Instructors Preface

American colleges and universities have for many years offered courses
with titles such as Advanced Calculus or Introductory Real Analysis.
These courses are taken by a variety of students, serve a number of
purposes, and are written at various levels of sophistication. The
students range from ones who have just completed a course in el-
ementary calculus to beginning graduate students in mathematics.
The purposes are multifold:

(1) To present familiar concepts from calculus at a more rigorous
level.

(2) To introduce concepts that are not studied in elementary cal-
culus, but which are needed in more advanced undergraduate
courses. This would include such topics as point set theory,
uniform continuity of functions and uniform convergence of se-
quences of functions.

(3) To provide students with a level of mathematical sophistication
that will prepare them for graduate work in mathematical anal-
ysis.

(4) To develop many of the topics that the authors feel “all students
of mathematics should know.”

There are now many texts that address some or all of these objec-
tives. These books range from ones that do little more than address
objective (1), to ones that try to address all four objectives. The
books of the first extreme are generally aimed at one-term courses
for students with minimal background. Books at the other extreme
often contain substantially more material than can be covered in a
one-year course.

The level of rigor varies considerably from one book to another.
So does the style of presentation—some books endeavor to give a
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very efficient streamlined development, others try to be more “user-
friendly”. We have opted for the “user-friendly” approach. We feel
this approach makes the concepts more meaningful to the student.

Our experience with students at various levels has shown that
most students have difficulties when topics that are entirely new to
them first appear. For some students that might occur almost imme-
diately when rigorous proofs are required, for example, ones needing
0-¢ arguments. For others, the difficulties begin with elementary
point set theory, compactness arguments and the like.

To help students with the transition from elementary calculus
to a more rigorous course we have included motivation for concepts
most students have not seen before and provided more details in
proofs when we introduce new methods. In addition, we have tried
to give the students ample opportunity to see the use of the new
tools in action.

For example, students often feel uneasy when they first encounter
the various “compactness arguments” (Heine-Borel theorem, Bolzano
Weierstrass theorem, Cousin’s lemma introduced in Section 4.5). To
help the student see why such theorems are useful, we pose the prob-
lem of determining circumstances under which local boundedness of
a function f on a set E implies global boundedness of f on E. We
show by example that some conditions on E are needed, namely that
FE be closed and bounded, and then show how each of several theo-
rems could be used to show that closed and boundedness of the set
E suffices. Thus we introduce students to the theorems by showing
how the theorems can be used in natural ways to solve a problem.

We have attempted to write this book in a manner sufficiently
flexible to make it possible to use the book for courses of various
lengths and a variety of levels of mathematical sophistication.

Much of the material in the book involves rigorous development
of topics of a relatively elementary nature, topics that most students
have studied at a nonrigorous level in a calculus course. A short
course of moderate mathematical sophistication intended for stu-
dents of minimal background can be based entirely on this material.
(We indicate some possible choices for such courses below). Such a
course might meet objective (1).

The remaining material falls roughly into two categories:

(E) Relatively elementary material that could be added to a longer
course to provide enrichment and additional examples.

(A) Material of a more more mathematically sophisticated nature
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that would prepare a student for more advanced topics in real
analysis. These topics might be needed later in this book, in
a more advanced undergraduate course or in a beginning level
graduate class.

We apply these markings to some entire chapters as well as to
some sections within chapters and even to certain exercises. We do
not view these markings as absolute. They can simply be interpreted
in the following ways. Any unmarked material will not depend, in
any substantial way, on earlier marked sections. In addition, if a
section or exercised marked (A) will be used in a later section of this
book, we indicate where it will be required.

The material marked (A) is in line with goals (2) and (3) above.
We resist the temptation to address objective (4). There are sim-
ply too many additional topics that one might feel “every student
should know”, e.g., functions of several variables, vector analysis,
Riemann-Stieltjes and Lebesgue integrals. To cover these topics in
the manner we cover other material would render the book more like
a reference book than a text that could reasonably be covered in
a year. Students who have completed this book will be in a good
position to study such topics at rigorous levels.

We include a chapter on metric spaces, however. We do this
for two reasons: to offer a more general framework for viewing con-
cepts treated in earlier chapters, and to illustrate how the abstract
viewpoint can be applied to solving concrete problems.

The exercises form an integral part of the book. Many of these
exercises are routine in nature. Others are more demanding. A few
provide examples that are not usually presented in books of this type,
but that students have found challenging, interesting and instructive.

We should make one more point about the exposition. We do
assume that students are familiar with nonrigorous calculus. In par-
ticular, we assume familiarity with the elementary functions and
their elementary properties. We also assume some familiarity with
computing derivatives and integrals. This allows us to illustrate var-
ious concepts using examples familiar to the students. For example,
we begin Chapter 2 on sequences with a discussion of approximating
V2 using Newton’s method. This is merely a motivational discus-
sion, so we are not bothered by the fact that that we don’t treat
the derivative formally until Chapter 7, and haven’t yet proved that
%(az2 —2) = 2z. For students with minimal background we provide
an appendix that informally covers such topics as notation, elemen-
tary set theory, functions, and proofs.
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We have tried to write this book in a leisurely style. This allows
us to provide motivational discussions and historical perspective in a
number of places. Even though the book is relatively large (in terms
of number of pages), we can comfortably cover virtually all of it in
a full year course, including many of the interesting exercises.

Instructors teaching a short course have several options. One can
base a course entirely on the unmarked material of Chapters 1, 2, 4,
5 and 7. As time permits, one can add parts of Chapters 3 and 8.
Some of the material in Chapters 5 and 8 depend on Theorem 5.43
which states that a continuous function on a closed bounded interval
[a,b] is uniformly continuous. The proof of this theorem requires
using at least one of the compactness arguments in Section 4.5. An
instructor who skips that section may wish to accept Theorem 5.43
without proof.

Chapter Dependencies — (Unmarked Sections)

chapter 1
chapter 2 chapter 4 chapter 5 chapter 6

chapter 3

chapter 10

AM.B.
J.B.B.
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Chapter 1

PROPERTIES OF THE
REAL NUMBERS

1.1 Introduction

The goal of any analysis course is to do some analysis. There are
some wonderfully important and interesting facts that can be estab-
lished in a first analysis course.

Unfortunately all of the material we wish to cover rests on some
foundations, foundations that may not have been properly set down
in your earlier courses. Calculus courses traditionally avoid any foun-
dational problems by simply not proving the statements that would
need them. Here we cannot avoid this. We must start with the real
number system.

Historically much of real analysis was undertaken without any
clear understanding of the real numbers. To be sure the mathe-
maticians of the time had a firm intuitive grasp of the nature of the
real numbers and often found precisely the right tool to use in their
proofs, but in many cases the tools could not be justified by any line
of reasoning.

By the 1870’s mathematicians such as Cantor and Dedekind had
found ways to describe the real numbers in a way that seemed rig-
orous. We could follow their example and find a presentation of the
real numbers that starts at the very beginning and leads up slowly
(very slowly) to the exact tools that we need to study analysis. This
subject is, perhaps, best left to courses in logic where other impor-
tant foundation issues can be discussed.

The approach we shall take (and most textbooks take) is simply

1



2 Chapter 1. Properties of the Real Numbers

to list all the tools that are needed in such a study and take them for
granted. You may consider that the real number system is exactly
as you have always imagined it. You can sketch pictures of the real
line and measure distances and consider the order just as before.
Nothing is changed from high school algebra or calculus. But when
we come to prove assertions about real numbers or real functions
or real sets we must use exactly the tools here and not rely on our
intuition.

1.2 The Real Number System

To do real analysis we should know exactly what the real numbers
are. Here is a very loose exposition, suitable for calculus students
but (as we will see) not suitable for us.

The Natural Numbers IN We start with the natural numbers.
These are the counting numbers

1,2,3,4,....

The symbol IN is used to indicate this collection. Thus n € IN means
that n is a natural number, one of these numbers 1,2, 3,4, .. ..
There are two operations on the natural numbers, addition and
multiplication:
m+mn and m-n.

There is also an order relation
m < n.

Large amounts of time in elementary school are devoted to an un-
derstanding of these operations and the order relation.

(Subtraction and division can also be defined, but not for all
pairs in IN. While 7 — 5 and 10/5 are assigned a meaning (we say
x=7-5ifz+5=7and we say x = 10/5 if 5 -z = 10) there is
no meaning that can be attached to 5 — 7 and 5/10 in this number
system.)

The Integers Z For various reasons, usually well motivated in
the lower grades, the natural numbers prove to be rather limited in
representing problems that arise in applications of mathematics to
the real world. Thus they are enlarged by adjoining the negative
integers and zero. Thus the collection

e, —4,-3,-2,-1,0,1,2,3,4, ...
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is denoted Z and called the integers. (The symbol IN seems obvious
enough [N for “natural”] but the symbol Z for the integers originates
in the German word for whole number.)
Once again there are two operations on Z, addition and multi-
plication:
m-+n and m-n.

Again there is an order relation
m < n.

Fortunately the rules of arithmetic and order learned for the simpler
system IN continue to hold for Z and the young students extend their
abilities perhaps painlessly.

(Subtraction can now be defined in this larger number system,
but division still may not be defined [(e.g., —9/3 is defined but
3/(—9) is not]).

The Rational Numbers Q At some point the problem of the
failure of division in the sets IN and Z becomes acute and the student
must progress to an understanding of fractions. This larger number
system is denoted Q where the QQ here is meant to suggest quotients,
which is after all what fractions are.

The collection of all “numbers” of the form
m

n
where m and n are integers and n is not zero, is called the set of
rational numbers and is denoted Q.

A higher level of sophistication is demanded for the young stu-
dents. Now they need to understand that equality has a new mean-
ing. In IN or Z a statement m = n meant merely that m and n were
the same object. Now

m

Sal S

n
for m, n, a, b € Z (and n # 0, b # 0) means that
m-b=a-n.
Addition and multiplication present major challenges too. It may
be obscured by teachers who dwell too long on physical models and
colored sticks, but ultimately the students must learn that
m a mb+na

n b nb

m
n

and
ma

a
b nb’
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Subtraction and division are similarly defined. Fortunately once
again the rules of arithmetic are unchanged. The associative rule,
distributive rule, etc. all remain true even in this number system.
Even though the rules are the same the young students may still
suffer under their early lessons in the dreaded world of fractions.
Again too an order relation

m _a

n < b
is available. It can be defined by requiring mb < na. Again, too, the
same rules for inequalities learned for integers and natural numbers
are valid for rationals.

The Real Numbers IR Up to this point in developing the real
numbers we have encountered only arithmetic operations. The pro-
gression from IN to Z to Q is simply algebraic. All this algebra might
have been a burden to the weaker students in the lower grades, but
conceptually the steps are easy to grasp with a bit of familiarity.

The next step, needed for all calculus students, is to develop the
still larger system of real numbers, denoted as IR. We often refer
to the real number system as the real line and think about it as
a geometrical object, even though nothing in our definitions would
seem at first sight to allow this.

Most calculus students would be hard pressed to say exactly what
these numbers are. They recognize that IR includes all of IN, Z, and
Q and also many new numbers such as v/2, e, and 7. But asked
what a real number is many would return a blank stare. Even just
asked what /2, e, or 7 are often produces puzzlement. Well /2 is
a number whose square is 2. But is there a number whose square is
2?7 A calculator might oblige with 1.4142136 but (1.4142136)? is not
2. So what exactly “is” this number v/2? If we are unable to write
down a number whose square is 2 why can we claim that there is a
number whose square is 27 And 7 and e are worse.

Some calculus texts handle this for the students by proclaim-
ing that real numbers are obtained by infinite decimal expansions.
Thus while rational numbers have infinite decimal expansions that
terminate (e.g., 1/4 = 0.25) or repeat (e.g., 1/3 =0.333333...) the
collection of real numbers would include a¢ll infinite decimal expan-
sions whether repeating, terminating or not. In that case the claim
would be that there is some infinite decimal expansion 1.414213. ..
whose square really is 2 and that infinite decimal expansion is the
number we mean by the symbol /2.
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This approach is adequate for applications of the calculus and is
a useful way to avoid doing any hard mathematics in introductory
calculus courses. But the reader should recall that, at certain stages
in the calculus textbook that you used, would have appeared a phrase
such as “the proof of this next theorem is beyond the level of this
text”. It was beyond the level of the text only because the real
numbers had not been properly treated and so there was no way
that a proof could have been attempted.

We need to construct such proofs and so we need to abandon this
loose, descriptive way of thinking about the real numbers. Instead
we will define the real numbers to be a complete, ordered field. In
the next sections each of these terms is defined.

1.3 Algebraic Structure

We describe the real numbers by assuming that they have a collec-
tion of properties. We do not construct the real numbers, we just
announce what properties they are to have. Since the properties that
we develop are familiar and acceptable and do in fact describe the
real numbers that we are accustomed to using, this approach should
not cause any distress. We are just stating rather clearly what it is
about the real numbers that we need to use.

We begin with the algebraic structure.

In elementary algebra courses one learns many formulas that are
valid for real numbers. For example the formula

(z+y)+z=z+(y+2)

called the associative rule is learned. So also is the useful factoring
rule
2,2 _
" -y = (z—y)(z+y)
It is possible to reduce the many rules down to one small set of rules
that can be used to prove all the other rules.

These rules can be used for other kinds of algebra, algebras where
the objects are not real numbers but some other kind of mathemat-
ical constructions. This particular structure occurs so frequently,
in fact, and in so many different applications that it has its own
name. Any set of objects which has these same features is called a
field. Thus we can say that the first important structure of the real
number system is the field structure.

The following nine properties are called the field axioms. When
we are doing algebra in the real number system it is the field axioms
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that we are really using.

Assume that the set of real numbers IR has two operations, called
addition “4” and multiplication “-” and that these operations satisfy
the field axioms. The operation a - b (multiplication) is most often
written without the dot as ab.

A1l For any a, b € IR there is a number a+b € R and a+b =b+a.

A2 For any a, b, c € R the identity
(@a+b)+c=a+ (b+c¢)

is true.

A3 There is a unique number 0 € IR so that
a+0=0+a=a
for all a € IR.
A4 For any number a € IR there is a corresponding number denoted
—a with the property that
a+ (—a) =0.

M1 For any a, b € IR there is a number ab € IR and ab = ba.

M2 For any a, b, c € IR the identity
(ab)c = a(bc)

is true.

M3 There is a unique number 1 € IR so that
al=1a=a
for all a € IR.

M4 For any number a € IR, a # 0, there is a corresponding number
denoted a~! with the property that

aa" ! =1.

AM1 For any a, b, ¢ € IR the identity
(a + b)c = ab+ bc

is true.
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Note that we have labeled the axioms with letters indicating
which operations are affected, thus A for addition and M for multi-
plication. The distributive rule AM1 connects addition and multi-
plication.

How are we to use these axioms? The answer likely is that,
in an analysis course, you would not. You might try some of the
exercises to understand what a field is and why the real numbers form
a field. In an algebra course it would be most interesting to consider
many other examples of fields and some of their applications. For
an analysis course, understand that we are trying to specify exactly
what we mean by the real number system and these axioms are just
the beginning of that process.. The first step in that is to declare that
the real numbers form a field under the two operations of addition
and multiplication.

Exercises

1:3.1 The field axioms include rules known often as “associative rules”,
“commutative rules” and “distributive rules”. Which are which and
why do they have these names?

1:3.2 To be precise we would have to say what is meant by the operations
of addition and multiplication. Let S be a set and let S x S be the
set of all ordered pairs (s1, s3) for s1, s2 € S. A binary operation on
S is a function B : S x S — S. Thus the operation takes the pair
(s1,82) and outputs the element B(sy, ss). For example addition is
a binary operation. We could write (s1, s2) = A(s1, s2) rather than
the more familiar (s1, s2) = 1 + s2.

(a) Rewrite axioms A1-A4 using this notation A(sq,s2) instead of
the sum notation.

(b) Define a binary operation on IR different than addition, sub-
traction, multiplication or division and determine some of its
properties.

(¢) For a binary operation B define what you might mean by the
commutative, associative and distributive rules.

(d) Does the binary operation of subtraction satisfy any one of the
commutative, associative or distributive rules?

1:3.3 If in the field axioms for IR we replace IR by any other set with two
operations + and - that satisfy these nine properties then we say that
that structure is a field. For example Q is a field. The rules are valid
since QQ C IR. The only thing that needs to be checked is that a + b
and a - b are in Q if both a and b are. For this reason Q is called a
subfield of R. Find another subfield.
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1:3.4 Let S be a set consisting of two elements labeled as A and B. Define
A+ A=A, B+B=A A+B=B+A=DB,A-A=A4
A-B=B-A= A and B-B = B. Show that all nine of the axioms
of a field hold for this structure.

1:3.5 Using just the field axioms show that
(z+1)° =224+22+1
for all z € IR. Would this identity be true in any field?

1:3.6 Define operations of addition and multiplication on the finite set
Zs ={0,1,2,3,4} as follows:

+(0 1 2 3 4 x[0 1 2 3 4
0(0 1 2 3 4 0j0 0 0 0O
111 2 3 4 0 110 1 2 3 4
212 3 401 210 2 41 3
313 4 01 2 310 3 1 4 2
414 01 2 3 410 4 3 21

Show that Zs satisfies all the field axioms.

1:3.7 Define operations of addition and multiplication on the finite set
Z¢ ={0,1,2,3,4,5} as follows:

+({0 1 2 3 4 5 x|0 1 2 3 4 5
0(0 1 2 3 4 5 00 00 0 00
111 2 3 4 5 0 110 1 2 3 4 5
212 3 45 01 2(0 2 40 2 4
313 45 01 2 310 3 0 3 0 3
414 5 01 2 3 410 4 2 0 4 2
515 0 1 2 3 4 5(0 5 4 3 2 1

Which of the field axioms does Zjs fail to satisfy?
] 1:3.8 The complex numbers C are defined as equal to the set R? of all
ordered pairs of real numbers subject to these operations:
(a1,b1) + (ag,b2) = (a1 + az, b1 + b2)
and
(a1,b1) - (a2, b2) = (@1az — biby, arbs + aghy).
(a) Show that C is a field.
(b) What are the additive and multiplicative identity elements?

(¢) What are the additive and multiplicative inverses of an element
(a,b)?

(d) Solve (a,b)? = (1,0) in C.

(e) We identify IR with a subset of C by identifying the elements

z € R with the element (z,0) in C. Explain how this can be
interpreted as saying that “IR is a subfield of C”.)
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(f) Show that there is an element i € C with 2 = —1 so that every
element z € C can be written as z = = + iy for z, y € R.

(g) Explain why the equation 22 + z + 1 = 0 has no solution in IR,
but two solutions in C.

1.4 Order Structure

The real number system also enjoys an order structure. Part of
our usual picture of the reals is the sense that some numbers are
“bigger” than others or more to the “right” than others. We express
this by using inequalities * < y or x < y. The order structure
is closely related to the field structure. For example when we use
inequalities in elementary courses we frequently use the fact that
ifz < yand 0 < 2z then zz < yz, i.e., that inequalities can be
multiplied through by positive numbers.

This structure, too, can be axiomatized and reduced to a small
set of rules. Once again these same rules can be found in other
applications of mathematics. When these rules are added to the
field axioms the result is called an ordered field.

The real numbers system is an ordered field, satisfying the further
four axioms. Here a < b is now a statement which is either true or
false. (Before a + b and a - b were not statements, but elements of
R.)

O1 For any a, b € IR exactly one of the statements a = b, a < b or
b < a is true.

O2 For any a, b, c€ IR if a < b is true and b < ¢ is true then a < ¢
is true.

O3 For any a, b € R if a < b is true then a + ¢ < b+ ¢ is also true
for any ¢ € IR.

O4 For any a, b€ IR if a < b is true then a-c < b- ¢ is also true for
any ¢ € R for which ¢ > 0.

How are we to use these axioms? The answer once again likely
is that, in an analysis course, you would not. You can rely on your
earlier practice with inequalities in more elementary courses. Try
some exercises in order to appreciate what an ordered field is and
why the real numbers form an ordered field.
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Exercises

1:4.1 Using just the axioms here prove that
ad + be < ac + bd
if a<bandc<d.

1:4.2 Show for every n € IN that n? > n.

1:4.3 Using just the axioms here prove the arithmetic-geometric mean in-
equality:
b
vab < a _2}—

for any a, b € IR with a > 0 and b > 0. (Assume, for the moment,
the existence of square roots.)

1:4.4 Can an order be defined on the field C of Exercise 1:3.8 in such a
way so to make it an ordered field?

1.5 Bounds

Let E be some set of real numbers. There may or may not be a
number M that is bigger than every number in the set E. If there
is we say that M is an upper bound for the set. If there is no upper
bound then the set is said to be unbounded above or to have no
upper bound. This is a simple enough idea but it is critical to an
understanding of the real numbers and so we shall look more closely
at it and give some precise definitions.

Definition 1.1 (Upper Bounds) Let E be a set of real numbers.
A number M is said to be an upper bound for E if x < M for all
Tz € LB

Definition 1.2 (Lower Bounds) Let E be a set of real numbers.
A number m is said to be a lower bound for E if m < x forallx € E.

It is often very important to note whether a set has bounds or
not. A set that has an upper bound and a lower bound is called
bounded.

A set can have many upper bounds. Indeed every number is an
upper bound for the empty set (). A set may have no upper bounds.
We can use the phrase “E is unbounded above” if there are no upper
bounds. For some sets the most natural upper bound (from among
the infinitely many to choose) is just the largest member of the set.
This is called the maximum. Similarly the most natural lower bound
for some sets is the smallest member of the set, the minimum.
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Definition 1.3 (Maximum) Let E be a set of real numbers. If
there is a number M that belongs to E and is larger than every
other member of E then M is called the maximum of the set E and
we write M = max E.

Definition 1.4 (Minimum) Let E be a set of real numbers. If
there is a number m that belongs to E and is smaller than every
other member of E then m is called the minimum of the set £ and
we write m = min E.
Example 1.5 The interval

0,]]={z:0< 2z <1}
has a maximum and a minimum. The maximum is 1 and 1 is also
an upper bound for the set. (Indeed if a set has a maximum then
that number must certainly be an upper bound for the set.) Any
number larger than 1 is also an upper bound. The number 0 is the
minimum and also a lower bound.

The interval

0,1)={z:0<z <1}
has no maximum and no minimum. At first glance some novices
insist that the maximum should be 1 and the minimum 0 as before.
But look at the definition. The maximum must be both an upper
bound and also a member of the set. Here 1 and 0 are upper and
lower bounds respectively but do not belong to the set. |

Example 1.6 The set IN of natural numbers has a minimum but
no maximum and no upper bounds at all. We would say that it is
bounded below but not bounded above. |

1.6 Sups and Infs

Let us return to the subject of maxima and minima again. If £ has
a maximum, say M, then that maximum could be described by the
statement

M is the least of all the upper bounds of E,

that is to say, M is the minimum of all the upper bounds. The most
frequent language used here is “M is the least upper bound”. It is
possible for a set to have no maximum and yet be bounded above: in
any example that comes to mind you will see that the set appears to
have a least upper bound. For example, the open interval (0, 1) has
no maximum, but many upper bounds. The least of all the upper
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bounds is the number 1 that cannot be described as a maximum
because it fails to be in the set.

Definition 1.7 (Least Upper Bound/Supremum) Let E be a
nonempty set of real numbers that is bounded above. If M is the
least of all the upper bounds then M is said to be the least upper
bound of E or the supremum of E and we write M = sup E.

Definition 1.8 (Greatest Lower Bound/Infimum) Let E be a
nonempty set of real numbers that is bounded below. If m is the
greatest of all the lower bounds of E then m is said to be the greatest
lower bound of E or the infimum of E and we write M = inf E.

To complete the definition of inf £ and sup E it is most conve-
nient to be able write this expression even for E = () or for unbounded
sets. Thus we write

1. inf() = oo and sup ) = —ooc.
2. If E is unbounded above then sup F = oc.
3. If E is unbounded below then inf £ = —co.

The Axiom of Completeness Any example of a nonempty set
that you are able to visualize that has an upper bound, will also have
a least upper bound. Pages of examples might convince you that
all nonempty sets bounded above must have a least upper bound.
Indeed your intuition will forbid you to accept the idea that this
could not always be the case. To prove such an assertion is not
possible using only the axioms for an ordered field. Thus we shall
assume one further axiom, known as the axiom of completeness.

Completeness Axiom Every nonempty set E of real
numbers that is bounded above has a least upper bound,
i.e., sup F exists and is a real number.

This now is the totality of all the axioms we need to assume.
We have assumed that IR is a field with two operations of addition
and multiplication, that IR is an ordered field with an inequality
relation “<”, and finally that IR is a complete ordered field. This is
enough to characterize the real numbers and the phrase “complete
ordered field” refers to the system of real numbers and to no other
system. (We shall not prove this statement; see Exercise 1:6.24 for
a discussion.)



1.6. Sups and Infs 13

Exercises

1:6.1 Show that a set of real numbers E is bounded if and only if there is
a positive number r so that || < r for all z € E.

1:6.2 Write down sup F and inf E and (where possible) max E and min F
for the following examples of sets:

(a) E=1N.
(b) E
(c) E
d) E
(e) E= { -3,2,5,7}.
(f) E={z: 2% <2}
(g) E={z:2> -2 -1<0}.
(hy E={1/n:n e N}
(i) E={%/n:neN}.
1:6.3 Under what conditions does sup E = max E?
1:6.4 Show for every nonempty, finite set F, that sup £ = max E.

1:6.5 For every = € IR define
[z] = max{n € Z :n < z}

called the greatest integer function. Show that this is well defined
and sketch the graph of the function.

1:6.6 Let A be a set of real numbers and let B = {—z : € A}. Find a
relation between max A and min B and between min A and max B.

1:6.7 Let A be a set of real numbers and let B = {—z : € A}. Find a
relation between sup A and inf B and between inf A and sup B.

1:6.8 Let A be a set of real numbers and let B = {z +r : z € A} for some
number r. Find a relation between sup A and sup B.

1:6.9 Let A be a set of real numbers and let B = {zr : € A} for some
positive number 7. Find a relation between sup A and sup B. (What
happens if r is negative?)

1:6.10 Let A and B be sets of real numbers such that A C B. Find a
relation among inf A, inf B, sup A and sup B.

1:6.11 Let A and B be sets of real numbers and write C = AU B. Find
a relation among sup A, sup B and sup C.

1:6.12 Let A and B be sets of real numbers and write C = AN B. Find
a relation among sup A, sup B and sup C.
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1:6.13 Let A and B be sets of real numbers and write
C={r+y:z€A, ye B}.
Find a relation among sup A, sup B and sup C.
1:6.14 Let A and B be sets of real numbers and write
C={x+y:z€ A, ye B}.
Find a relation among inf A, inf B and inf C.
1:6.15 Let A be a set of real numbers and write A2 = {z? : z € A}. Is

there any relations you can find between the infs and sups of the two
sets?

1:6.16 Let E be a set of real numbers. Show that z is not an upper bound
of E if and only if there exists a number e € E such that e > .

1:6.17 Let A be a set of real numbers. Show that a real number z is the
supremum of A if and only if a < z for all a € A and for every
positive number € there is an element a’ € A such that z — e < a'.

1:6.18 Formulate a condition analogous to the preceding exercise for an
infimum.

1:6.19 Using the completeness axiom show that every nonempty set E of
real numbers that is bounded below has a greatest lower bound, i.e.,
inf E exists and is a real number.

1:6.20 A function is said to be bounded if its range is a bounded set. Give
examples of functions f : R — IR that are bounded and examples
of such functions that are unbounded. Give an example of one that
has the property that

sup{f(z): z € R}
is finite but max{f(z) : x € IR} does not exist.

1:6.21 The rational numbers Q satisfy the axioms for a an ordered field.
Show that the completeness axiom would not be satisfied. That is
show that this statement is false: Every nonempty set E of rational
numbers that is bounded above has a least upper bound, i.e., sup £
exists and is a rational number.

1:6.22 Let F be the set of all numbers of the form z + \/§y where z and
y are rational numbers. Show that F' has all the properties of an
ordered field but does not have the completeness property.

1:6.23 Let A and B be nonempty sets of real numbers and let
d(A,B) =inf{la—b|:a € A, be B}.
0(A, B) is often called the “distance” between the sets A and B.
(a) Let A=IN and B=1R\IN. Compute §(4, B)
(b) If A and B are finite sets what does §(A, B) represent?
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(c) Let A ={z} and B = [0,1]. What does the statement §(A4, B) =
0 mean for the point =7

(d) Let A ={z}and B = (0,1). What does the statement §(A, B) =
0 mean for the point z?

1:6.24 The statement that every complete ordered field “is” the real num- []
ber system means the following. Suppose that F' is a nonempty set
with operations of addition “+” and multiplication “-” and an order
relation “<” that satisfies all the axioms of an ordered field and also
the axiom of completeness. Then there is a one-one onto function
f IR — F that has the following properties:

(@) flz+y)=f(z)+ f(y) forallz,y € R.
(b) f(z-y) = f(@)- f(y) for all 3, y € R.
(¢) f(y) < f(=) if and only if z < y for z, y € R.

Thus, in a certain sense, F' and IR are essentially the same object.
Attempt a proof of this statement. [Note that z +y for z, y € R
refers to the addition in the reals whereas f(z) + f(y) refers to the
addition in the set F'.]

1.7 The Archimedean Property

There is an important relationship holding between the set of natural
numbers IN and the larger set of real numbers IR. Because we have
a well formed mental image of what the set of reals “looks like” this
property is entirely intuitive and natural. It hardly seems that it
would require a proof. It says that the set of natural numbers IN has
no upper bound; i.e., that there is no real number z so that n < z
foralln=1,2,3,....

At first sight this seems to be a purely algebraic and order prop-
erty of the reals. In fact it cannot be proved without invoking the
completeness property of Section 1.6.

Theorem 1.9 (Archimedean Property of IR) The set of natu-
ral numbers IN has no upper bound.

Proof. The proof is obtained by contradiction. If the set IN does
have an upper bound, then it must have a least upper bound. Let
z = sup IN, supposing that such does exist as a finite real number.
Then n < z for all integers n but n < z — 1 cannot be true for all
integers n. Choose some integer m with m > z — 1. Then m + 1
is also an integer and m + 1 > z. But that cannot be so since we
defined z as the supremum. From this contradiction the theorem
follows. |
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The archimedean theorem has some consequences that have a
great impact on how we must think of the real numbers.

1. No matter how large a real number z is given, there is always
an integer n larger.

2. Given any positive number y, no matter how large, and any
positive number z, no matter how small, one can add z to
itself sufficiently many times so that the result exceeds v, i.e.,
nz > y for some integer n € IN.

3. Given any positive number z, no matter how small, one can
always find a fraction 1/n with n a positive integer that is
smaller, i.e., so that 1/n < z.

Each of these is a consequence of the archimedean theorem and
the archimedean theorem in turn can be derived from any one of
these.

Exercises

1:7.1 Using the archimedean theorem, prove each of the three statements
that follow the proof of the archimedean theorem.

1:7.2 Suppose that it is true that for each £ > 0 there is an n € IN so that
1/n < z. Prove the the archimedean theorem using this assumption.

1:7.3 Without using the archimedean theorem show directly that for each
x > 0 there is an n € IN so that 1/n < z.

1:7.4 Let X be any real number. Show that there is an integer m € Z so
that
m< X <m+1.

Show that m is unique.

1:7.5 The mathematician Liebnitz based his calculus on the assumption
that there were “infinitesimals”, positive real numbers that are ex-
tremely small—smaller than all positive rational numbers certainly.
Some calculus students also believe, apparently, in the existence of
such numbers since they can imagine a number that is “just next
to zero”. Is there a positive real number smaller than all positive
rational numbers?

1:7.6 The Archimedean property asserts that if x > 0 then there is an
integer N so that 1/N < z. The proof requires the completeness
axiom. Give a proof that does not use the completeness axiom that
works for z rational. Find a proof that is valid for x = ,/y where y
is rational.



1.8. Inductive Property of IN 17

O 1:7.7 In Section 1.2 we made much of the fact that there is a number
whose square is 2 and so v/2 does exist as a real number. Show that
a=sup{r € R:z* <2}

exists as a real number and that a? = 2.

1.8 Inductive Property of IN

Since the natural numbers are included in the set of real numbers
there are further important properties of IN that can be deduced
from the axioms. The most important of these is the principle of
induction. This is the basis for the technique of proof known as
induction which is often used in this text. For an elementary ac-
count and some practice the reader should look at Section A.8 in the
appendix.
We first prove a statement that is equivalent.

Theorem 1.10 (Well-Ordering Property) FEvery nonempty sub-
set of IN has a smallest element.

Proof. Let S CIN and S # (). Then a = inf S must exist and be
a real number since S is bounded below. If a € S then we are done
since we have found a minimal element.

Suppose not. Then, while « is the greatest lower bound of S, «
is not a minimum. There must be an element of S which is smaller
than a + 1 since « is the greatest lower bound of S. That element
cannot be « since we have assumed that a € S. Thus we have found
z € S with a < x < a+ 1. Now z is not a lower bound of S, since
it is greater than the greatest lower bound of S so there must be yet
another element y of S such that

a<y<z<a+l

But now we have reached an impossibility, for  and y are in S and
both integers, but 0 < £ — y < 1 which cannot happen for integers.
From this contradiction the proof now follows. |

Now we can state and prove the principle of induction.

Theorem 1.11 (Principle of Induction) Let S C IN so that 1 €
S and for every integer n if n € S then so also isn+1. Then S = IN.

Proof. Let E=IN\S. We claim that E = () and then it follows
that S = IN proving the theorem. Suppose not, i.e., suppose E # ().
By Theorem 1.10 there is a first element o of E. Can o = 17 No,
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because 1 € S by hypothesis. Thus a — 1 is also an integer and,
since it cannot be in E it must be in S. By hypothesis it follows
that @ = (¢ —1) +1 must be in S. But it is in E. This is impossible
and so we have obtained a contradiction, proving our theorem. W

Exercises

1:8.1 Show that any bounded nonempty set of natural numbers has a
maximal element.

1:8.2 Show that any bounded nonempty subset of Z has a maximum and
a minimum.

1:8.3 For further exercises on proving statements using induction as a
method see Section A.8.

[0 1:8.4 We have assumed in the text that the set IN is obviously contained
in IR. After all 1 is a real number (it’s in the axioms), 2 is just 1+ 1
and so real, 3 is 2+ 1 etc.. In that way we have been able to prove
the material of this section. But there is a logical flaw here. We
would need induction really to define IN in this way (and not just
say “etc.”). Here is a set of exercises that would remedy that for
students with some background in set manipulations.

(a) Define a set S C IR to be inductive if 1 € S and z € S implies
that £ +1 € S. Show that IR is inductive.

(b) Show that there is a smallest inductive set, i.e., show that the
intersection of the family of all inductive sets is itself inductive.

(c) Define IN to be that smallest inductive set.

(d) Prove Theorem 1.11 now. (That is show that any set S with the
property stated there is inductive and conclude that S = IN.)

(e) Prove Theorem 1.10 now. (That is with this definition of IN
prove the well ordering property.)

1.9 The Rational Numbers are Dense

There is an important relationship holding between the set of rational
numbers Q and the larger set of real numbers IR. The rational
numbers are dense. They make an appearance in every interval;
there are no gaps, no intervals that miss having rational numbers.
For practical purposes this has great consequences. We need
never actually compute with arbitrary real numbers, since close by
are rational numbers that can be used. Thus, while 7 is irrational,
in routine computations with a practical view any nearby fraction
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might do. At various times people have used 3, 22/7, and 3.14159,
for example.

For theoretical reasons this fact is of great importance too. It
allows many arguments to replace a consideration of the set of real
numbers with the smaller set of rationals. Since every real is as close
as we please to a rational and since the rationals can be carefully
described and easily worked with, many simplifications are allowed.

Definition 1.12 (Dense Sets) A set E of real numbers is said to
be dense (or dense in IR) if every interval (a,b) contains a point of
E.

Theorem 1.13 The set Q of rational numbers is dense.

Proof. Let z < y and consider the interval (z,y). We must find a
rational number inside this interval.
By the archimedean theorem, Theorem 1.9, there is a positive
integer
1

n > .
y—x

This means that ny > nx + 1.
Let m be chosen as the integer just less than nz+1; more precisely
(using Exercise 1:7.4), find an integer m € Z so that

m<nr+1l<m-+41.
Now some arithmetic on these inequalities shows that

m—1<nx<ny

and then
m 1
< —<z+—-<y
n n
thus exhibiting a rational number m/n in the interval (z,y). [ |
Exercises

1:9.1 Show that the definition of “dense” could be given as

A set E of real numbers is said to be dense if every interval
(a,b) contains infinitely many points of E.

1:9.2 Find a rational number between /10 and 7.
1:9.3 If a set E is dense what can you conclude about a set A D E?
1:9.4 If a set E is dense what can you conclude about the set R \ E?

1:9.5 If two sets E; and E»> are dense what can you conclude about the
set E1 N Ey?
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1:9.6 Show that the dyadic rationals, i.e., rational numbers of the form
m /2" for m € Z, n € IN are dense.

1:9.7 Are the numbers of the form +m/2!% for m € IN dense? What is
the length of the smallest interval that contains no such number?

1:9.8 Show that the numbers of the form :I:m\/i/n for m, n € IN are
dense.

1:9.9 Use this definition of “dense in a set” to answer the following ques-
tions:

A set E of real numbers is said to be dense in a set A if ev-
ery interval (a,b) that contains a point of A also contains
a point of E.

(a) Show that dense in the set of all reals is the same as dense.
(b) Give an example of a set F dense in IN but with ENIN = {).

(c) Show that the irrationals are dense in the rationals. (A real
number is irrational if it is not rational, i.e. if it belongs to IR
but not to Q.)

(d) Show that the rationals are dense in the irrationals.

(e) What property does a set E have that is equivalent to the
assertion that R \ E is dense in E?

1.10 The Metric Structure of IR

In addition to the algebraic and order structure of the real numbers
we need, too, to make measurements. We need to describe distances
between points. These are the metric properties of the reals, to
borrow a term from the Greek for measure (metron).

As usual the distance between a point z and another point y
is either x — y or y — z depending on which is positive. Thus the
distance between 3 and —4 is 7. The distance between 7 and /10
is /10 — 7. To describe this in general requires the absolute value
function which simply makes a choice between positive and negative.

Definition 1.14 (Absolute Value) For any real number z write
|z =2 ifz>0
and
lz| =—2 ifz<0.

(Beginners tend to think of the absolute value function as “strip-
ping off the negative sign” but the example |7 — /10| = V10 — 7
shows that this is a limited viewpoint.)
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Properties of the Absolute Value Since the absolute value is
defined directly in terms of inequalities (i.e., the choice x > 0 or
x < 0) there are a number of properties that can be proved directly
from properties of inequalities. These properties are used routinely
and the student will need to have a complete mastery of them.

Theorem 1.15 The absolute value function has the following prop-
erties:

1. For any z € R, —|z| <z < |z|.
2. For any z, y € R, |zy| = |z||y|.
3. For any z,y € R, |z +y| < |z| + |y|-

4. For any z, y € R, |z| — [y| < |z —y| and |y| — [z < |z —y|.

Distances on the Real Line Using the absolute value function
we can define the distance function or metric.

Definition 1.16 (Distance) The distance between two real num-
bers = and y is
d(z,y) = |z —yl.

We hardly ever use the notation d(z,y) in elementary analysis,
preferring to write |z — y| even while we are thinking of this as the
distance between the two points. Thus if a sequence of points z1, x2,
T3, ... is growing ever closer to a point ¢ we should perhaps describe
d(zn,c) as getting smaller and smaller thus emphasizing that the
distances are shrinking; more often we would simply write |z, — ¢|
and expect the reader to interpret this as a distance.

Properties of the Distance Function The main properties of
the distance function are just interpretations of the absolute value
function. Expressed in the language of a distance function they are
geometrically very intuitive:

1. d(z,y) > 0 [all distances are positive or zero).

2. d(z,y) = 0 if and only if z = y [different points are at positive
distance apart].

3. d(z,y) = d(y,z) [distance is symmetric, i.e., the distance from
z to y is the same as from y to z].
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4. d(z,y) < d(z,z) + d(z,y) [the triangle inequality, i.e, it is no
longer to go directly from z to y than to go from z to z and
then to y.]

Later on in Chapter 7?7 we will study general structures called
metric spaces where exactly such a notion of distance satisfying these
four properties is used. For now we prefer to rewrite these properties
in the language of the absolute value where they lose some of their
intuitive appeal. But it is in this form that we are likely to use them.

1. |a| > 0.
2. la] =0 if and only if a = 0.
3. la] =] —al.

4. la+b| < |a| + |b|. [the triangle inequality].

Exercises
1:10.1 Show that |z| = max{z, —z}.
1:10.2 Show that max{z,y} = |z + y|/2 + |z — y|/2. What expression

would give min{z,y}?
1:10.3 Show that the inequalities

|z —al <e
and
a—e<zr<a+te

are equivalent.

1:10.4 Show that if a < z < f and & < y < § then |z — y| < f — « and
interpret this geometrically as a statement about the interval (a, 3).

1:10.5 Show that
2| = lyll < |z =yl
assuming the triangle inequality, i.e., that |a + b| < |a| + |b]. This
inequality is also called the triangle inequality.

1:10.6 Under what conditions is it true that
|z +y| = [z + [y|?
1:10.7 Under what conditions is it true that
lz—yl+ly—2[=|z—2?
1:10.8 Show that
|z1 + 22 + -+ 2| < z1| + 22| + - + |70
for any numbers xy, x3, ... , Tp-
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1:10.9 Let E be a a set of real numbers and let A = {|z| : z € E}. What
relations can you find between the infs and sups of the two sets?

1:10.10 Find the inf and sup of the set {z : |2z + 7| < v/2}.



