable on an
interval I, and f(")(x) > 0 for alln € IN and x € I, then f is analytic
on I. Apply this result to f(z) = e®.

10:5.7 Use the results of this section to verify that each of the functions
below is analytic at x = 0, and write the Taylor series about x = 0.

(a) cosz?

(b) e

10:5.8 Show that if f and g are analytic functions at each point of an
interval (a,b) then so too is any linear combination af + 9.
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10.6 Products of Power Series
Suppose that we have two power series representations
o0
fl@) =" ap(x — z)"
k=0
and
o0
g9(z) = Z bi(z — )"
k=0

valid in the intervals (—Ry, Rf) and (—R,, R,) respectively. How
should we obtain a power series representation for the product f(z)g(z)?
We might merely compute all the derivatives of this function and so
construct its Taylor series. But is this the easiest or most conve-
nient method? How do we know that such a representation would
be valid?

The most direct approach to this problem is to apply here our
study of products of series from Section 3.8. We know when such a
product would be valid. Indeed, from that theory, we know immedi-
ately that

f(@)g(z) = cr(e — z0)"
k=0

would hold in the interval (—R, R) where R = min{Ry, Ry} and the
coefficients are given by the formulas

k
cr = Z a;bg_;.
7=0

Example 10.30 The product of the series
1
=14zt 4. ..
11—z

and the series
o0
f@) = apat
k=0

gives the representation

fl@) & k
-2 —Z(ao+a1+a2+---+ak)x .
k=0

Where would this be valid? <
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Example 10.31 A representation for the function e” sinz might be
most easily obtained by forming the product

6 3 5

and the series continued as far as is needed for the application at
hand. |

1 1 1 1 1
<1+:1:+§x2+—:v3+...) (x——x3+—x5—...> ::v+:1:2+€:v3+...

10.6.1 Quotients of Power Series

Suppose that we have power series representations of two functions

Zakw and g(z Zbkw

both valid in some 1nterval (—r,r) at least. Can we find a representa-
tion of the quotient function f(z)/g(z)? Certainly we must demand
that g(0) # 0 which amounts to asking for the leading coefficient in
the series for g, the term by not to be zero.

If there is a representation, say a series Y po, cpz® then, evi-
dently, we require that

arT
Zkok chx

bk.Z‘k

This merely means that we want

o o0 [ee]

(Z bkxk) (Z ckwk) = Z akxk.
k=0 k=0 k=0

The conditions for this are known to us since we have already studied

how to form the product of two power series. For this to hold the

coefficients {c;} which, at the moment, we do not know how to

determine should satisfy

bocy = ag
boct + bici = a1
bocz + bicy + baca = aq
and, in general,
bock, + bicg_1 + back_o + - - - + brcy = ay.

Since we know all the a;’s and b;’s we can readily solve these equa-
tions, one at a time starting from the first to obtain the coefficients
for the quotient series. This algorithm (for that is what it is) for
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determining the c’s is precisely “long division”. Simply divide for-
mally the expression (the denominator)

b0+b1$+b2$2+b3$3+...
into the expression (the numerator)
ao + a1z + aga® + agz® + ...

and you will find yourself solving exactly these equations in our al-
gorithm.

But what have we determined? We have shown that if there is a
series representation for f(z)/g(z) then this method will determine
it. We do not have any assurances in advance that there is such a
series though. We offer the next theorem, without proof, for those
assurances. Alternatively in any computation we could construct
the quotient series (all terms!) and determine that it has a positive
radius of convergence. That, too, would justify the method although
it is not likely the most practical approach.

Theorem 10.32 Suppose that there are power series representa-
tions for two functions

flx) = Zakxk and g(x) = Z ba”
k=0 k=0

both valid in some interval (—r,r) at least and that by # 0. Then
there is some positive & > 0 so that the function f(x)/g(z) is analytic
at zero and a quotient series can be found.

The proper setting for a proof of Theorem 10.32 is complex anal-
ysis, where one proves that a quotient of complex analytic functions
is analytic if the denominator is not zero.

Exercises

10:6.1 Show that if f and g are analytic functions at each point of an
interval (a, b) then so too is the product fg.

10:6.2 Under what conditions on the functions f and g on an interval
(a,b) can you conclude that the quotient f/g is analytic?

10:6.3 Using long division find the first few terms of the power series
expansion of
T4 2
22+x4+1
centered at z = 0. What other method would have given you these
same numbers?
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10:6.4 Using long division and the power series expansions for sinz and
cosz find the first few terms of the power series expansion of tanz
centered at z = 0. What other method would have given you these
same numbers?

10:6.5 Find a power series expansion centered at = 0 for the function

sin 2x
sinz
Did the fact that sinz = 0 at £ = 0 make you modify the method
here?
10:6.6 Show that if
1 -~
= CrLX
SR

is valid then

o
N
>
=
S
o
(e
o OO

(=D*
br bp—1 br—2 br—3z ... b
10.7 Composition of Power Series

Suppose that we wished to obtain a power series expansion for the

function ™% using the two series expansions
1 1
=1 S L
e +x+ 2x + 630 +
and
. 1 3 + 1 5
sinx =z — —z°+ —z° —....
3 5

Without pausing to decide if this makes any sense let us simply insert
the series for sinz in the appropriate positions in the series for e*.
Then we might hope to justify that

1
sinz _ q | et
e +(:c 3:6 +5ac )
1 1 1 | 1 1 3
+§(J;—§x3+3x5—...) +6(x—§m3+gm5—...> +...

and expand grouping terms in the obvious way, getting (at least for
a start)
ST =14+ 112— 1:1:3—|-
5 6 .
Is this method valid?
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To justify this method we state (without proof) a theorem giving
some conditions when this could be verified. Note that the conditions
are as one should expect for a composition of functions f(g(z)). The
series for g(z) is expanded about a point zy. That is inserted into
a series expanded about the value g(zy) thus obtaining a series for
f(g(x)) expanded about the point zy. The proof is not difficult
if approached within a course in complex variables, but would be
mysterious if attempted as a real variable theorem.

Theorem 10.33 Suppose that there are power series representa-
tions for two functions

[e o] o0
g(z) =C+ Zak(x —z0)* and f(z) = Z b(z — C)*
k=1 k=0
both valid in some nondegenerate intervals about their centers. Then

there is a power series expansion for
[ee]
flg(x)) =D enle — o)
k=0
with a positive radius of convergence whose coefficients can be o0b-
tained by inserting the series for g(x) — C into the series for f, i.e.,
by expanding

k
[’}

aj(z — mo)j
1

o
k=0 \j
formally.

Exercises

10:7.1 Under what conditions on the functions f and g on an interval
(a,b) can you conclude that the composition f o g is analytic?

10:7.2 Find the first few terms in the power series expansion of es** by
a method different from that in this section.

10:7.3 Find the first few terms in the power series expansion of €% using
the method discussed in this section.

10.8 Trigonometric Series

In this section we present a short introduction to another way of rep-
resenting functions, namely as trigonometric series or Fourier series.
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There are deep connections between power series and Fourier series
so this theory does belong in this chapter (see Exercise 10:8.1).
The origins of the subject go back to the middle of the eigh-
teenth century. Certain problems in mathematical physics seemed
to require that an arbitrary function f with a fixed period (taken
here as 27) be represented in the form of a trigonometric series

o0
ft) = %ao + Z (a; cos jt + bjsin jt), (8)
j=1
and such mathematicians as Daniel Bernoulli, d’Alembert, Lagrange,
and Euler had debated whether such a thing should be possible.
Bernoulli maintained that this would always be possible, while Euler
and d’Alembert argued against it.

Joseph Fourier (1768-1830) saw the utility of these representa-
tions and, although he did nothing to verify his position other than to
perform some specific calculations, claimed that the representation
in (8) would be available for every function f and gave the formulas

e K

aj = — f(t)cosjtdt and b; = 1 f(t)sinjtdt
™ -7 ™ -7

for the coefficients.

While his mathematical reasons were not very strong and much
criticized at the time, his instincts were correct and series of this form
with coefficients computed in this way are now known as Fourier
series. The a; and b; are called the Fourier coefficients of f.

10.8.1 Uniform Convergence of Trigonometric Series

For a first taste of this theory we prove an interesting theorem that
justifies some of Fourier’s original intuitions. We show that if a
trigonometric series converges uniformly to a function f then neces-
sarily those coefficients given by Fourier are the correct ones.

Theorem 10.34 Suppose that

o
f@) = %a0+ Z (aj cos jt + bj sin jt), (9)
=1
with uniform convergence on the interval [—m,w]. Then it follows
that the function f is continuous and the coefficients are given by
Fourier’s formulas:

T 1 Q
aj=— | f(t)cosjtdt and bj=— [ f(t)sinjtdt
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Proof. Fix j > 1, choose n > j and write

n
Sn(t) = 2ag + Z (a, cos kt + by sin kt)
k=1
i.e., the partial sums of the series. A straightforward, if tiresome,
calculation shows that

T 7T

Sp(t) cos jtdt = / (cos jt)? dt = . (10)
- -7

This is, remember, just a finite sum. The orthogonality formulas in

Exercise 10:8.3 assist in this computation.

We are assuming that S,, — f uniformly and so it follows too,
since cos jt is bounded that S,,(t) cosjt — f(t)cosjt uniformly for
t € [—m,m]. It follows, since all functions here are continuous, that

™

™

lim Sp(t) cos jtdt = f(t) cos jt dt.
n—oo J_. —r

In view of (10) this proves the formula for a; and j > 1. The formulas

for ag and b; for 7 > 1 can be obtained by an identical method. W

10.8.2 Fourier Series

Emboldened by the theorem we have just proved we make a dramatic
move, the same move that Fourier made. We start with the function
f (not the series) and construct a trigonometric series by using these
coefficient formulas.

Note the twist in the logic. If there is a trigonometric series
converging uniformly to a continuous function f then it would have
to be given by the formulas of Theorem 10.34. Why not start with
the series even if we have no knowledge that the series will converge
uniformly, even if we do not know whether it will converge uniformly
to the function we started with, indeed even if the series diverges?

Definition 10.35 Let f be a Riemann integrable function on the
interval [—m, 7| and let

1 (" L ["
aj = = f(t)cosjtdt and b; = — f(t)sinjtdt.
™ J_x mJn
Then the series
o
%a0+2(aj cos jt + bj sin jt), (11)
j=1

is called the Fourier series of f.
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There is a mild understanding here that the series should be
somehow related to f and there is a hope that the series can be
used as a “representation” of f. But uniform convergence is out of
the question in general. Indeed even pointwise convergence is rather
too much to hope for. To emphasize that this relation is not one of
equality we usually write

(e ¢]
f(t) ~ 3ao+ Z (@ cos jt + bj sin jt).
j=1

Exercises

10:8.1 Let f(2) = Y o, ar2z® be a complex power series with a radius
of convergence larger than 1. By setting z = €% find a connection
between complex power series and trigonometric series.

10:8.2 Explain why it is that for any Riemann integrable function f we
can claim that the integrals defining the Fourier coefficients of f
exist.

10:8.3 Check the so-called orthogonality relations by computing that for
integers k # j, and all i

™ k0

1 : s _ 1 o _
oy 77rsm(kt)sm(jt)dt—0, 277/ cos(kt) sin(it) dt = 0,

—T

and
1 Ky
—/ cos(kt) cos(jt) dt = 0.
2m J_,

10:8.4 Check that for integers i, k # 0,
K

1 .
— (sinkt)*dt =1
27 J_

and
™

1
— (cosit)>dt = 1.
27

-7

10.8.3 Convergence of Fourier Series

The theory of Fourier Series would have a much simpler, if less fasci-
nating, development if the Fourier series of every continuous function
converged uniformly to the original function. Not only is this false
but the Fourier series of a continuous function can diverge at a large
set of points. This leaves us with a serious difficulty. The Fourier
series of a function is expected to represent the function but how?
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If it does not converge to the function how can it be used as a rep-
resentation?

There is a mistake in our reasoning. We know that if a series
converges to a function in suitable ways then the function may be
integrated and differentiated by termwise integration and differenti-
ation of the series. But it may be true that a series may be manip-
ulated in these ways even if the series diverges at some points. A
representation need not be a pointwise or uniform representation to
be useful.

In our next theorem we show that the Cesaro sums of the Fourier
series of a suitable function do converge uniformly to the function
even if the series itself is divergent. The reader should review the
topic of Cesaro summability in Section 3.9.1. A young Hungarian
mathematician Leopold Fejér (1880-1959) obtained this theorem in
1900.

Theorem 10.36 (Fejér) Let f be a continuous function on [—m, 7]
so that f(—m) = f(x). Then the sequence of Cesaro means of the
partial sums of the Fourier series for f converges uniformly to f on
[_7"1 7T] :

Proof. Throughout the proof we may consider that f is defined
on all of IR and is 27-periodic. We write

n
Sn(z) = 2ag + Z (ak cos kz + b sinkx)
k=1

for the partial sums of the Fourier series of f (this means the coef-
ficients a;, b; are determined by using Fourier’s formulas. Then we
write
so(z) + s1(x) + sa(x) + - - - + sp(x)

n+1
for the sequence of averages (Cesaro means).

Our task is to prove that o, — f uniformly. Looking back we
see that each o,(z) is a finite sum of terms si(z) and each si(z)
is a finite sum of terms involving a;, b; each of which is expressible
as a an integral involving f and sin’s and cos’s. Thus after some
considerable, but routine computations, we arrive at a formula

onle) == [ FUE+0 + @ —1) Kal)dt

on(z) =

or the equivalent formula

oulz) = 1 /0 C(fert) + fa—t)Ea)d.  (12)

™
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Figure 10.1: Fejér kernel K,,(¢) for n =1, 2, 3, 4, and 5.

Here K, is called the Fejér kernel and for each n,

Ko(t) = — (sin(%(n+1)t))_

2(n+1) sin 1¢

The reader can just accept the computations for the purposes of our
short introduction to the subject.

The Fejér kernel of order n enjoys the following properties, each
of which is evident from its definition:

1. Each K, (t) is a nonnegative, continuous function.

2. For each n,

1 [T 2 [T
L7 ko)t = —/ Kn(t) dt = 1.
™ Jo

™ -
3. For each n and 0 < |t| < ,

™
< Kp(t) € ———
0< Kalt) < (n+ 1)

Figure 10.1 illustrates the graph of this function for n = 1, 2, 3, 4,
and 5.
Let € > 0, and choose § > 0 so that

|f(z+8) + flz —1) = 2f(2)] <e

for every 0 < ¢ < §. This just uses the uniform continuity of f.
We note that

2 e
= [ st = (o)
T Jo

by using the property 2 above. Thus we have

ru) = @) < 1 [ 1@+ 0 + 7o =) = 27(@)] Kalt)
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SI].+IZa

where I; is the integral taken over [0, d] and I is the integral taken
over [d, 7]. Since K, is nonnegative, we did not need to keep it inside
the absolute value in the integral. The part I; will be small (for all
n) because the expression in the absolute values is small for ¢ in the
interval [0, d]. The part Iy will be small (for large n) because of the
bound on the size of K, for ¢ away from zero in property (4) above.
Here are the details: for I; we have

€ 4
L < —/ Kn(t)dt < e.
™ Jo

For I, let
kp =sup{K,(t): 6 <t <7},
and note that property 3 supplies us with the fact that x, — 0 as
n — oo. Now we have
Kne [T

L<— : (If @+ + [f (@ = )| +2|f (z)]) dt

so that we can make I» as small as we please by choosing n large
enough. It follows, since € and z are arbitrary, that

nlggoo'n(x) = f(=),

uniformly for z € [—m, 7] as required. [ |

Exercises

10:8.1 Let s, () be the sequence of partial sums of the Fourier series for
a 2rw-periodic integrable function f. Show that

@) =+ [ S+ + S~ 1) Dote)
and 7;
@) == [ (@ + fla= D) Do)
where

is called the Dirichlet kernel. Figure 10.2 illustrates the graph of this
function for n = 1, 3, and 7. It should be contrasted with Figure 10.1.

10:8.2 Establish the following properties of the Dirichlet kernel:

(a) Each D,(t) is a continuous, 27-periodic function.
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Figure 10.2: Dirichelet kernel D,,(t) for n =1, 3, and 7.

(b) Each D, (t) is an even function.

(¢) For each n,

1 /7 2 ("
— D, (t)dt = — D,(t)dt = 1.
- [ pawa== [ Doy

-

(d) For each n,
sin (n+ 1)t
D,(t) = 72( - 12)
sin 3¢
(e) For each n, D,(0) =n + &.
(f) For each n and all t, [D,(t)| <n+ 3.
(g) For each n and 0 < |t| < m,

10:8.3 Let

where D; are the Dirichlet kernels. Show that the formula for the
averages o, given in the proof of Theorem 10.36 is correct.

10.8.4 Weierstrass Approximation Theorem

Fejér’s theorem allows us to prove the famous Weierstrass approxi-
mation theorem. Note that a consequence of Fejér’s theorem is that
continuous, 27-periodic functions can be uniformly approximated by
trigonometric polynomials. Weierstrass’ theorem asserts that contin-
uous functions on a compact interval can be uniformly approximated
by ordinary polynomials.
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Theorem 10.37 (Weierstrass approximation) Let f be a con-
tinuous function on an interval [a,b], and let € > 0. Then there is a
polynomial

9(x) = anz™ + an_1z" M aiz + ag
so that
|f(z) —g(z)] <e
for all z € [a,b].

Proof. It is more convenient for this proof to assume that [a,b] =
[0,1]. The general case can be obtained from this.

Let f be a continuous, function on [0, 1], let € > 0, and write
F(t) = f(|cost|). Then F is a continuous, 2w-periodic function and
can be approximated by a trigonometric polynomial within €. This
is because, in view of Theorem 10.36, for large enough n the Cesaro
means o, (f) are uniformly close to f.

Since F is even [i.e., F(t) = F(—t)] we can figure out what form
that trigonometric polynomial may take. All the coefficients by in-
volving sin kt in the Fourier series for F' must be zero. Thus when
we form the averages of the partial sums we obtain only sums of
cosines. Consequently we can find ¢, ¢1, co, ... ¢, so that

n
F(t) — Z cj cos jt
0
for all ¢. Each cos jt can be written using elementary trigonometric
identities as Tj(cost) for some jth order (ordinary) polynomial T},
and so, by setting z = cost for any z € [0, 1], we have

f®) =) ¢iTi(x)
0

which is exactly the polynomial approximation that we need. |
The polynomials 7T; that appear in the proof are well known as

<e (13)

<e,

the Tchebychev polynomials and are easily generated (see Exer-
cise 10:8.2).

Exercises

10:8.1 Show that once Theorem 10.37 is proved for the interval [0,1] it
can be deduced for any interval [a, b].

10:8.2 Define the Tchebychev polynomials by requiring T to be a poly-
nomial so that
cos jt = Tj(cost)
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identically. Show that To(z) =1, Ti(z) = z, and
Tn(w) = 2$Tn,1(.’L‘) - Tn72(m)'
Generate the first few of these polynomials.

10:8.3 Show that Theorem 10.37 can be interpreted as asserting that for
any continuous function on an interval [a,b] there is a sequence of
polynomials p,, converging to f uniformly on [a, b].

10:8.4 Does Exercise 10:8.3 also imply that there must be a power series
expansion converging to f uniformly on [a, b]?

10:8.5 Let f be a continuous function on an interval [a,b], and let € > 0.
Show that there must exist a polynomial p with rational coefficients
so that

[f(z) —p(z)| <e
for all z € [a, b].

10:8.6 Let f : IR — IR be a continuous function and let € > 0. Must there
exist a polynomial p so that

|f(z) —p(z) <e
for all z € IR.

10:8.7 Let f : (0,1) —» IR be a continuous function and let € > 0. Must
there exist a polynomial p so that

|/ (@) —pla)| <e
for all z € (0,1).

10:8.8 Let f: [0,1] = IR be a continuous function with the property that

/1 f@)z™dx =0
0

for alln =0,1,2,3,.... What can you conclude about the function
f?

10:8.9 Let f:[0,1] — IR be a continuous function with the property that
f(0) =0 and

1
/ f(z)sinmnzdx =0
0

for alln =1,2,3,.... What can you conclude about the function f7



